yujiepan's picture
Upload folder using huggingface_hub
cf85772 verified
|
raw
history blame
2.96 kB
metadata
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python

This model is for debugging. It is randomly initialized using the config from Qwen/Qwen2-VL-7B-Instruct but with smaller size.

Codes:

import os
from typing import Dict

import requests
import torch
import transformers
from PIL import Image
from torchvision import io
from transformers import (AutoConfig, AutoModelForCausalLM, AutoProcessor,
                          AutoTokenizer, GenerationConfig, pipeline, set_seed)
from transformers.models.qwen2_vl import Qwen2VLForConditionalGeneration

model_id = "Qwen/Qwen2-VL-7B-Instruct"
repo_id = "yujiepan/qwen2-vl-tiny-random"
save_path = f"/tmp/{repo_id}"

config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
config.hidden_size = 16
config.intermediate_size = 32
config.num_attention_heads = 2
config.num_hidden_layers = 2
config.num_key_value_heads = 1
config.vision_config.embed_dim = 16
config.vision_config.num_heads = 2
config.vision_config.hidden_size = 16
config.vision_config.depth = 2
config.rope_scaling['mrope_section'] = [1, 1, 2]  # sum needs to be 4 here

model = Qwen2VLForConditionalGeneration(config=config)
model = model.to(torch.bfloat16).cuda().eval()
model.generation_config = GenerationConfig.from_pretrained(
    model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
    for _, p in sorted(model.named_parameters()):
        torch.nn.init.uniform_(p, -0.3, 0.3)

processor = AutoProcessor.from_pretrained(model_id)
model.save_pretrained(save_path)
processor.save_pretrained(save_path)
os.system(f"ls -alh {save_path}")


def try_inference():
    url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
    image = Image.open(requests.get(url, stream=True).raw)
    conversation = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                },
                {"type": "text", "text": "Describe this image."},
            ],
        }
    ]
    processor = AutoProcessor.from_pretrained(save_path)
    model = Qwen2VLForConditionalGeneration.from_pretrained(
        save_path, torch_dtype=torch.bfloat16, device_map='cuda')
    text_prompt = processor.apply_chat_template(
        conversation, add_generation_prompt=True)
    inputs = processor(
        text=[text_prompt], images=[image], padding=True, return_tensors="pt"
    )
    inputs = inputs.to("cuda")
    output_ids = model.generate(**inputs, max_new_tokens=16)
    generated_ids = [
        output_ids[len(input_ids):]
        for input_ids, output_ids in zip(inputs.input_ids, output_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
    )
    print(output_text)


try_inference()