yuntian-deng commited on
Commit
2ce9c0c
·
1 Parent(s): 172e90f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -43
README.md CHANGED
@@ -1,54 +1,37 @@
1
  ---
2
  language: en
3
- license: apache-2.0
4
  library_name: diffusers
5
- tags: []
 
 
 
6
  datasets: yuntian-deng/im2latex-100k
7
  metrics: []
8
  ---
9
 
10
- <!-- This model card has been generated automatically according to the information the training script had access to. You
11
- should probably proofread and complete it, then remove this comment. -->
12
-
13
  # latex2im_ss_finetunegptneo
14
 
15
  ## Model description
16
 
17
- This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
18
- on the `yuntian-deng/im2latex-100k` dataset.
19
-
20
- ## Intended uses & limitations
21
-
22
- #### How to use
23
-
24
- ```python
25
- # TODO: add an example code snippet for running this diffusion pipeline
26
- ```
27
-
28
- #### Limitations and bias
29
-
30
- [TODO: provide examples of latent issues and potential remediations]
31
-
32
- ## Training data
33
-
34
- [TODO: describe the data used to train the model]
35
-
36
- ### Training hyperparameters
37
-
38
- The following hyperparameters were used during training:
39
- - learning_rate: 0.0001
40
- - train_batch_size: 16
41
- - eval_batch_size: 16
42
- - gradient_accumulation_steps: 1
43
- - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
44
- - lr_scheduler: None
45
- - lr_warmup_steps: 500
46
- - ema_inv_gamma: None
47
- - ema_inv_gamma: None
48
- - ema_inv_gamma: None
49
- - mixed_precision: no
50
-
51
- ### Training results
52
-
53
- 📈 [TensorBoard logs](https://huggingface.co/yuntian-deng/latex2im_ss_finetunegptneo/tensorboard?#scalars)
54
-
 
1
  ---
2
  language: en
3
+ license: mit
4
  library_name: diffusers
5
+ tags:
6
+ - stable-diffusion
7
+ - stable-diffusion-diffusers
8
+ - text-to-image
9
  datasets: yuntian-deng/im2latex-100k
10
  metrics: []
11
  ---
12
 
 
 
 
13
  # latex2im_ss_finetunegptneo
14
 
15
  ## Model description
16
 
17
+ Details of this model can be found in [our paper on markup-to-image generation](https://arxiv.org/pdf/2210.05147.pdf). Our code is built on top of HuggingFace [diffusers](https://github.com/huggingface/diffusers) and [transformers](https://github.com/huggingface/transformers).
18
+
19
+ ## Online Demo: [https://huggingface.co/spaces/yuntian-deng/latex2im](https://huggingface.co/spaces/yuntian-deng/latex2im).
20
+
21
+ ## Model Details
22
+ - **Developed by:** Yuntian Deng, Noriyuki Kojima, Alexander M. Rush
23
+ - **Model type:** Diffusion-based text-to-image generation model
24
+ - **Language(s):** English
25
+ - **License:** [MIT](https://github.com/da03/markup2im/blob/main/LICENSE).
26
+ - **Model Description:** This is a model that can be used to generate math formula images based on LaTeX prompts.
27
+ - **Resources for more information:** [GitHub Repository](https://github.com/da03/markup2im), [Paper](https://arxiv.org/abs/2210.05147).
28
+ - **Cite as:**
29
+
30
+ @inproceedings{
31
+ deng2023markuptoimage,
32
+ title={Markup-to-Image Diffusion Models with Scheduled Sampling},
33
+ author={Yuntian Deng and Noriyuki Kojima and Alexander M Rush},
34
+ booktitle={The Eleventh International Conference on Learning Representations },
35
+ year={2023},
36
+ url={https://openreview.net/forum?id=81VJDmOE2ol}
37
+ }