File size: 1,427 Bytes
f39b43f
9bde620
 
f39b43f
 
 
 
 
 
da0f3ea
f39b43f
 
 
 
 
 
da0f3ea
f39b43f
da0f3ea
9bde620
c6643eb
 
 
a12e36a
f39b43f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
model-index:
- name: bert-base-uncased-sst2-unstructured80-PTQ
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-sst2-unstructured80-PTQ

This model conducts simple post training quantization of [yujiepan/bert-base-uncased-sst2-unstructured-sparsity-80](https://huggingface.co/yujiepan/bert-base-uncased-sst2-unstructured-sparsity-80) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- torch loss: 0.4029
- torch accuracy: 0.9128
- OpenVINO IR accuracy: 0.9117
- Sparsity in transformer block linear layers: 0.80

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- num_epochs: 12.0
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2