yuvalkirstain
commited on
Commit
•
a03b517
1
Parent(s):
8fc35fe
add diffusers
Browse files- convert_to_diffusers.py +1024 -0
- feature_extractor/preprocessor_config.json +28 -0
- model_index.json +33 -0
- safety_checker/config.json +181 -0
- safety_checker/pytorch_model.bin +3 -0
- scheduler/scheduler_config.json +14 -0
- text_encoder/config.json +25 -0
- text_encoder/pytorch_model.bin +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +34 -0
- tokenizer/vocab.json +0 -0
- unet/config.json +44 -0
- unet/diffusion_pytorch_model.bin +3 -0
- v1-inference.yaml +70 -0
- vae/config.json +29 -0
- vae/diffusion_pytorch_model.bin +3 -0
convert_to_diffusers.py
ADDED
@@ -0,0 +1,1024 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Conversion script for the LDM checkpoints. """
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import os
|
19 |
+
import re
|
20 |
+
|
21 |
+
import torch
|
22 |
+
|
23 |
+
|
24 |
+
try:
|
25 |
+
from omegaconf import OmegaConf
|
26 |
+
except ImportError:
|
27 |
+
raise ImportError(
|
28 |
+
"OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`."
|
29 |
+
)
|
30 |
+
|
31 |
+
from diffusers import (
|
32 |
+
AutoencoderKL,
|
33 |
+
DDIMScheduler,
|
34 |
+
DPMSolverMultistepScheduler,
|
35 |
+
EulerAncestralDiscreteScheduler,
|
36 |
+
EulerDiscreteScheduler,
|
37 |
+
HeunDiscreteScheduler,
|
38 |
+
LDMTextToImagePipeline,
|
39 |
+
LMSDiscreteScheduler,
|
40 |
+
PNDMScheduler,
|
41 |
+
StableDiffusionPipeline,
|
42 |
+
UNet2DConditionModel,
|
43 |
+
)
|
44 |
+
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
|
45 |
+
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder, PaintByExamplePipeline
|
46 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
47 |
+
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig
|
48 |
+
|
49 |
+
|
50 |
+
def shave_segments(path, n_shave_prefix_segments=1):
|
51 |
+
"""
|
52 |
+
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
53 |
+
"""
|
54 |
+
if n_shave_prefix_segments >= 0:
|
55 |
+
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
56 |
+
else:
|
57 |
+
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
58 |
+
|
59 |
+
|
60 |
+
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
61 |
+
"""
|
62 |
+
Updates paths inside resnets to the new naming scheme (local renaming)
|
63 |
+
"""
|
64 |
+
mapping = []
|
65 |
+
for old_item in old_list:
|
66 |
+
new_item = old_item.replace("in_layers.0", "norm1")
|
67 |
+
new_item = new_item.replace("in_layers.2", "conv1")
|
68 |
+
|
69 |
+
new_item = new_item.replace("out_layers.0", "norm2")
|
70 |
+
new_item = new_item.replace("out_layers.3", "conv2")
|
71 |
+
|
72 |
+
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
73 |
+
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
74 |
+
|
75 |
+
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
76 |
+
|
77 |
+
mapping.append({"old": old_item, "new": new_item})
|
78 |
+
|
79 |
+
return mapping
|
80 |
+
|
81 |
+
|
82 |
+
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
83 |
+
"""
|
84 |
+
Updates paths inside resnets to the new naming scheme (local renaming)
|
85 |
+
"""
|
86 |
+
mapping = []
|
87 |
+
for old_item in old_list:
|
88 |
+
new_item = old_item
|
89 |
+
|
90 |
+
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
91 |
+
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
92 |
+
|
93 |
+
mapping.append({"old": old_item, "new": new_item})
|
94 |
+
|
95 |
+
return mapping
|
96 |
+
|
97 |
+
|
98 |
+
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
99 |
+
"""
|
100 |
+
Updates paths inside attentions to the new naming scheme (local renaming)
|
101 |
+
"""
|
102 |
+
mapping = []
|
103 |
+
for old_item in old_list:
|
104 |
+
new_item = old_item
|
105 |
+
|
106 |
+
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
107 |
+
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
108 |
+
|
109 |
+
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
110 |
+
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
111 |
+
|
112 |
+
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
113 |
+
|
114 |
+
mapping.append({"old": old_item, "new": new_item})
|
115 |
+
|
116 |
+
return mapping
|
117 |
+
|
118 |
+
|
119 |
+
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
120 |
+
"""
|
121 |
+
Updates paths inside attentions to the new naming scheme (local renaming)
|
122 |
+
"""
|
123 |
+
mapping = []
|
124 |
+
for old_item in old_list:
|
125 |
+
new_item = old_item
|
126 |
+
|
127 |
+
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
128 |
+
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
129 |
+
|
130 |
+
new_item = new_item.replace("q.weight", "query.weight")
|
131 |
+
new_item = new_item.replace("q.bias", "query.bias")
|
132 |
+
|
133 |
+
new_item = new_item.replace("k.weight", "key.weight")
|
134 |
+
new_item = new_item.replace("k.bias", "key.bias")
|
135 |
+
|
136 |
+
new_item = new_item.replace("v.weight", "value.weight")
|
137 |
+
new_item = new_item.replace("v.bias", "value.bias")
|
138 |
+
|
139 |
+
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
|
140 |
+
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
|
141 |
+
|
142 |
+
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
143 |
+
|
144 |
+
mapping.append({"old": old_item, "new": new_item})
|
145 |
+
|
146 |
+
return mapping
|
147 |
+
|
148 |
+
|
149 |
+
def assign_to_checkpoint(
|
150 |
+
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
|
151 |
+
):
|
152 |
+
"""
|
153 |
+
This does the final conversion step: take locally converted weights and apply a global renaming
|
154 |
+
to them. It splits attention layers, and takes into account additional replacements
|
155 |
+
that may arise.
|
156 |
+
Assigns the weights to the new checkpoint.
|
157 |
+
"""
