yeyongyu commited on
Commit
214cf2e
β€’
1 Parent(s): e05fc19

add: add model weight files

Browse files
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/apdcephfs_qy3/share_1443437/nlp_common/LLM_Models/Mistral-Nemo-Instruct-2407",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 1024000,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.44.0.dev0",
25
+ "use_cache": false,
26
+ "vocab_size": 131072
27
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.44.0.dev0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eddbaab0dd87907a3664207ba1d5d44ebd3f567707242fd23794d16385325379
3
+ size 4865522496
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:513c8486242d140f97fa1d61980b2f8ccff1da1e2b11daf8cea0dc1437a92e08
3
+ size 4907529424
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9478ff981d155ded2d25bf19acbb98d719a618fc7456ce36ce0e8b9b918e0182
3
+ size 4907529456
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95b64667576734edac02f7f7c42259933a215fd46414d992e0d6a3ed05543a9b
3
+ size 4907529456
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22747854662c5c6b165b3017acfd73f1a66e165884fa7dbdca1b726fadc624b6
3
+ size 4907496272
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 24495564800
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
368
+ "model.norm.weight": "model-00005-of-00005.safetensors"
369
+ }
370
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36d2a2034ebb05cb71c510897f2795b31164e50f17b270bc25d2be3ad9a17b22
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:060dfdb1c49102cbdc8868a6031e68787601b4ccd782f3fb9b137e20c1fd2c7a
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af01895cb66e616591f2e4baa8dcd8151530eab133c73571ccb31c74f35422ce
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:677921992b1e0cef3aee776f245975003d22f51d9bd6ed20f248ded1deb72fa9
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d69353c629541c690c5471f8ec05fdab2bfecf3d37afaa436bc45939da6db68f
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e40ba6668cc03c9162c68a933d164bf38ae2d196a9a6fec03ae615491201185
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:870968fea834e24b2e099cf3e4fe1e3fb8caf38d8f8e5b790d7d47386d4d05f5
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9e19618bee7c6ef43256fea25abe19bca88535eb1e7dc213cde8929ae4e8180
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc9dbe3641a6ae5b4c7bb59a1b47c80bf7d86a0f2ae513de42b04233e8400d76
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,1972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.001801801801802,
5
+ "eval_steps": 500,
6
+ "global_step": 833,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.010810810810810811,
13
+ "grad_norm": 44.04393707727108,
14
+ "learning_rate": 2.9999066991504905e-05,
15
+ "loss": 2.3711,
16
+ "step": 3
17
+ },
18
+ {
19
+ "epoch": 0.021621621621621623,
20
+ "grad_norm": 31.04171552882201,
21
+ "learning_rate": 2.9996268082086924e-05,
22
+ "loss": 4.159,
23
+ "step": 6
24
+ },
25
+ {
26
+ "epoch": 0.032432432432432434,
27
+ "grad_norm": 11.54576214967521,
28
+ "learning_rate": 2.9991603619933566e-05,
29
+ "loss": 1.9733,
30
+ "step": 9
31
+ },
32
+ {
33
+ "epoch": 0.043243243243243246,
34
+ "grad_norm": 7.08841552325599,
35
+ "learning_rate": 2.9985074185309204e-05,
36
+ "loss": 1.7978,
37
+ "step": 12
38
+ },
39
+ {
40
+ "epoch": 0.05405405405405406,
41
+ "grad_norm": 5.949508626432288,
