yuval6967 commited on
Commit
495d39b
·
1 Parent(s): 43388ec

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - marsyas/gtzan
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: hubert-base-ls960-finetuned-gtzan
11
+ results:
12
+ - task:
13
+ name: Audio Classification
14
+ type: audio-classification
15
+ dataset:
16
+ name: GTZAN
17
+ type: marsyas/gtzan
18
+ config: all
19
+ split: train
20
+ args: all
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.85
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # hubert-base-ls960-finetuned-gtzan
31
+
32
+ This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.5673
35
+ - Accuracy: 0.85
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 4
56
+ - eval_batch_size: 4
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 8
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 10
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 2.0215 | 1.0 | 112 | 1.9334 | 0.2 |
70
+ | 1.5799 | 2.0 | 225 | 1.3860 | 0.58 |
71
+ | 1.1392 | 3.0 | 337 | 1.2514 | 0.55 |
72
+ | 0.9529 | 4.0 | 450 | 0.9821 | 0.65 |
73
+ | 0.7872 | 5.0 | 562 | 0.8525 | 0.74 |
74
+ | 0.7504 | 6.0 | 675 | 0.9070 | 0.71 |
75
+ | 0.8104 | 7.0 | 787 | 0.5771 | 0.83 |
76
+ | 0.303 | 8.0 | 900 | 0.6943 | 0.81 |
77
+ | 0.3939 | 9.0 | 1012 | 0.6368 | 0.84 |
78
+ | 0.6499 | 9.96 | 1120 | 0.5673 | 0.85 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.31.0.dev0
84
+ - Pytorch 1.13.0
85
+ - Datasets 2.1.0
86
+ - Tokenizers 0.13.3