|
158 |
+
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
159 |
+
|
160 |
+
# Splits the attention layers into three variables.
|
161 |
+
if attention_paths_to_split is not None:
|
162 |
+
for path, path_map in attention_paths_to_split.items():
|
163 |
+
old_tensor = old_checkpoint[path]
|
164 |
+
channels = old_tensor.shape[0] // 3
|
165 |
+
|
166 |
+
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
167 |
+
|
168 |
+
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
169 |
+
|
170 |
+
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
171 |
+
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
172 |
+
|
173 |
+
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
174 |
+
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
175 |
+
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
176 |
+
|
177 |
+
for path in paths:
|
178 |
+
new_path = path["new"]
|
179 |
+
|
180 |
+
# These have already been assigned
|
181 |
+
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
182 |
+
continue
|
183 |
+
|
184 |
+
# Global renaming happens here
|
185 |
+
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
186 |
+
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
187 |
+
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
188 |
+
|
189 |
+
if additional_replacements is not None:
|
190 |
+
for replacement in additional_replacements:
|
191 |
+
new_path = new_path.replace(replacement["old"], replacement["new"])
|
192 |
+
|
193 |
+
# proj_attn.weight has to be converted from conv 1D to linear
|
194 |
+
if "proj_attn.weight" in new_path:
|
195 |
+
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
196 |
+
else:
|
197 |
+
checkpoint[new_path] = old_checkpoint[path["old"]]
|
198 |
+
|
199 |
+
|
200 |
+
def conv_attn_to_linear(checkpoint):
|
201 |
+
keys = list(checkpoint.keys())
|
202 |
+
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
203 |
+
for key in keys:
|
204 |
+
if ".".join(key.split(".")[-2:]) in attn_keys:
|
205 |
+
if checkpoint[key].ndim > 2:
|
206 |
+
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
207 |
+
elif "proj_attn.weight" in key:
|
208 |
+
if checkpoint[key].ndim > 2:
|
209 |
+
checkpoint[key] = checkpoint[key][:, :, 0]
|
210 |
+
|
211 |
+
|
212 |
+
def create_unet_diffusers_config(original_config, image_size: int):
|
213 |
+
"""
|
214 |
+
Creates a config for the diffusers based on the config of the LDM model.
|
215 |
+
"""
|
216 |
+
unet_params = original_config.model.params.unet_config.params
|
217 |
+
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
218 |
+
|
219 |
+
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
|
220 |
+
|
221 |
+
down_block_types = []
|
222 |
+
resolution = 1
|
223 |
+
for i in range(len(block_out_channels)):
|
224 |
+
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
|
225 |
+
down_block_types.append(block_type)
|
226 |
+
if i != len(block_out_channels) - 1:
|
227 |
+
resolution *= 2
|
228 |
+
|
229 |
+
up_block_types = []
|
230 |
+
for i in range(len(block_out_channels)):
|
231 |
+
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
|
232 |
+
up_block_types.append(block_type)
|
233 |
+
resolution //= 2
|
234 |
+
|
235 |
+
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
|
236 |
+
|
237 |
+
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
|
238 |
+
use_linear_projection = (
|
239 |
+
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
|
240 |
+
)
|
241 |
+
if use_linear_projection:
|
242 |
+
# stable diffusion 2-base-512 and 2-768
|
243 |
+
if head_dim is None:
|
244 |
+
head_dim = [5, 10, 20, 20]
|
245 |
+
|
246 |
+
config = dict(
|
247 |
+
sample_size=image_size // vae_scale_factor,
|
248 |
+
in_channels=unet_params.in_channels,
|
249 |
+
out_channels=unet_params.out_channels,
|
250 |
+
down_block_types=tuple(down_block_types),
|
251 |
+
up_block_types=tuple(up_block_types),
|
252 |
+
block_out_channels=tuple(block_out_channels),
|
253 |
+
layers_per_block=unet_params.num_res_blocks,
|
254 |
+
cross_attention_dim=unet_params.context_dim,
|
255 |
+
attention_head_dim=head_dim,
|
256 |
+
use_linear_projection=use_linear_projection,
|
257 |
+
)
|
258 |
+
|
259 |
+
return config
|
260 |
+
|
261 |
+
|
262 |
+
def create_vae_diffusers_config(original_config, image_size: int):
|
263 |
+
"""
|
264 |
+
Creates a config for the diffusers based on the config of the LDM model.
|
265 |
+
"""
|
266 |
+
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
267 |
+
_ = original_config.model.params.first_stage_config.params.embed_dim
|
268 |
+
|
269 |
+
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
270 |
+
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
271 |
+
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
272 |
+
|
273 |
+
config = dict(
|
274 |
+
sample_size=image_size,
|
275 |
+
in_channels=vae_params.in_channels,
|
276 |
+
out_channels=vae_params.out_ch,
|
277 |
+
down_block_types=tuple(down_block_types),
|
278 |
+
up_block_types=tuple(up_block_types),
|
279 |
+
block_out_channels=tuple(block_out_channels),
|
280 |
+
latent_channels=vae_params.z_channels,
|
281 |
+
layers_per_block=vae_params.num_res_blocks,
|
282 |
+
)
|
283 |
+
return config
|
284 |
+
|
285 |
+
|
286 |
+
def create_diffusers_schedular(original_config):
|
287 |
+
schedular = DDIMScheduler(
|
288 |
+
num_train_timesteps=original_config.model.params.timesteps,
|
289 |
+
beta_start=original_config.model.params.linear_start,
|
290 |
+
beta_end=original_config.model.params.linear_end,
|
291 |
+
beta_schedule="scaled_linear",
|
292 |
+
)
|
293 |
+
return schedular
|
294 |
+
|
295 |
+
|
296 |
+
def create_ldm_bert_config(original_config):
|
297 |
+
bert_params = original_config.model.parms.cond_stage_config.params
|
298 |
+
config = LDMBertConfig(
|
299 |
+
d_model=bert_params.n_embed,
|
300 |
+
encoder_layers=bert_params.n_layer,
|
301 |
+
encoder_ffn_dim=bert_params.n_embed * 4,
|
302 |
+
)
|
303 |
+
return config
|
304 |
+
|
305 |
+
|
306 |
+
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
|
307 |
+
"""
|
308 |
+
Takes a state dict and a config, and returns a converted checkpoint.
|
309 |
+
"""
|
310 |
+
|
311 |
+
# extract state_dict for UNet
|
312 |
+
unet_state_dict = {}
|
313 |
+
keys = list(checkpoint.keys())
|
314 |
+
|
315 |
+
unet_key = "model.diffusion_model."
|
316 |
+
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
317 |
+
if sum(k.startswith("model_ema") for k in keys) > 100:
|
318 |
+
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
|
319 |
+
if extract_ema:
|
320 |
+
print(
|
321 |
+
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
|
322 |
+
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
|
323 |
+
)
|
324 |
+
for key in keys:
|
325 |
+
if key.startswith("model.diffusion_model"):
|
326 |
+
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
327 |
+
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
|
328 |
+
else:
|
329 |
+
print(
|
330 |
+
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
|
331 |
+
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
|
332 |
+
)
|
333 |
+
|
334 |
+
for key in keys:
|
335 |
+
if key.startswith(unet_key):
|
336 |
+
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
337 |
+
|
338 |
+
new_checkpoint = {}
|
339 |
+
|
340 |
+
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
341 |
+
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
342 |
+
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
343 |
+
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
344 |
+
|
345 |
+
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
346 |
+
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
347 |
+
|
348 |
+
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
349 |
+
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
350 |
+
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
351 |
+
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
352 |
+
|
353 |
+
# Retrieves the keys for the input blocks only
|
354 |
+
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
355 |
+
input_blocks = {
|
356 |
+
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
357 |
+
for layer_id in range(num_input_blocks)
|
358 |
+
}
|
359 |
+
|
360 |
+
# Retrieves the keys for the middle blocks only
|
361 |
+
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
362 |
+
middle_blocks = {
|
363 |
+
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
364 |
+
for layer_id in range(num_middle_blocks)
|
365 |
+
}
|
366 |
+
|
367 |
+
# Retrieves the keys for the output blocks only
|
368 |
+
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
369 |
+
output_blocks = {
|
370 |
+
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
371 |
+
for layer_id in range(num_output_blocks)
|
372 |
+
}
|
373 |
+
|
374 |
+
for i in range(1, num_input_blocks):
|
375 |
+
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
376 |
+
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
377 |
+
|
378 |
+
resnets = [
|
379 |
+
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
380 |
+
]
|
381 |
+
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
382 |
+
|
383 |
+
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
384 |
+
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
385 |
+
f"input_blocks.{i}.0.op.weight"
|
386 |
+
)
|
387 |
+
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
388 |
+
f"input_blocks.{i}.0.op.bias"
|
389 |
+
)
|
390 |
+
|
391 |
+
paths = renew_resnet_paths(resnets)
|
392 |
+
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
393 |
+
assign_to_checkpoint(
|
394 |
+
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
395 |
+
)
|
396 |
+
|
397 |
+
if len(attentions):
|
398 |
+
paths = renew_attention_paths(attentions)
|
399 |
+
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
400 |
+
assign_to_checkpoint(
|
401 |
+
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
402 |
+
)
|
403 |
+
|
404 |
+
resnet_0 = middle_blocks[0]
|
405 |
+
attentions = middle_blocks[1]
|
406 |
+
resnet_1 = middle_blocks[2]
|
407 |
+
|
408 |
+
resnet_0_paths = renew_resnet_paths(resnet_0)
|
409 |
+
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
|
410 |
+
|
411 |
+
resnet_1_paths = renew_resnet_paths(resnet_1)
|
412 |
+
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
|
413 |
+
|
414 |
+
attentions_paths = renew_attention_paths(attentions)
|
415 |
+
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
416 |
+
assign_to_checkpoint(
|
417 |
+
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
418 |
+
)
|
419 |
+
|
420 |
+
for i in range(num_output_blocks):
|
421 |
+
block_id = i // (config["layers_per_block"] + 1)
|
422 |
+
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
423 |
+
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
424 |
+
output_block_list = {}
|
425 |
+
|
426 |
+
for layer in output_block_layers:
|
427 |
+
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
428 |
+
if layer_id in output_block_list:
|
429 |
+
output_block_list[layer_id].append(layer_name)
|
430 |
+
else:
|
431 |
+
output_block_list[layer_id] = [layer_name]
|
432 |
+
|
433 |
+
if len(output_block_list) > 1:
|
434 |
+
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
435 |
+
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
|
436 |
+
|
437 |
+
resnet_0_paths = renew_resnet_paths(resnets)
|
438 |
+
paths = renew_resnet_paths(resnets)
|
439 |
+
|
440 |
+
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
441 |
+
assign_to_checkpoint(
|
442 |
+
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
443 |
+
)
|
444 |
+
|
445 |
+
if ["conv.weight", "conv.bias"] in output_block_list.values():
|
446 |
+
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
|
447 |
+
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
448 |
+
f"output_blocks.{i}.{index}.conv.weight"
|
449 |
+
]
|
450 |
+
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
451 |
+
f"output_blocks.{i}.{index}.conv.bias"
|
452 |
+
]
|
453 |
+
|
454 |
+
# Clear attentions as they have been attributed above.
|
455 |
+
if len(attentions) == 2:
|
456 |
+
attentions = []
|
457 |
+
|
458 |
+
if len(attentions):
|
459 |
+
paths = renew_attention_paths(attentions)
|
460 |
+
meta_path = {
|
461 |
+
"old": f"output_blocks.{i}.1",
|
462 |
+
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
463 |
+
}
|
464 |
+
assign_to_checkpoint(
|
465 |
+
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
466 |
+
)
|
467 |
+
else:
|
468 |
+
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
469 |
+
for path in resnet_0_paths:
|
470 |
+
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
471 |
+
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
472 |
+
|
473 |
+
new_checkpoint[new_path] = unet_state_dict[old_path]
|
474 |
+
|
475 |
+
return new_checkpoint
|
476 |
+
|
477 |
+
|
478 |
+
def convert_ldm_vae_checkpoint(checkpoint, config):
|
479 |
+
# extract state dict for VAE
|
480 |
+
vae_state_dict = {}
|
481 |
+
vae_key = "first_stage_model."
|
482 |
+
keys = list(checkpoint.keys())
|
483 |
+
for key in keys:
|
484 |
+
if key.startswith(vae_key):
|
485 |
+
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
486 |
+
|
487 |
+
new_checkpoint = {}
|
488 |
+
|
489 |
+
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
490 |
+
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
491 |
+
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
492 |
+
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
493 |
+
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
494 |
+
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
495 |
+
|
496 |
+
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
497 |
+
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
498 |
+
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
499 |
+
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
500 |
+
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
501 |
+
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
502 |
+
|
503 |
+
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
504 |
+
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
505 |
+
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
506 |
+
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
507 |
+
|
508 |
+
# Retrieves the keys for the encoder down blocks only
|
509 |
+
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
510 |
+
down_blocks = {
|
511 |
+
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
512 |
+
}
|
513 |
+
|
514 |
+
# Retrieves the keys for the decoder up blocks only
|
515 |
+
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
516 |
+
up_blocks = {
|
517 |
+
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
518 |
+
}
|
519 |
+
|
520 |
+
for i in range(num_down_blocks):
|
521 |
+
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