42
+ "learning_rate": 2.99766805904829e-05,
43
+ "loss": 1.7347,
44
+ "step": 15
45
+ },
46
+ {
47
+ "epoch": 0.06486486486486487,
48
+ "grad_norm": 6.168616775238258,
49
+ "learning_rate": 2.9966423879627356e-05,
50
+ "loss": 1.6033,
51
+ "step": 18
52
+ },
53
+ {
54
+ "epoch": 0.07567567567567568,
55
+ "grad_norm": 5.728079542384497,
56
+ "learning_rate": 2.9954305328689024e-05,
57
+ "loss": 1.7134,
58
+ "step": 21
59
+ },
60
+ {
61
+ "epoch": 0.08648648648648649,
62
+ "grad_norm": 6.284326561040228,
63
+ "learning_rate": 2.9940326445229367e-05,
64
+ "loss": 1.6933,
65
+ "step": 24
66
+ },
67
+ {
68
+ "epoch": 0.0972972972972973,
69
+ "grad_norm": 6.92658975011714,
70
+ "learning_rate": 2.9924488968237316e-05,
71
+ "loss": 1.5923,
72
+ "step": 27
73
+ },
74
+ {
75
+ "epoch": 0.10810810810810811,
76
+ "grad_norm": 6.538508694879061,
77
+ "learning_rate": 2.9906794867912953e-05,
78
+ "loss": 1.6931,
79
+ "step": 30
80
+ },
81
+ {
82
+ "epoch": 0.11891891891891893,
83
+ "grad_norm": 4.685530306007965,
84
+ "learning_rate": 2.98872463454224e-05,
85
+ "loss": 1.6559,
86
+ "step": 33
87
+ },
88
+ {
89
+ "epoch": 0.12972972972972974,
90
+ "grad_norm": 5.65503266442286,
91
+ "learning_rate": 2.9865845832623993e-05,
92
+ "loss": 1.6982,
93
+ "step": 36
94
+ },
95
+ {
96
+ "epoch": 0.14054054054054055,
97
+ "grad_norm": 4.886380857119004,
98
+ "learning_rate": 2.9842595991765766e-05,
99
+ "loss": 1.6503,
100
+ "step": 39
101
+ },
102
+ {
103
+ "epoch": 0.15135135135135136,
104
+ "grad_norm": 5.026086310034092,
105
+ "learning_rate": 2.981749971515426e-05,
106
+ "loss": 1.632,
107
+ "step": 42
108
+ },
109
+ {
110
+ "epoch": 0.16216216216216217,
111
+ "grad_norm": 4.795570770299284,
112
+ "learning_rate": 2.9790560124794702e-05,
113
+ "loss": 1.6824,
114
+ "step": 45
115
+ },
116
+ {
117
+ "epoch": 0.17297297297297298,
118
+ "grad_norm": 4.756143563325781,
119
+ "learning_rate": 2.976178057200266e-05,
120
+ "loss": 1.6694,
121
+ "step": 48
122
+ },
123
+ {
124
+ "epoch": 0.1837837837837838,
125
+ "grad_norm": 5.364943432581566,
126
+ "learning_rate": 2.9731164636987088e-05,
127
+ "loss": 1.6659,
128
+ "step": 51
129
+ },
130
+ {
131
+ "epoch": 0.1945945945945946,
132
+ "grad_norm": 5.181051766279552,
133
+ "learning_rate": 2.9698716128404985e-05,
134
+ "loss": 1.6443,
135
+ "step": 54
136
+ },
137
+ {
138
+ "epoch": 0.20540540540540542,
139
+ "grad_norm": 4.828479392346181,
140
+ "learning_rate": 2.9664439082887568e-05,
141
+ "loss": 1.6519,
142
+ "step": 57
143
+ },
144
+ {
145
+ "epoch": 0.21621621621621623,
146
+ "grad_norm": 5.824361936201152,
147
+ "learning_rate": 2.9628337764538135e-05,
148
+ "loss": 1.6532,
149
+ "step": 60
150
+ },
151
+ {
152
+ "epoch": 0.22702702702702704,
153
+ "grad_norm": 6.393887712988006,
154
+ "learning_rate": 2.9590416664401566e-05,
155
+ "loss": 1.6409,
156
+ "step": 63
157
+ },
158
+ {
159
+ "epoch": 0.23783783783783785,
160
+ "grad_norm": 5.8650966692501765,
161
+ "learning_rate": 2.955068049990568e-05,
162
+ "loss": 1.6105,
163
+ "step": 66
164
+ },
165
+ {
166
+ "epoch": 0.24864864864864866,
167
+ "grad_norm": 4.755849083042293,
168
+ "learning_rate": 2.9509134214274343e-05,
169
+ "loss": 1.6618,
170
+ "step": 69
171
+ },
172
+ {
173
+ "epoch": 0.2594594594594595,
174
+ "grad_norm": 3.9789106042521962,
175
+ "learning_rate": 2.9465782975912553e-05,
176
+ "loss": 1.6645,
177
+ "step": 72
