--- base_model: openai/whisper-small datasets: - mozilla-foundation/common_voice_16_1 language: - nan library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: Whisper small Taiwanese - LoRA results: [] --- # Whisper small Taiwanese - LoRA This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.9261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0204 | 1.0 | 2572 | 1.0091 | | 0.9044 | 2.0 | 5144 | 0.9392 | | 0.7166 | 3.0 | 7716 | 0.8862 | | 0.5224 | 4.0 | 10288 | 0.9016 | | 0.5268 | 5.0 | 12860 | 0.8868 | | 0.414 | 6.0 | 15432 | 0.9129 | | 0.3592 | 7.0 | 18004 | 0.9097 | | 0.2912 | 8.0 | 20576 | 0.9261 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2