File size: 1,472 Bytes
f2bdad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d912a0
f2bdad6
 
 
 
 
 
 
 
03d9024
 
 
 
 
f2bdad6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
  example_title: Hello world
  group: Python
---

This model is for debugging. It is randomly initialized using the config from [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) but with smaller size. 

Codes:
```python
from transformers import pipeline
from huggingface_hub import create_repo, upload_folder
import torch
import transformers
import os

model_id = 'mistralai/Mistral-7B-Instruct-v0.3'
save_path = '/tmp/yujiepan/mistral-v0.3-tiny-random'
repo_id = 'yujiepan/mistral-v0.3-tiny-random'

config = transformers.AutoConfig.from_pretrained(model_id)
config.hidden_size = 8
config.intermediate_size = 32
config.num_attention_heads = 4
config.num_hidden_layers = 2
config.num_key_value_heads = 2
config.head_dim = 2
print(config)

tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.save_pretrained(save_path)

model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16)
model.generation_config = transformers.GenerationConfig.from_pretrained(model_id)

transformers.set_seed(42)
with torch.no_grad():
    for _, p in sorted(model.named_parameters()):
        torch.nn.init.uniform_(p, -0.1, 0.1)

pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, do_sample=False, device='cuda')
print(pipe('Hello World!'))

model.save_pretrained(save_path)
```