File size: 3,658 Bytes
0feb5b9
db22654
 
 
 
 
 
 
 
 
 
0feb5b9
 
db22654
0feb5b9
 
db22654
0feb5b9
db22654
0feb5b9
db22654
0feb5b9
 
db22654
0feb5b9
db22654
 
 
0feb5b9
db22654
0feb5b9
db22654
 
 
 
 
 
0feb5b9
db22654
 
 
 
0feb5b9
db22654
 
 
 
0feb5b9
db22654
 
 
 
 
 
 
 
 
 
0feb5b9
db22654
0feb5b9
db22654
 
 
0feb5b9
db22654
0feb5b9
db22654
 
 
 
 
 
0feb5b9
db22654
 
 
 
0feb5b9
db22654
 
 
 
 
0feb5b9
db22654
 
 
 
0feb5b9
db22654
 
 
 
 
 
 
 
 
 
 
0feb5b9
 
db22654
 
 
 
 
0feb5b9
db22654
 
 
 
0feb5b9
db22654
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: llama3
language:
- tr
pipeline_tag: text-generation
base_model: meta-llama/Meta-Llama-3-8B
tags:
- Turkish
- turkish
- Llama
- Llama3
---

<img src="./cosmosLLaMa2_r2.png"/>


# Cosmos LLaMa Instruct

This model is a fully fine-tuned version of the "meta-llama/Meta-Llama-3-8B-Instruct" model with a 30GB Turkish dataset.

The Cosmos LLaMa Instruct is designed for text generation tasks, providing the ability to continue a given text snippet in a coherent and contextually relevant manner. Due to the diverse nature of the training data, which includes websites, books, and other text sources, this model can exhibit biases. Users should be aware of these biases and use the model responsibly.


#### Transformers pipeline

```python
import transformers
import torch

model_id = "ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir."},
    {"role": "user", "content": "Soru: Bir arabanın deposu 60 litre benzin alabiliyor. Araba her 100 kilometrede 8 litre benzin tüketiyor. Depo tamamen doluyken araba kaç kilometre yol alabilir?"},
]

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    messages,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][-1])
```

#### Transformers AutoModelForCausalLM

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

messages = [
    {"role": "system", "content": "Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir."},
    {"role": "user", "content": "Soru: Bir arabanın deposu 60 litre benzin alabiliyor. Araba her 100 kilometrede 8 litre benzin tüketiyor. Depo tamamen doluyken araba kaç kilometre yol alabilir?"},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```


# Acknowledgments
- Thanks to the generous support from the Hugging Face team, it is possible to download models from their S3 storage 🤗
- Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHeM) under grant numbers 1016912023 and 
1018512024
- Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC)

### Contact
COSMOS AI Research Group, Yildiz Technical University Computer Engineering Department <br>
https://cosmos.yildiz.edu.tr/ <br>
cosmos@yildiz.edu.tr

---
license: llama3
---