End of training
Browse files- README.md +95 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: distilbert-base-uncased-finetuned-ner
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# distilbert-base-uncased-finetuned-ner
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4181
|
24 |
+
- Precision: 0.6106
|
25 |
+
- Recall: 0.6615
|
26 |
+
- F1: 0.635
|
27 |
+
- Accuracy: 0.9189
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 30
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 23 | 0.3610 | 0.4795 | 0.6094 | 0.5367 | 0.9045 |
|
59 |
+
| No log | 2.0 | 46 | 0.3516 | 0.5330 | 0.5885 | 0.5594 | 0.9141 |
|
60 |
+
| No log | 3.0 | 69 | 0.3591 | 0.5346 | 0.6042 | 0.5672 | 0.9147 |
|
61 |
+
| No log | 4.0 | 92 | 0.3602 | 0.5226 | 0.6615 | 0.5839 | 0.9129 |
|
62 |
+
| No log | 5.0 | 115 | 0.3706 | 0.5315 | 0.6146 | 0.5700 | 0.9123 |
|
63 |
+
| No log | 6.0 | 138 | 0.3652 | 0.5631 | 0.6042 | 0.5829 | 0.9165 |
|
64 |
+
| No log | 7.0 | 161 | 0.3618 | 0.5640 | 0.6198 | 0.5906 | 0.9153 |
|
65 |
+
| No log | 8.0 | 184 | 0.3680 | 0.5755 | 0.6354 | 0.6040 | 0.9165 |
|
66 |
+
| No log | 9.0 | 207 | 0.3782 | 0.5789 | 0.6302 | 0.6035 | 0.9183 |
|
67 |
+
| No log | 10.0 | 230 | 0.3926 | 0.6020 | 0.6302 | 0.6158 | 0.9189 |
|
68 |
+
| No log | 11.0 | 253 | 0.3816 | 0.5845 | 0.6667 | 0.6229 | 0.9171 |
|
69 |
+
| No log | 12.0 | 276 | 0.3811 | 0.5942 | 0.6406 | 0.6165 | 0.9195 |
|
70 |
+
| No log | 13.0 | 299 | 0.3857 | 0.5885 | 0.6406 | 0.6135 | 0.9189 |
|
71 |
+
| No log | 14.0 | 322 | 0.3966 | 0.5714 | 0.6458 | 0.6064 | 0.9141 |
|
72 |
+
| No log | 15.0 | 345 | 0.3927 | 0.6019 | 0.6615 | 0.6303 | 0.9183 |
|
73 |
+
| No log | 16.0 | 368 | 0.3955 | 0.5907 | 0.6615 | 0.6241 | 0.9165 |
|
74 |
+
| No log | 17.0 | 391 | 0.4124 | 0.5931 | 0.6302 | 0.6111 | 0.9171 |
|
75 |
+
| No log | 18.0 | 414 | 0.4112 | 0.5733 | 0.6719 | 0.6187 | 0.9135 |
|
76 |
+
| No log | 19.0 | 437 | 0.4177 | 0.5829 | 0.6406 | 0.6104 | 0.9159 |
|
77 |
+
| No log | 20.0 | 460 | 0.4100 | 0.6028 | 0.6719 | 0.6355 | 0.9159 |
|
78 |
+
| No log | 21.0 | 483 | 0.4159 | 0.5869 | 0.6510 | 0.6173 | 0.9165 |
|
79 |
+
| 0.0279 | 22.0 | 506 | 0.4100 | 0.5853 | 0.6615 | 0.6210 | 0.9153 |
|
80 |
+
| 0.0279 | 23.0 | 529 | 0.4127 | 0.6172 | 0.6719 | 0.6434 | 0.9189 |
|
81 |
+
| 0.0279 | 24.0 | 552 | 0.4074 | 0.5945 | 0.6719 | 0.6308 | 0.9153 |
|
82 |
+
| 0.0279 | 25.0 | 575 | 0.4056 | 0.5909 | 0.6771 | 0.6311 | 0.9165 |
|
83 |
+
| 0.0279 | 26.0 | 598 | 0.4079 | 0.5740 | 0.6667 | 0.6169 | 0.9153 |
|
84 |
+
| 0.0279 | 27.0 | 621 | 0.4184 | 0.6117 | 0.6562 | 0.6332 | 0.9189 |
|
85 |
+
| 0.0279 | 28.0 | 644 | 0.4177 | 0.6165 | 0.6615 | 0.6382 | 0.9195 |
|
86 |
+
| 0.0279 | 29.0 | 667 | 0.4178 | 0.6106 | 0.6615 | 0.635 | 0.9189 |
|
87 |
+
| 0.0279 | 30.0 | 690 | 0.4181 | 0.6106 | 0.6615 | 0.635 | 0.9189 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.36.2
|
93 |
+
- Pytorch 2.1.2+cu118
|
94 |
+
- Datasets 2.16.0
|
95 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 265510004
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8d30f3b83c69845ee6f81bfd07a69856f870a452735b98cc795889c3b57b5e8
|
3 |
size 265510004
|