---
library_name: transformers
license: apache-2.0
datasets:
- yusufbaykaloglu/University_Mevzuat_QA_v2
language:
- tr
base_model:
- ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1
pipeline_tag: text-generation
tags:
- legal
---
## Model Details
### Model Description
his model is based on the **ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1** base model and has been fine-tuned on a Turkish Q&A dataset concerning university regulations. The fine-tuning was performed using the LoRA method with 4-bit quantization via BitsAndBytes to reduce memory footprint while preserving performance. The training data, sourced from the dataset [yusufbaykaloglu/University_Mevzuat_QA_v2](https://huggingface.co/datasets/yusufbaykaloglu/University_Mevzuat_QA_v2), contains question–answer pairs formatted as follows:
```python
[INST] {question} [/INST] {answer}
```
- **Developed by:** [Yusuf Baykaloğlu]
- **Model type:** [Causal Language Model fine-tuned with LoRA]
- **Language(s) (NLP):** [Turkish]
- **Finetuned from model:** [ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1]
## How to Get Started with the Model
Below is a sample code snippet to get started with the model:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "yusufbaykaloglu/Turkish-University-Regulations"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.to(device)
input_text = "[INST] Sorunuzu giriniz. [/INST]"
inputs = tokenizer(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs["input_ids"], max_length=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Example
```python
input_text = "[INST] Dokuz Eylül Üniversitesi Fen Fakültesi öğrencisiyim. İngilizce hazırlık programından muaf olmak veya doğrudan atlamak için hangi şartları sağlamam gerekiyor? [/INST]"
[INST] Dokuz Eylül Üniversitesi Fen Fakültesi öğrencisiyim. İngilizce hazırlık programından muaf olmak veya doğrudan atlamak için hangi şartları sağlamam gerekiyor?
[/INST]Madde 6'ya göre, İngilizce hazırlık programından muaf olmak veya doğrudan atlamak için aşağıdaki şartları sağlamanız gerekiyor:
1. **Yabancı Dil Yeterlik Sınavı:** Yabancı dil yeterliliğinizi kanıtlamak için Yabancı Dil Yeterlik Sınavı'na girmelisiniz.
2. **Yeterlik Notu:** Sınavda belirli bir not almanız gerekiyor. Bu not, İngilizce hazırlık programından muafiyet veya atlamayı sağlayacak düzeyde belirlenmiştir.
3. **Muafiyet veya Atlamayı Başvurma:** Sınav sonuçlarınızı ve gerekli belgeleri, fakültenin belirlediği prosedürlere uygun olarak Öğrenci İşleri Daire Başkanlığına sunmanız gerekir.
4. **Onay:** Öğrenci İşleri Daire Başkanlığı, başvurunuzu inceleyecek ve muafiyet veya atlamayı onaylayacaktır.
```
## Bias, Risks, and Limitations
This model has been trained on a specific Q&A dataset related to Turkish university regulations and may reflect inherent biases or gaps present in the source data. Users should be aware that:
- Generated responses might occasionally be incorrect, incomplete, or outdated.
- The model is best used as an assistive tool rather than a sole authority on university regulations.
## Training Details
### Training Data
- **Source:** The model was fine-tuned using the dataset [yusufbaykaloglu/University_Mevzuat_QA_v2](https://huggingface.co/datasets/yusufbaykaloglu/University_Mevzuat_QA_v2), which comprises Turkish question–answer pairs on university regulations.
### Training Procedure
- **Base Model:**
- `ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1`
- **Fine-Tuning Method:**
- LoRA (Low-Rank Adaptation)
- **LoRA Configuration:**
- `r = 64`
- `lora_alpha = 128`
- `lora_dropout = 0.1`
- `bias = "none"`
- Task type: `CAUSAL_LM`
- **Training Framework:**
- SFTTrainer from the TRL library
- **Training Hyperparameters:**
- **Epochs:** 8
- **Per-device Batch Size:** 2
- **Gradient Accumulation Steps:** 16
- **Learning Rate:** 1e-4
- **Weight Decay:** 0.001
- **Warmup Ratio:** 0.03 (with 100 warmup steps)
- **LR Scheduler:** Cosine
- **Max Sequence Length:** 256 tokens
- **Optimizer:** paged_adamw_32bit
- **Max Gradient Norm:** 0.3
- **Quantization:**
- 4-bit quantization using BitsAndBytes for efficient memory and compute usage
### Training Loss
Below are the training loss values recorded at various training steps:
| Step | Training Loss |
|------|---------------|
| 500 | 1.077800 |
| 1000 | 0.866600 |
| 1500 | 0.791500 |
| 2000 | 0.736100 |
| 2500 | 0.693900 |
| 3000 | 0.658500 |
| 3500 | 0.642400 |
## Contributions and Support
For any inquiries, bug reports, or collaboration requests, please contact:
- **Email:** [Email](mailto:yusuff.baykaloglu@gmail.com)
- **Hugging Face Profile:** [https://huggingface.co/yusufbaykaloglu](https://huggingface.co/yusufbaykaloglu)
- **GitHub:** [yusufbaykal](https://github.com/yusufbaykal)
- **Linkedin:**[yusufbaykaloglu](https://www.linkedin.com/in/yusufbaykaloglu/)
## Citation
If you use this model in your research or project, please cite it as follows:
```bibtex
@misc{Baykaloglu2025TurkishUniversityRegulations,
author = {Yusuf Baykaloglu},
title = {Turkish-University-Regulations: A Fine-tuned Turkish Llama Model for University Regulations Q&A},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/yusufbaykaloglu/Turkish-University-Regulations}}
}