Update README.md
Browse files
README.md
CHANGED
@@ -15,5 +15,41 @@ pipeline_tag: text-generation
|
|
15 |
| LongAlpaca-7b-32k-chinese | atom-7b | 8k->32k PI | 指令微调 | 长度32k以内的多文档问答、论文总结、论文问答、sharegpt数据 |
|
16 |
| LongAlpaca-7b-32k-chinese-v2 | CausalLM-7b | 8k->32k Yarn | 增量预训练+指令微调 |长度32k的中文预训练数据 + 长度32k以内的多文档多轮问答、论文多任务多轮问答、sharegpt、中英翻译数据 |
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
|
|
15 |
| LongAlpaca-7b-32k-chinese | atom-7b | 8k->32k PI | 指令微调 | 长度32k以内的多文档问答、论文总结、论文问答、sharegpt数据 |
|
16 |
| LongAlpaca-7b-32k-chinese-v2 | CausalLM-7b | 8k->32k Yarn | 增量预训练+指令微调 |长度32k的中文预训练数据 + 长度32k以内的多文档多轮问答、论文多任务多轮问答、sharegpt、中英翻译数据 |
|
17 |
|
18 |
+
## 使用方法:
|
19 |
+
```python
|
20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
21 |
+
from transformers.generation import GenerationConfig
|
22 |
+
import os
|
23 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
24 |
+
|
25 |
+
model_path="yuyijiong/LongAlpaca-7b-32k-chinese"
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
27 |
+
|
28 |
+
# use auto mode, automatically select precision based on the device.
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", load_in_8bit=True, trust_remote_code=True).eval()
|
30 |
+
|
31 |
+
|
32 |
+
question="中国的首都是什么?"
|
33 |
+
input_text = "<|im_start|>user\n" + question + "<|im_end|>\n" + "<|im_start|>assistant\n"
|
34 |
+
input_ids = tokenizer(input_text, return_tensors='pt').input_ids.to(model.device)
|
35 |
+
|
36 |
+
with torch.no_grad():
|
37 |
+
|
38 |
+
with torch.autocast('cuda'):
|
39 |
+
output = model.generate(input_ids=input_ids,
|
40 |
+
max_new_tokens=max_new_tokens,
|
41 |
+
do_sample=True,
|
42 |
+
temperature=0.85,
|
43 |
+
top_k=None,
|
44 |
+
top_p=0.9,
|
45 |
+
use_cache=True,
|
46 |
+
eos_token_id=[tokenizer.convert_tokens_to_ids('<|im_end|>') , tokenizer.convert_tokens_to_ids('<|endoftext|>')]
|
47 |
+
**kwargs)
|
48 |
+
|
49 |
+
reply = tokenizer.decode(output[0], skip_special_tokens=False)
|
50 |
+
reply_return=reply.split('<|im_start|>assistant\n')[-1]
|
51 |
+
|
52 |
+
print('模型回答:', reply_return)
|
53 |
+
```
|
54 |
|
55 |
|