update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -60,22 +60,27 @@ The following hyperparameters were used during training:
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
-
- num_epochs:
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 2.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
|
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.84
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.6527
|
35 |
+
- Accuracy: 0.84
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 15
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 2.1249 | 1.0 | 112 | 1.9377 | 0.43 |
|
70 |
+
| 1.6556 | 2.0 | 225 | 1.5867 | 0.47 |
|
71 |
+
| 1.2564 | 3.0 | 337 | 1.2670 | 0.56 |
|
72 |
+
| 1.0786 | 4.0 | 450 | 1.1080 | 0.59 |
|
73 |
+
| 0.895 | 5.0 | 562 | 0.8518 | 0.75 |
|
74 |
+
| 0.7177 | 6.0 | 675 | 1.0047 | 0.7 |
|
75 |
+
| 0.964 | 7.0 | 787 | 0.7430 | 0.75 |
|
76 |
+
| 0.4107 | 8.0 | 900 | 1.0347 | 0.71 |
|
77 |
+
| 0.4166 | 9.0 | 1012 | 0.5399 | 0.85 |
|
78 |
+
| 0.1234 | 10.0 | 1125 | 0.6266 | 0.83 |
|
79 |
+
| 0.0902 | 11.0 | 1237 | 0.6292 | 0.84 |
|
80 |
+
| 0.1211 | 12.0 | 1350 | 0.7393 | 0.84 |
|
81 |
+
| 0.4082 | 13.0 | 1462 | 0.6524 | 0.85 |
|
82 |
+
| 0.3442 | 14.0 | 1575 | 0.5732 | 0.86 |
|
83 |
+
| 0.0913 | 14.93 | 1680 | 0.6527 | 0.84 |
|
84 |
|
85 |
|
86 |
### Framework versions
|