yuvraj17 commited on
Commit
3f5c322
1 Parent(s): f9e9452

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -1
README.md CHANGED
@@ -16,6 +16,29 @@ Llama3-8B-abliterated-Spectrum-slerp is a merge of the following models using [L
16
  * [yuvraj17/Llama-3-8B-spectrum-25](https://huggingface.co/yuvraj17/Llama-3-8B-spectrum-25)
17
  * [mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated)
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ## 🧩 Configuration
20
 
21
  ```yaml
@@ -61,4 +84,12 @@ pipeline = transformers.pipeline(
61
 
62
  outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
63
  print(outputs[0]["generated_text"])
64
- ```
 
 
 
 
 
 
 
 
 
16
  * [yuvraj17/Llama-3-8B-spectrum-25](https://huggingface.co/yuvraj17/Llama-3-8B-spectrum-25)
17
  * [mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated)
18
 
19
+ ## Introduction for Model Merging
20
+
21
+ **Model Merging**, also known as model fusion, is an effective technique that merges the parameters of multiple separate models with different capabilities to build a universal model without needing access to the
22
+ original training data or expensive computation.
23
+ There are bunch of methods, we can use to merge the capabilities of different models (supported by [mergekit](https://github.com/arcee-ai/mergekit)) including:
24
+
25
+ <figure>
26
+
27
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/HUflk1elPEom3Pe_vU_Ku.png" width="768" height="768">
28
+ <figcaption> Merge Methods supported by MergeKit <a href="//github.com/arcee-ai/mergekit?tab=readme-ov-file#merge-methods">Reference</a> </figcaption>
29
+
30
+ </figure>
31
+
32
+ For more deep-diving into different merging techniques, visit [Merge Large Language Models with mergekit](https://towardsdatascience.com/merge-large-language-models-with-mergekit-2118fb392b54).
33
+
34
+ ### Introduction for SLERP Merging
35
+
36
+ **Spherical Linear Interpolation (SLERP)** is a method used to smoothly interpolate between two vectors. It maintains a constant rate of change and preserves the geometric properties of the spherical space in which the vectors reside.
37
+
38
+ SLERP is currently the *most-popular merging method*, preffered over traditional methods because instead of dealing with straight-lines, the interpolation occurs on the surface of a sphere, and it has achieved improved performance to very diverse task.
39
+ > But SLERP is limited to combining only **two models at a time**, although its possible to hierarchically combine multiple models, as shown in [Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1).
40
+
41
+
42
  ## 🧩 Configuration
43
 
44
  ```yaml
 
84
 
85
  outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
86
  print(outputs[0]["generated_text"])
87
+ ```
88
+
89
+
90
+ ## 🏆 Evaluation Results
91
+ Coming soon
92
+
93
+ ## Special thanks & Reference
94
+ - Maxime Labonne for their easy-to-use colab-notebook [Merging LLMs with MergeKit](https://github.com/mlabonne/llm-course/blob/main/Mergekit.ipynb) and [Blog](https://towardsdatascience.com/merge-large-language-models-with-mergekit-2118fb392b54)
95
+ - Authors of [Mergekit](https://github.com/arcee-ai/mergekit)