522 |
+
|
523 |
+
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
524 |
+
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
525 |
+
f"encoder.down.{i}.downsample.conv.weight"
|
526 |
+
)
|
527 |
+
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
528 |
+
f"encoder.down.{i}.downsample.conv.bias"
|
529 |
+
)
|
530 |
+
|
531 |
+
paths = renew_vae_resnet_paths(resnets)
|
532 |
+
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
533 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
534 |
+
|
535 |
+
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
536 |
+
num_mid_res_blocks = 2
|
537 |
+
for i in range(1, num_mid_res_blocks + 1):
|
538 |
+
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
539 |
+
|
540 |
+
paths = renew_vae_resnet_paths(resnets)
|
541 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
542 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
543 |
+
|
544 |
+
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
545 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
546 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
547 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
548 |
+
conv_attn_to_linear(new_checkpoint)
|
549 |
+
|
550 |
+
for i in range(num_up_blocks):
|
551 |
+
block_id = num_up_blocks - 1 - i
|
552 |
+
resnets = [
|
553 |
+
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
554 |
+
]
|
555 |
+
|
556 |
+
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
557 |
+
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
558 |
+
f"decoder.up.{block_id}.upsample.conv.weight"
|
559 |
+
]
|
560 |
+
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
561 |
+
f"decoder.up.{block_id}.upsample.conv.bias"
|
562 |
+
]
|
563 |
+
|
564 |
+
paths = renew_vae_resnet_paths(resnets)
|
565 |
+
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
566 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
567 |
+
|
568 |
+
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
569 |
+
num_mid_res_blocks = 2
|
570 |
+
for i in range(1, num_mid_res_blocks + 1):
|
571 |
+
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
572 |
+
|
573 |
+
paths = renew_vae_resnet_paths(resnets)
|
574 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
575 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
576 |
+
|
577 |
+
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
578 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
579 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
580 |
+
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
581 |
+
conv_attn_to_linear(new_checkpoint)
|
582 |
+
return new_checkpoint
|
583 |
+
|
584 |
+
|
585 |
+
def convert_ldm_bert_checkpoint(checkpoint, config):
|
586 |
+
def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
|
587 |
+
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
|
588 |
+
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
|
589 |
+
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
|
590 |
+
|
591 |
+
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
|
592 |
+
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
|
593 |
+
|
594 |
+
def _copy_linear(hf_linear, pt_linear):
|
595 |
+
hf_linear.weight = pt_linear.weight
|
596 |
+
hf_linear.bias = pt_linear.bias
|
597 |
+
|
598 |
+
def _copy_layer(hf_layer, pt_layer):
|
599 |
+
# copy layer norms
|
600 |
+
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
|
601 |
+
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
|
602 |
+
|
603 |
+
# copy attn
|
604 |
+
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
|
605 |
+
|
606 |
+
# copy MLP
|
607 |
+
pt_mlp = pt_layer[1][1]
|
608 |
+
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
|
609 |
+
_copy_linear(hf_layer.fc2, pt_mlp.net[2])
|
610 |
+
|
611 |
+
def _copy_layers(hf_layers, pt_layers):
|
612 |
+
for i, hf_layer in enumerate(hf_layers):
|
613 |
+
if i != 0:
|
614 |
+
i += i
|
615 |
+
pt_layer = pt_layers[i : i + 2]
|
616 |
+
_copy_layer(hf_layer, pt_layer)
|
617 |
+
|
618 |
+
hf_model = LDMBertModel(config).eval()
|
619 |
+
|
620 |
+
# copy embeds
|
621 |
+
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
|
622 |
+
hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight
|
623 |
+
|
624 |
+
# copy layer norm
|
625 |
+
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
|
626 |
+
|
627 |
+
# copy hidden layers
|
628 |
+
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
|
629 |
+
|
630 |
+
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
|
631 |
+
|
632 |
+
return hf_model
|
633 |
+
|
634 |
+
|
635 |
+
def convert_ldm_clip_checkpoint(checkpoint):
|
636 |
+
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
637 |
+
|
638 |
+
keys = list(checkpoint.keys())
|
639 |
+
|
640 |
+
text_model_dict = {}
|
641 |
+
|
642 |
+
for key in keys:
|
643 |
+
if key.startswith("cond_stage_model.transformer"):
|
644 |
+
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
|
645 |
+
|
646 |
+
text_model.load_state_dict(text_model_dict)
|
647 |
+
|
648 |
+
return text_model
|
649 |
+
|
650 |
+
|
651 |
+
textenc_conversion_lst = [
|
652 |
+
("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"),
|
653 |
+
("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
|
654 |
+
("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"),
|
655 |
+
("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"),
|
656 |
+
]
|
657 |
+
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst}
|
658 |
+
|
659 |
+
textenc_transformer_conversion_lst = [
|
660 |
+
# (stable-diffusion, HF Diffusers)
|
661 |
+
("resblocks.", "text_model.encoder.layers."),
|
662 |
+
("ln_1", "layer_norm1"),
|
663 |
+
("ln_2", "layer_norm2"),
|
664 |
+
(".c_fc.", ".fc1."),
|
665 |
+
(".c_proj.", ".fc2."),
|
666 |
+
(".attn", ".self_attn"),
|
667 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
668 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
669 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
670 |
+
]
|
671 |
+
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst}
|
672 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
673 |
+
|
674 |
+
|
675 |
+
def convert_paint_by_example_checkpoint(checkpoint):
|
676 |
+
config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14")
|
677 |
+
model = PaintByExampleImageEncoder(config)
|
678 |
+
|
679 |
+
keys = list(checkpoint.keys())
|
680 |
+
|
681 |
+
text_model_dict = {}
|
682 |
+
|
683 |
+
for key in keys:
|
684 |
+
if key.startswith("cond_stage_model.transformer"):
|
685 |
+
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
|
686 |
+
|
687 |
+
# load clip vision
|
688 |
+
model.model.load_state_dict(text_model_dict)
|
689 |
+
|
690 |
+
# load mapper
|
691 |
+
keys_mapper = {
|
692 |
+
k[len("cond_stage_model.mapper.res") :]: v
|
693 |
+
for k, v in checkpoint.items()
|
694 |
+
if k.startswith("cond_stage_model.mapper")
|
695 |
+
}
|
696 |
+
|
697 |
+
MAPPING = {
|
698 |
+
"attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"],
|
699 |
+
"attn.c_proj": ["attn1.to_out.0"],
|
700 |
+
"ln_1": ["norm1"],
|
701 |
+
"ln_2": ["norm3"],
|
702 |
+
"mlp.c_fc": ["ff.net.0.proj"],
|
703 |
+
"mlp.c_proj": ["ff.net.2"],
|
704 |
+
}
|
705 |
+
|
706 |
+
mapped_weights = {}
|
707 |
+
for key, value in keys_mapper.items():
|
708 |
+
prefix = key[: len("blocks.i")]
|
709 |
+
suffix = key.split(prefix)[-1].split(".")[-1]
|
710 |
+
name = key.split(prefix)[-1].split(suffix)[0][1:-1]
|
711 |
+
mapped_names = MAPPING[name]
|
712 |
+
|
713 |
+
num_splits = len(mapped_names)
|
714 |
+
for i, mapped_name in enumerate(mapped_names):
|
715 |
+
new_name = ".".join([prefix, mapped_name, suffix])
|
716 |
+
shape = value.shape[0] // num_splits
|
717 |
+
mapped_weights[new_name] = value[i * shape : (i + 1) * shape]
|
718 |
+
|
719 |
+
model.mapper.load_state_dict(mapped_weights)
|
720 |
+
|
721 |
+
# load final layer norm
|
722 |
+
model.final_layer_norm.load_state_dict(
|
723 |
+
{
|
724 |
+
"bias": checkpoint["cond_stage_model.final_ln.bias"],
|
725 |
+
"weight": checkpoint["cond_stage_model.final_ln.weight"],
|
726 |
+
}
|
727 |
+
)
|
728 |
+
|
729 |
+
# load final proj
|
730 |
+
model.proj_out.load_state_dict(
|
731 |
+
{
|
732 |
+
"bias": checkpoint["proj_out.bias"],
|
733 |
+
"weight": checkpoint["proj_out.weight"],
|
734 |
+
}
|
735 |
+
)
|
736 |
+
|
737 |
+
# load uncond vector
|
738 |
+
model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"])
|
739 |
+
return model
|
740 |
+
|
741 |
