File size: 1,493 Bytes
37435f9 22aeb4c 2d0ba28 22aeb4c 84e06d9 22aeb4c 37435f9 22aeb4c 84e06d9 22aeb4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: apache-2.0
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# EvolCodeLlama-3.1-8B-Instruct
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) using QLoRA (4-bit precision) on the [mlabonne/Evol-Instruct-Python-1k](https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-1k) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4057
## Training:
It was trained on an **A40** for more than 1 hour using Axolotl.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
The lose curves are as:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/aUYWcsr8kT3khy6SsrkOd.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/fHWzXAEEqc-fKAp5Ngpuz.png)
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |