File size: 1,493 Bytes
37435f9
 
 
 
22aeb4c
 
 
 
 
 
 
2d0ba28
22aeb4c
 
 
84e06d9
22aeb4c
37435f9
22aeb4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84e06d9
 
 
 
 
22aeb4c
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---

license: apache-2.0
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->


# EvolCodeLlama-3.1-8B-Instruct

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) using QLoRA (4-bit precision) on the [mlabonne/Evol-Instruct-Python-1k](https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-1k) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4057

## Training:

It was trained on an **A40** for more than 1 hour using Axolotl.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3

The lose curves are as:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/aUYWcsr8kT3khy6SsrkOd.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/fHWzXAEEqc-fKAp5Ngpuz.png)


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1