--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This model is for debugging. It is randomly initialized using the config from [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) but with smaller size. Codes: ```python from transformers import pipeline from huggingface_hub import create_repo, upload_folder import torch import transformers import os model_id = 'mistralai/Mistral-7B-Instruct-v0.3' save_path = '/tmp/yujiepan/mistral-v0.3-tiny-random' repo_id = 'yujiepan/mistral-v0.3-tiny-random' config = transformers.AutoConfig.from_pretrained(model_id) config.hidden_size = 8 config.intermediate_size = 32 config.num_attention_heads = 4 config.num_hidden_layers = 2 config.num_key_value_heads = 2 config.head_dim = 2 print(config) tokenizer = transformers.AutoTokenizer.from_pretrained(model_id) tokenizer.save_pretrained(save_path) model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16) model.generation_config = transformers.GenerationConfig.from_pretrained(model_id) transformers.set_seed(42) with torch.no_grad(): for _, p in sorted(model.named_parameters()): torch.nn.init.uniform_(p, -0.1, 0.1) pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, do_sample=False, device='cuda') print(pipe('Hello World!')) model.save_pretrained(save_path) ```