--- license: apache-2.0 datasets: - Skywork/SkyPile-150B - ticoAg/shibing624-medical-pretrain - togethercomputer/RedPajama-Data-V2 - medalpaca/medical_meadow_wikidoc - nlp-guild/medical-data language: - en - zh pipeline_tag: text-classification --- # fasttext-med-en-zh-identification [[中文]](#chinese) [[English]](#english) This model is an intermediate result of the [EPCD (Easy-Data-Clean-Pipeline)](https://github.com/ytzfhqs/EDCP) project. It is primarily designed to accurately distinguish between Chinese and English samples in medical pretraining datasets. The model framework uses [fastText](https://github.com/facebookresearch/fastText). ## Data Composition ### General Chinese Pretraining Dataset - [Skywork/SkyPile-150B](https://huggingface.co/datasets/Skywork/SkyPile-150B) ### Medical Chinese Pretraining Dataset - [ticoAg/shibing624-medical-pretrain](https://huggingface.co/datasets/ticoAg/shibing624-medical-pretrain) ### General English Pretraining Dataset - [togethercomputer/RedPajama-Data-V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2) ### Medical English Pretraining Datasets - [medalpaca/medical_meadow_wikidoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) - [nlp-guild/medical-data](https://huggingface.co/datasets/nlp-guild/medical-data) The above datasets are high-quality, open-source datasets, which can save a lot of effort in data cleaning. Many thanks to the developers for their contributions to the open-source data community! ## Data Cleaning Process - Initial dataset processing: - For the Chinese training datasets, the pretraining corpus is split by `\n`, and any leading or trailing spaces are removed. - For the English training datasets, the pretraining corpus is split by `\n`, all letters are converted to lowercase, and any leading or trailing spaces are removed. - Word count statistics: - For Chinese, the [jieba](https://github.com/fxsjy/jieba) package is used for tokenization, and stopwords and non-Chinese characters are further filtered using [jionlp](https://github.com/dongrixinyu/JioNLP). - For English, the [nltk](https://github.com/nltk/nltk) package is used for tokenization, with built-in stopwords for filtering. - Sample filtering based on word count (heuristic thresholds): - For Chinese: Keep only samples with more than 5 words. - For English: Keep only samples with more than 5 words. - Dataset splitting: 90% of the data is used for training and 10% for testing. ## Model Performance | Dataset | Precision | Recall | |---------|----------|----------| | Train | 0.9987 | 0.9987 | | Test | 0.9962 | 0.9962 | ## Usage Example ```python import fasttext from huggingface_hub import hf_hub_download def to_low(text): return text.strip().lower() model_path = hf_hub_download(repo_id="ytzfhqs/fasttext-med-en-zh-identification", filename="model.bin") model = fasttext.load_model(model_path) model.predict(to_low('Hello, world!')) ``` # fasttext-med-en-zh-identification [[中文]](#chinese) [[English]](#english) 该模型为[EPCD(Easy-Data-Clean-Pipeline)](https://github.com/ytzfhqs/EDCP)项目的中间产物,主要用来区分医疗预训练语料中中文与英文样本。模型框架使用[fastText](https://github.com/facebookresearch/fastText)。 # 数据组成 ## 中文通用预训练数据集 - [Skywork/SkyPile-150B](https://huggingface.co/datasets/Skywork/SkyPile-150B) ## 中文医疗预训练数据集 - [ticoAg/shibing624-medical-pretrain](https://huggingface.co/datasets/ticoAg/shibing624-medical-pretrain) ## 英文通用预训练数据集 - [togethercomputer/RedPajama-Data-V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2) ## 英文医疗预训练数据集 - [medalpaca/medical_meadow_wikidoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) - [nlp-guild/medical-data](https://huggingface.co/datasets/nlp-guild/medical-data) 上述数据集均为高质量开源数据集,可以节省很多数据清洗的工作,感谢上述开发者对开源数据社区的支持! # 数据清洗流程 - 数据集初步整理 - 对中文训练数据集,按`\n`分割预训练语料,去除开头和结尾可能存在的空格。 - 对英文训练数据集,按`\n`分割预训练语料,将所有字母全部变为小写,去除开头和结尾可能存在的空格。 - 统计词数量,具体的: - 对中文,使用[jieba](https://github.com/fxsjy/jieba)包进行分词,并利用[jionlp](https://github.com/dongrixinyu/JioNLP)进一步过滤停用词和非中文字符。 - 对英文,使用[nltk](https://github.com/nltk/nltk)包进行分词,并利用内置停用词进行过滤。 - 根据词数量进行样本过滤,具体的(经验数值): - 对中文:仅保留词数量大于5的样本。 - 对英文:仅保留词数量大于5的样本。 - 切分数据集,训练集比例为0.9,测试集比例为0.1。 # 模型表现 |Dataset | Accuracy | |-------|-------| |Train | 0.9994| |Test | 0.9998| ## Usage Example ```python import fasttext from huggingface_hub import hf_hub_download def to_low(text): return text.strip().lower() model_path = hf_hub_download(repo_id="ytzfhqs/fasttext-med-en-zh-identification", filename="model.bin") model = fasttext.load_model(model_path) model.predict(to_low('Hello, world!')) ```