+
|
742 |
+
def convert_open_clip_checkpoint(checkpoint):
|
743 |
+
text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder")
|
744 |
+
|
745 |
+
keys = list(checkpoint.keys())
|
746 |
+
|
747 |
+
text_model_dict = {}
|
748 |
+
|
749 |
+
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
|
750 |
+
|
751 |
+
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")
|
752 |
+
|
753 |
+
for key in keys:
|
754 |
+
if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer
|
755 |
+
continue
|
756 |
+
if key in textenc_conversion_map:
|
757 |
+
text_model_dict[textenc_conversion_map[key]] = checkpoint[key]
|
758 |
+
if key.startswith("cond_stage_model.model.transformer."):
|
759 |
+
new_key = key[len("cond_stage_model.model.transformer.") :]
|
760 |
+
if new_key.endswith(".in_proj_weight"):
|
761 |
+
new_key = new_key[: -len(".in_proj_weight")]
|
762 |
+
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
763 |
+
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
|
764 |
+
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :]
|
765 |
+
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :]
|
766 |
+
elif new_key.endswith(".in_proj_bias"):
|
767 |
+
new_key = new_key[: -len(".in_proj_bias")]
|
768 |
+
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
769 |
+
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
|
770 |
+
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2]
|
771 |
+
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :]
|
772 |
+
else:
|
773 |
+
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
774 |
+
|
775 |
+
text_model_dict[new_key] = checkpoint[key]
|
776 |
+
|
777 |
+
text_model.load_state_dict(text_model_dict)
|
778 |
+
|
779 |
+
return text_model
|
780 |
+
|
781 |
+
|
782 |
+
if __name__ == "__main__":
|
783 |
+
parser = argparse.ArgumentParser()
|
784 |
+
|
785 |
+
parser.add_argument(
|
786 |
+
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
|
787 |
+
)
|
788 |
+
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
|
789 |
+
parser.add_argument(
|
790 |
+
"--original_config_file",
|
791 |
+
default=None,
|
792 |
+
type=str,
|
793 |
+
help="The YAML config file corresponding to the original architecture.",
|
794 |
+
)
|
795 |
+
parser.add_argument(
|
796 |
+
"--num_in_channels",
|
797 |
+
default=None,
|
798 |
+
type=int,
|
799 |
+
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
|
800 |
+
)
|
801 |
+
parser.add_argument(
|
802 |
+
"--scheduler_type",
|
803 |
+
default="pndm",
|
804 |
+
type=str,
|
805 |
+
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
|
806 |
+
)
|
807 |
+
parser.add_argument(
|
808 |
+
"--pipeline_type",
|
809 |
+
default=None,
|
810 |
+
type=str,
|
811 |
+
help="The pipeline type. If `None` pipeline will be automatically inferred.",
|
812 |
+
)
|
813 |
+
parser.add_argument(
|
814 |
+
"--image_size",
|
815 |
+
default=None,
|
816 |
+
type=int,
|
817 |
+
help=(
|
818 |
+
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
|
819 |
+
" Base. Use 768 for Stable Diffusion v2."
|
820 |
+
),
|
821 |
+
)
|
822 |
+
parser.add_argument(
|
823 |
+
"--prediction_type",
|
824 |
+
default=None,
|
825 |
+
type=str,
|
826 |
+
help=(
|
827 |
+
"The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"
|
828 |
+
" Siffusion v2 Base. Use 'v-prediction' for Stable Diffusion v2."
|
829 |
+
),
|
830 |
+
)
|
831 |
+
parser.add_argument(
|
832 |
+
"--extract_ema",
|
833 |
+
action="store_true",
|
834 |
+
help=(
|
835 |
+
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
|
836 |
+
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
|
837 |
+
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
|
838 |
+
),
|
839 |
+
)
|
840 |
+
parser.add_argument(
|
841 |
+
"--upcast_attn",
|
842 |
+
default=False,
|
843 |
+
type=bool,
|
844 |
+
help=(
|
845 |
+
"Whether the attention computation should always be upcasted. This is necessary when running stable"
|
846 |
+
" diffusion 2.1."
|
847 |
+
),
|
848 |
+
)
|
849 |
+
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
|
850 |
+
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
|
851 |
+
args = parser.parse_args()
|
852 |
+
|
853 |
+
image_size = args.image_size
|
854 |
+
prediction_type = args.prediction_type
|
855 |
+
|
856 |
+
if args.device is None:
|
857 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
858 |
+
checkpoint = torch.load(args.checkpoint_path, map_location=device)
|
859 |
+
else:
|
860 |
+
checkpoint = torch.load(args.checkpoint_path, map_location=args.device)
|
861 |
+
|
862 |
+
# Sometimes models don't have the global_step item
|
863 |
+
if "global_step" in checkpoint:
|
864 |
+
global_step = checkpoint["global_step"]
|
865 |
+
else:
|
866 |
+
print("global_step key not found in model")
|
867 |
+
global_step = None
|
868 |
+
|
869 |
+
if "state_dict" in checkpoint:
|
870 |
+
checkpoint = checkpoint["state_dict"]
|
871 |
+
|
872 |
+
upcast_attention = False
|
873 |
+
if args.original_config_file is None:
|
874 |
+
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
875 |
+
|
876 |
+
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
|
877 |
+
if not os.path.isfile("v2-inference-v.yaml"):
|
878 |
+
# model_type = "v2"
|
879 |
+
os.system(
|
880 |
+
"wget https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
|
881 |
+
" -O v2-inference-v.yaml"
|
882 |
+
)
|
883 |
+
args.original_config_file = "./v2-inference-v.yaml"
|
884 |
+
|
885 |
+
if global_step == 110000:
|
886 |
+
# v2.1 needs to upcast attention
|
887 |
+
upcast_attention = True
|
888 |
+
else:
|
889 |
+
if not os.path.isfile("v1-inference.yaml"):
|
890 |
+
# model_type = "v1"
|
891 |
+
os.system(
|
892 |
+
"wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
|
893 |
+
" -O v1-inference.yaml"
|
894 |
+
)
|
895 |
+
args.original_config_file = "./v1-inference.yaml"
|
896 |
+
|
897 |
+
original_config = OmegaConf.load(args.original_config_file)
|
898 |
+
|
899 |
+
if args.num_in_channels is not None:
|
900 |
+
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = args.num_in_channels
|
901 |
+
|
902 |
+
if (
|
903 |
+
"parameterization" in original_config["model"]["params"]
|
904 |
+
and original_config["model"]["params"]["parameterization"] == "v"
|
905 |
+
):
|
906 |
+
if prediction_type is None:
|
907 |
+
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
|
908 |
+
# as it relies on a brittle global step parameter here
|
909 |
+
prediction_type = "epsilon" if global_step == 875000 else "v_prediction"
|
910 |
+
if image_size is None:
|
911 |
+
# NOTE: For stable diffusion 2 base one has to pass `image_size==512`
|
912 |
+
# as it relies on a brittle global step parameter here
|
913 |
+
image_size = 512 if global_step == 875000 else 768
|
914 |
+
else:
|
915 |
+
if prediction_type is None:
|
916 |
+
prediction_type = "epsilon"
|
917 |
+
if image_size is None:
|
918 |
+
image_size = 512
|
919 |
+
|
920 |
+
num_train_timesteps = original_config.model.params.timesteps
|
921 |
+
beta_start = original_config.model.params.linear_start
|
922 |
+
beta_end = original_config.model.params.linear_end
|
923 |
+
|
924 |
+
scheduler = DDIMScheduler(
|
925 |
+
beta_end=beta_end,
|
926 |
+
beta_schedule="scaled_linear",
|
927 |
+
beta_start=beta_start,
|
928 |
+
num_train_timesteps=num_train_timesteps,
|
929 |
+
steps_offset=1,
|
930 |
+
clip_sample=False,
|
931 |
+
set_alpha_to_one=False,
|
932 |
+
prediction_type=prediction_type,
|
933 |
+
)
|
934 |
+
# make sure scheduler works correctly with DDIM
|
935 |
+
scheduler.register_to_config(clip_sample=False)
|
936 |
+
|
937 |
+
if args.scheduler_type == "pndm":
|
938 |
+
config = dict(scheduler.config)
|
939 |
+
config["skip_prk_steps"] = True
|
940 |
+
scheduler = PNDMScheduler.from_config(config)
|
941 |
+
elif args.scheduler_type == "lms":
|
942 |
+
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
943 |
+
elif args.scheduler_type == "heun":
|
944 |
+
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
|
945 |
+
elif args.scheduler_type == "euler":
|
946 |
+
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
|
947 |
+
elif args.scheduler_type == "euler-ancestral":
|
948 |
+
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
|
949 |
+
elif args.scheduler_type == "dpm":
|
950 |
+
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
|
951 |
+
elif args.scheduler_type == "ddim":
|
952 |
+
scheduler = scheduler
|
953 |
+
else:
|
954 |
+
raise ValueError(f"Scheduler of type {args.scheduler_type} doesn't exist!")
