yuanzhoulvpi
commited on
Commit
•
769ad7a
1
Parent(s):
b562b9d
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,59 @@
|
|
1 |
---
|
2 |
license: bigscience-bloom-rail-1.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: bigscience-bloom-rail-1.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
---
|
6 |
+
|
7 |
+
## 介绍
|
8 |
+
1. ✅ 对`bloom-7b`模型做了sft
|
9 |
+
2. 🚀 训练代码和推理代码全部分享,可以查看链接[https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/chinese_bloom](https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/chinese_bloom)
|
10 |
+
|
11 |
+
## 个人感受
|
12 |
+
1. 🎯 `bloom`系列的模型,在中文领域,具有极大的潜力,在经过有监督微调训练之后,效果非常惊人!
|
13 |
+
2. 🔄 `bloom`系列的模型,覆盖中文、英文、代码、法语、西班牙语等。即使拿来做翻译、拿来做代码生成,也都没问题!(后期将会分享相关教程)
|
14 |
+
3. 😛 当前的这个`bloom-7b`模型,我是非常喜欢滴,特地在`8xA100`机器上训练了部分数据。整体效果非常不错~
|
15 |
+
|
16 |
+
## 如何使用
|
17 |
+
|
18 |
+
```python
|
19 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
20 |
+
|
21 |
+
|
22 |
+
checkpoint = "yuanzhoulvpi/chinese_bloom_7b_chat"#"bigscience/bloomz-3b" #"bigscience/bloom-7b1"# "output_dir/checkpoint-8260"#
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).half().cuda()
|
25 |
+
|
26 |
+
PROMPT_DICT = {
|
27 |
+
"prompt_input": (
|
28 |
+
"Below is an instruction that describes a task, paired with an input that provides further context. "
|
29 |
+
"Write a response that appropriately completes the request.\n\n"
|
30 |
+
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
|
31 |
+
),
|
32 |
+
"prompt_no_input": (
|
33 |
+
"Below is an instruction that describes a task. "
|
34 |
+
"Write a response that appropriately completes the request.\n\n"
|
35 |
+
"### Instruction:\n{instruction}\n\n### Response:"
|
36 |
+
),
|
37 |
+
}
|
38 |
+
|
39 |
+
from typing import Optional
|
40 |
+
def generate_input(instruction:Optional[str]= None, input_str:Optional[str] = None) -> str:
|
41 |
+
if input_str is None:
|
42 |
+
return PROMPT_DICT['prompt_no_input'].format_map({'instruction':instruction})
|
43 |
+
else:
|
44 |
+
return PROMPT_DICT['prompt_input'].format_map({'instruction':instruction, 'input':input_str})
|
45 |
+
|
46 |
+
|
47 |
+
for i in range(5):
|
48 |
+
print("*"*80)
|
49 |
+
|
50 |
+
inputs = tokenizer.encode(generate_input(instruction="你是谁"), return_tensors="pt")
|
51 |
+
outputs = model.generate(inputs,num_beams=3,
|
52 |
+
max_new_tokens=512,
|
53 |
+
do_sample=False,
|
54 |
+
top_k=10,
|
55 |
+
penalty_alpha=0.6,
|
56 |
+
temperature=0.8,
|
57 |
+
repetition_penalty=1.2)
|
58 |
+
print(tokenizer.decode(outputs[0]))
|
59 |
+
```
|