|
955 |
+
|
956 |
+
# Convert the UNet2DConditionModel model.
|
957 |
+
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
|
958 |
+
unet_config["upcast_attention"] = upcast_attention
|
959 |
+
unet = UNet2DConditionModel(**unet_config)
|
960 |
+
|
961 |
+
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
|
962 |
+
checkpoint, unet_config, path=args.checkpoint_path, extract_ema=args.extract_ema
|
963 |
+
)
|
964 |
+
|
965 |
+
unet.load_state_dict(converted_unet_checkpoint)
|
966 |
+
|
967 |
+
# Convert the VAE model.
|
968 |
+
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
|
969 |
+
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
970 |
+
|
971 |
+
vae = AutoencoderKL(**vae_config)
|
972 |
+
vae.load_state_dict(converted_vae_checkpoint)
|
973 |
+
|
974 |
+
# Convert the text model.
|
975 |
+
model_type = args.pipeline_type
|
976 |
+
if model_type is None:
|
977 |
+
model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
|
978 |
+
|
979 |
+
if model_type == "FrozenOpenCLIPEmbedder":
|
980 |
+
text_model = convert_open_clip_checkpoint(checkpoint)
|
981 |
+
tokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2", subfolder="tokenizer")
|
982 |
+
pipe = StableDiffusionPipeline(
|
983 |
+
vae=vae,
|
984 |
+
text_encoder=text_model,
|
985 |
+
tokenizer=tokenizer,
|
986 |
+
unet=unet,
|
987 |
+
scheduler=scheduler,
|
988 |
+
safety_checker=None,
|
989 |
+
feature_extractor=None,
|
990 |
+
requires_safety_checker=False,
|
991 |
+
)
|
992 |
+
elif model_type == "PaintByExample":
|
993 |
+
vision_model = convert_paint_by_example_checkpoint(checkpoint)
|
994 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
995 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
996 |
+
pipe = PaintByExamplePipeline(
|
997 |
+
vae=vae,
|
998 |
+
image_encoder=vision_model,
|
999 |
+
unet=unet,
|
1000 |
+
scheduler=scheduler,
|
1001 |
+
safety_checker=None,
|
1002 |
+
feature_extractor=feature_extractor,
|
1003 |
+
)
|
1004 |
+
elif model_type == "FrozenCLIPEmbedder":
|
1005 |
+
text_model = convert_ldm_clip_checkpoint(checkpoint)
|
1006 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
1007 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
1008 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
1009 |
+
pipe = StableDiffusionPipeline(
|
1010 |
+
vae=vae,
|
1011 |
+
text_encoder=text_model,
|
1012 |
+
tokenizer=tokenizer,
|
1013 |
+
unet=unet,
|
1014 |
+
scheduler=scheduler,
|
1015 |
+
safety_checker=safety_checker,
|
1016 |
+
feature_extractor=feature_extractor,
|
1017 |
+
)
|
1018 |
+
else:
|
1019 |
+
text_config = create_ldm_bert_config(original_config)
|
1020 |
+
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
|
1021 |
+
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
1022 |
+
pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
|
1023 |
+
|
1024 |
+
pipe.save_pretrained(args.dump_path)
|
feature_extractor/preprocessor_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 224,
|
4 |
+
"width": 224
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
12 |
+
"image_mean": [
|
13 |
+
0.48145466,
|
14 |
+
0.4578275,
|
15 |
+
0.40821073
|
16 |
+
],
|
17 |
+
"image_processor_type": "CLIPFeatureExtractor",
|
18 |
+
"image_std": [
|
19 |
+
0.26862954,
|
20 |
+
0.26130258,
|
21 |
+
0.27577711
|
22 |
+
],
|
23 |
+
"resample": 3,
|
24 |
+
"rescale_factor": 0.00392156862745098,
|
25 |
+
"size": {
|
26 |
+
"shortest_edge": 224
|
27 |
+
}
|
28 |
+
}
|
model_index.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "StableDiffusionPipeline",
|
3 |
+
"_diffusers_version": "0.11.1",
|
4 |
+
"feature_extractor": [
|
5 |
+
"transformers",
|
6 |
+
"CLIPFeatureExtractor"
|
7 |
+
],
|
8 |
+
"requires_safety_checker": true,
|
9 |
+
"safety_checker": [
|
10 |
+
"stable_diffusion",
|
11 |
+
"StableDiffusionSafetyChecker"
|
12 |
+
],
|
13 |
+
"scheduler": [
|
14 |
+
"diffusers",
|
15 |
+
"PNDMScheduler"
|
16 |
+
],
|
17 |
+
"text_encoder": [
|
18 |
+
"transformers",
|
19 |
+
"CLIPTextModel"
|
20 |
+
],
|
21 |
+
"tokenizer": [
|
22 |
+
"transformers",
|
23 |
+
"CLIPTokenizer"
|
24 |
+
],
|
25 |
+
"unet": [
|
26 |
+
"diffusers",
|
27 |
+
"UNet2DConditionModel"
|
28 |
+
],
|
29 |
+
"vae": [
|
30 |
+
"diffusers",
|
31 |
+
"AutoencoderKL"
|
32 |
+
]
|
33 |
+
}
|
safety_checker/config.json
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": "cb41f3a270d63d454d385fc2e4f571c487c253c5",
|
3 |
+
"_name_or_path": "CompVis/stable-diffusion-safety-checker",
|
4 |
+
"architectures": [
|
5 |
+
"StableDiffusionSafetyChecker"
|
6 |
+
],
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"logit_scale_init_value": 2.6592,
|
9 |
+
"model_type": "clip",
|
10 |
+
"projection_dim": 768,
|
11 |
+
"text_config": {
|
12 |
+
"_name_or_path": "",
|
13 |
+
"add_cross_attention": false,
|
14 |
+
"architectures": null,
|
15 |
+
"attention_dropout": 0.0,
|
16 |
+
"bad_words_ids": null,
|
17 |
+
"begin_suppress_tokens": null,
|
18 |
+
"bos_token_id": 0,
|
19 |
+
"chunk_size_feed_forward": 0,
|
20 |
+
"cross_attention_hidden_size": null,
|
21 |
+
"decoder_start_token_id": null,
|
22 |
+
"diversity_penalty": 0.0,
|
23 |
+
"do_sample": false,
|
24 |
+
"dropout": 0.0,
|
25 |
+
"early_stopping": false,
|
26 |
+
"encoder_no_repeat_ngram_size": 0,
|
27 |
+
"eos_token_id": 2,
|
28 |
+
"exponential_decay_length_penalty": null,
|
29 |
+
"finetuning_task": null,
|
30 |
+
"forced_bos_token_id": null,
|
31 |
+
"forced_eos_token_id": null,
|
32 |
+
"hidden_act": "quick_gelu",
|
33 |
+
"hidden_size": 768,
|
34 |
+
"id2label": {
|
35 |
+
"0": "LABEL_0",
|
36 |
+
"1": "LABEL_1"
|
37 |
+
},
|
38 |
+
"initializer_factor": 1.0,
|
39 |
+
"initializer_range": 0.02,
|
40 |
+
"intermediate_size": 3072,
|
41 |
+
"is_decoder": false,
|
42 |
+
"is_encoder_decoder": false,
|
43 |
+
"label2id": {
|
44 |
+
"LABEL_0": 0,
|
45 |
+
"LABEL_1": 1
|
46 |
+
},
|
47 |
+
"layer_norm_eps": 1e-05,
|
48 |
+
"length_penalty": 1.0,
|
49 |
+
"max_length": 20,
|
50 |
+
"max_position_embeddings": 77,
|
51 |
+
"min_length": 0,
|
52 |
+
"model_type": "clip_text_model",
|
53 |
+
"no_repeat_ngram_size": 0,
|
54 |
+
"num_attention_heads": 12,
|
55 |
+
"num_beam_groups": 1,
|
56 |
+
"num_beams": 1,
|
57 |
+
"num_hidden_layers": 12,
|
58 |
+
"num_return_sequences": 1,
|
59 |
+
"output_attentions": false,
|
60 |
+
"output_hidden_states": false,
|
61 |
+
"output_scores": false,
|
62 |
+
"pad_token_id": 1,
|
63 |
+
"prefix": null,
|
64 |
+
"problem_type": null,
|
65 |
+
"projection_dim": 512,
|
66 |
+
"pruned_heads": {},
|
67 |
+
"remove_invalid_values": false,
|
68 |
+
"repetition_penalty": 1.0,
|
69 |
+
"return_dict": true,
|
70 |
+
"return_dict_in_generate": false,
|
71 |
+
"sep_token_id": null,
|
72 |
+
"suppress_tokens": null,
|
73 |
+
"task_specific_params": null,
|
74 |
+
"temperature": 1.0,
|
75 |
+
"tf_legacy_loss": false,
|
76 |
+
"tie_encoder_decoder": false,
|
77 |
+
"tie_word_embeddings": true,
|
78 |
+
"tokenizer_class": null,
|
79 |
+
"top_k": 50,
|
80 |
+
"top_p": 1.0,
|
81 |
+
"torch_dtype": null,
|
82 |
+
"torchscript": false,
|
83 |
+
"transformers_version": "4.26.0.dev0",
|
84 |
+
"typical_p": 1.0,
|
85 |
+
"use_bfloat16": false,
|
86 |
+
"vocab_size": 49408
|
87 |
+
},
|
88 |
+
"text_config_dict": {
|
89 |
+
"hidden_size": 768,
|
90 |
+
"intermediate_size": 3072,
|
91 |
+
"num_attention_heads": 12,
|
92 |
+
"num_hidden_layers": 12
|
93 |
+
},
|
94 |
+
"torch_dtype": "float32",
|
95 |
+
"transformers_version": null,
|
96 |
+
"vision_config": {
|
97 |
+
"_name_or_path": "",
|
98 |
+
"add_cross_attention": false,
|
99 |
+
"architectures": null,
|
100 |
+
"attention_dropout": 0.0,
|
101 |
+
"bad_words_ids": null,
|
102 |
+
"begin_suppress_tokens": null,
|
103 |
+
"bos_token_id": null,
|
104 |
+
"chunk_size_feed_forward": 0,
|
105 |
+
"cross_attention_hidden_size": null,
|
106 |
+
"decoder_start_token_id": null,
|
107 |
+
"diversity_penalty": 0.0,
|
108 |
+
"do_sample": false,
|
109 |
+
"dropout": 0.0,
|
110 |
+
"early_stopping": false,
|
111 |
+
"encoder_no_repeat_ngram_size": 0,
|
112 |
+
"eos_token_id": null,
|
113 |
+
"exponential_decay_length_penalty": null,
|
114 |
+
"finetuning_task": null,
|
115 |
+
"forced_bos_token_id": null,
|
116 |
+
"forced_eos_token_id": null,
|
117 |
+
"hidden_act": "quick_gelu",
|
118 |
+
"hidden_size": 1024,
|
119 |
+
"id2label": {
|
120 |
+
"0": "LABEL_0",
|
121 |
+
"1": "LABEL_1"
|
122 |
+
},
|
123 |
+
"image_size": 224,
|
124 |
+
"initializer_factor": 1.0,
|
125 |
+
"initializer_range": 0.02,
|
126 |
+
"intermediate_size": 4096,
|
127 |
+
"is_decoder": false,
|
128 |
+
"is_encoder_decoder": false,
|
129 |
+
"label2id": {
|
130 |
+
"LABEL_0": 0,
|
131 |
+
"LABEL_1": 1
|
132 |
+
},
|
133 |
+
"layer_norm_eps": 1e-05,
|
134 |
+
"length_penalty": 1.0,
|
135 |
+
"max_length": 20,
|
136 |
+
"min_length": 0,
|
137 |
+
"model_type": "clip_vision_model",
|
138 |
+
"no_repeat_ngram_size": 0,
|
139 |
+
"num_attention_heads": 16,
|
140 |
+
"num_beam_groups": 1,
|
141 |
+
"num_beams": 1,
|
142 |
+
"num_channels": 3,
|
143 |
+
"num_hidden_layers": 24,
|
144 |
+
"num_return_sequences": 1,
|
145 |
+
"output_attentions": false,
|
146 |
+
"output_hidden_states": false,
|
147 |
+
"output_scores": false,
|
148 |
+
"pad_token_id": null,
|
149 |
+
"patch_size": 14,
|
150 |
+
"prefix": null,
|
151 |
+
"problem_type": null,
|
152 |
+
"projection_dim": 512,
|
153 |
+
"pruned_heads": {},
|
154 |
+
"remove_invalid_values": false,
|
155 |
+
"repetition_penalty": 1.0,
|
156 |
+
"return_dict": true,
|
157 |
+
"return_dict_in_generate": false,
|
158 |
+
"sep_token_id": null,
|
159 |
+
"suppress_tokens": null,
|
160 |
+
"task_specific_params": null,
|
161 |
+
"temperature": 1.0,
|
162 |
+
"tf_legacy_loss": false,
|
163 |
+
"tie_encoder_decoder": false,
|
164 |
+
"tie_word_embeddings": true,
|
165 |
+
"tokenizer_class": null,
|
166 |
+
"top_k": 50,
|
167 |
+
"top_p": 1.0,
|
168 |
+
"torch_dtype": null,
|
169 |
+
"torchscript": false,
|
170 |
+
"transformers_version": "4.26.0.dev0",
|
171 |
+
"typical_p": 1.0,
|
172 |
+
"use_bfloat16": false
|
173 |
+
},
|
174 |
+
"vision_config_dict": {
|
175 |
+
"hidden_size": 1024,
|
176 |
+
"intermediate_size": 4096,
|
177 |
+
"num_attention_heads": 16,
|
178 |
+
"num_hidden_layers": 24,
|
179 |
+
"patch_size": 14
|
180 |
+
}
|
181 |
+
}
|
safety_checker/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16d28f2b37109f222cdc33620fdd262102ac32112be0352a7f77e9614b35a394
|
3 |
+
size 1216064769
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "PNDMScheduler",
|
3 |
+
"_diffusers_version": "0.11.1",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"num_train_timesteps": 1000,
|
9 |
+
"prediction_type": "epsilon",
|
10 |
+
"set_alpha_to_one": false,
|
11 |
+
"skip_prk_steps": true,
|
12 |
+
"steps_offset": 1,
|
13 |
+
"trained_betas": null
|
14 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/clip-vit-large-patch14",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 768,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.26.0.dev0",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:562a8a1222c3e3f73b802a3c52d866f97a79325a1a3189ec2fe49e5f54bc5a7b
|
3 |
+
size 492307041
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"do_lower_case": true,
|
12 |
+
"eos_token": {
|
13 |
+
"__type": "AddedToken",
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"errors": "replace",
|
21 |
+
"model_max_length": 77,
|
22 |
+
"name_or_path": "openai/clip-vit-large-patch14",
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"special_tokens_map_file": "./special_tokens_map.json",
|
25 |
+
"tokenizer_class": "CLIPTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<|endoftext|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unet/config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.11.1",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"attention_head_dim": 8,
|
6 |
+
"block_out_channels": [
|
7 |
+
320,
|
8 |
+
640,
|
9 |
+
1280,
|
10 |
+
1280
|
11 |
+
],
|
12 |
+
"center_input_sample": false,
|
13 |
+
"class_embed_type": null,
|
14 |
+
"cross_attention_dim": 768,
|
15 |
+
"down_block_types": [
|
16 |
+
"CrossAttnDownBlock2D",
|
17 |
+
"CrossAttnDownBlock2D",
|
18 |
+
"CrossAttnDownBlock2D",
|
19 |
+
"DownBlock2D"
|
20 |
+
],
|
21 |
+
"downsample_padding": 1,
|
22 |
+
"dual_cross_attention": false,
|
23 |
+
"flip_sin_to_cos": true,
|
24 |
+
"freq_shift": 0,
|
25 |
+
"in_channels": 4,
|
26 |
+
"layers_per_block": 2,
|
27 |
+
"mid_block_scale_factor": 1,
|
28 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
29 |
+
"norm_eps": 1e-05,
|
30 |
+
"norm_num_groups": 32,
|
31 |
+
"num_class_embeds": null,
|
32 |
+
"only_cross_attention": false,
|
33 |
+
"out_channels": 4,
|
34 |
+
"resnet_time_scale_shift": "default",
|
35 |
+
"sample_size": 64,
|
36 |
+
"up_block_types": [
|
37 |
+
"UpBlock2D",
|
38 |
+
"CrossAttnUpBlock2D",
|
39 |
+
"CrossAttnUpBlock2D",
|
40 |
+
"CrossAttnUpBlock2D"
|
41 |
+
],
|
42 |
+
"upcast_attention": false,
|
43 |
+
"use_linear_projection": false
|
44 |
+
}
|
unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:926c30ee1b8fb52ec8983427e9b2a23ab67ed29fab23ea5eb48c221cc331afbf
|
3 |
+
size 3438366373
|
v1-inference.yaml
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-04
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: "jpg"
|
11 |
+
cond_stage_key: "txt"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
|
20 |
+
scheduler_config: # 10000 warmup steps
|
21 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
22 |
+
params:
|
23 |
+
warm_up_steps: [ 10000 ]
|
24 |
+
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
25 |
+
f_start: [ 1.e-6 ]
|
26 |
+
f_max: [ 1. ]
|
27 |
+
f_min: [ 1. ]
|
28 |
+
|
29 |
+
unet_config:
|
30 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
image_size: 32 # unused
|
33 |
+
in_channels: 4
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 320
|
36 |
+
attention_resolutions: [ 4, 2, 1 ]
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
39 |
+
num_heads: 8
|
40 |
+
use_spatial_transformer: True
|
41 |
+
transformer_depth: 1
|
42 |
+
context_dim: 768
|
43 |
+
use_checkpoint: True
|
44 |
+
legacy: False
|
45 |
+
|
46 |
+
first_stage_config:
|
47 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
48 |
+
params:
|
49 |
+
embed_dim: 4
|
50 |
+
monitor: val/rec_loss
|
51 |
+
ddconfig:
|
52 |
+
double_z: true
|
53 |
+
z_channels: 4
|
54 |
+
resolution: 256
|
55 |
+
in_channels: 3
|
56 |
+
out_ch: 3
|
57 |
+
ch: 128
|
58 |
+
ch_mult:
|
59 |
+
- 1
|
60 |
+
- 2
|
61 |
+
- 4
|
62 |
+
- 4
|
63 |
+
num_res_blocks: 2
|
64 |
+
attn_resolutions: []
|
65 |
+
dropout: 0.0
|
66 |
+
lossconfig:
|
67 |
+
target: torch.nn.Identity
|
68 |
+
|
69 |
+
cond_stage_config:
|
70 |
+
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
vae/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.11.1",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
512,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"DownEncoderBlock2D",
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D"
|
16 |
+
],
|
17 |
+
"in_channels": 3,
|
18 |
+
"latent_channels": 4,
|
19 |
+
"layers_per_block": 2,
|
20 |
+
"norm_num_groups": 32,
|
21 |
+
"out_channels": 3,
|
22 |
+
"sample_size": 512,
|
23 |
+
"up_block_types": [
|
24 |
+
"UpDecoderBlock2D",
|
25 |
+
"UpDecoderBlock2D",
|
26 |
+
"UpDecoderBlock2D",
|
27 |
+
"UpDecoderBlock2D"
|
28 |
+
]
|
29 |
+
}
|
vae/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e9214a656c2445a921065a40861f6adfbe0aa8e0219785e5866f9eef0d5716f
|
3 |
+
size 334711857
|