178
+ },
179
+ {
180
+ "epoch": 0.2702702702702703,
181
+ "grad_norm": 4.592578050100414,
182
+ "learning_rate": 2.942063217776346e-05,
183
+ "loss": 1.605,
184
+ "step": 75
185
+ },
186
+ {
187
+ "epoch": 0.2810810810810811,
188
+ "grad_norm": 4.299733571350802,
189
+ "learning_rate": 2.9373687436637492e-05,
190
+ "loss": 1.6233,
191
+ "step": 78
192
+ },
193
+ {
194
+ "epoch": 0.2918918918918919,
195
+ "grad_norm": 4.585181401202116,
196
+ "learning_rate": 2.9324954592513626e-05,
197
+ "loss": 1.6587,
198
+ "step": 81
199
+ },
200
+ {
201
+ "epoch": 0.3027027027027027,
202
+ "grad_norm": 4.530135718622418,
203
+ "learning_rate": 2.927443970781287e-05,
204
+ "loss": 1.6333,
205
+ "step": 84
206
+ },
207
+ {
208
+ "epoch": 0.31351351351351353,
209
+ "grad_norm": 5.349009947479682,
210
+ "learning_rate": 2.9222149066644088e-05,
211
+ "loss": 1.6431,
212
+ "step": 87
213
+ },
214
+ {
215
+ "epoch": 0.32432432432432434,
216
+ "grad_norm": 4.266181060344957,
217
+ "learning_rate": 2.916808917402228e-05,
218
+ "loss": 1.598,
219
+ "step": 90
220
+ },
221
+ {
222
+ "epoch": 0.33513513513513515,
223
+ "grad_norm": 4.628674419343668,
224
+ "learning_rate": 2.911226675505932e-05,
225
+ "loss": 1.6375,
226
+ "step": 93
227
+ },
228
+ {
229
+ "epoch": 0.34594594594594597,
230
+ "grad_norm": 5.058644550344611,
231
+ "learning_rate": 2.905468875412735e-05,
232
+ "loss": 1.6427,
233
+ "step": 96
234
+ },
235
+ {
236
+ "epoch": 0.3567567567567568,
237
+ "grad_norm": 4.417115318512762,
238
+ "learning_rate": 2.8995362333994906e-05,
239
+ "loss": 1.6333,
240
+ "step": 99
241
+ },
242
+ {
243
+ "epoch": 0.3675675675675676,
244
+ "grad_norm": 4.0811273644284345,
245
+ "learning_rate": 2.8934294874935848e-05,
246
+ "loss": 1.5855,
247
+ "step": 102
248
+ },
249
+ {
250
+ "epoch": 0.3783783783783784,
251
+ "grad_norm": 3.962543949681069,
252
+ "learning_rate": 2.887149397381126e-05,
253
+ "loss": 1.6171,
254
+ "step": 105
255
+ },
256
+ {
257
+ "epoch": 0.3891891891891892,
258
+ "grad_norm": 3.934001274285887,
259
+ "learning_rate": 2.8806967443124372e-05,
260
+ "loss": 1.5538,
261
+ "step": 108
262
+ },
263
+ {
264
+ "epoch": 0.4,
265
+ "grad_norm": 4.891305018487301,
266
+ "learning_rate": 2.8740723310048682e-05,
267
+ "loss": 1.6476,
268
+ "step": 111
269
+ },
270
+ {
271
+ "epoch": 0.41081081081081083,
272
+ "grad_norm": 4.553656766898869,
273
+ "learning_rate": 2.8672769815429385e-05,
274
+ "loss": 1.5889,
275
+ "step": 114
276
+ },
277
+ {
278
+ "epoch": 0.42162162162162165,
279
+ "grad_norm": 4.450034079395778,
280
+ "learning_rate": 2.860311541275818e-05,
281
+ "loss": 1.5896,
282
+ "step": 117
283
+ },
284
+ {
285
+ "epoch": 0.43243243243243246,
286
+ "grad_norm": 3.9485209950285274,
287
+ "learning_rate": 2.8531768767121656e-05,
288
+ "loss": 1.6198,
289
+ "step": 120
290
+ },
291
+ {
292
+ "epoch": 0.44324324324324327,
293
+ "grad_norm": 4.35512448284715,
294
+ "learning_rate": 2.845873875412335e-05,
295
+ "loss": 1.6443,
296
+ "step": 123
297
+ },
298
+ {
299
+ "epoch": 0.4540540540540541,
300
+ "grad_norm": 4.651266887881564,
301
+ "learning_rate": 2.838403445877958e-05,
302
+ "loss": 1.6542,
303
+ "step": 126
304
+ },
305
+ {
306
+ "epoch": 0.4648648648648649,
307
+ "grad_norm": 4.5294288157069,
308
+ "learning_rate": 2.8307665174389323e-05,
309
+ "loss": 1.655,
310
+ "step": 129
311
+ },
312
+ {
313
+ "epoch": 0.4756756756756757,
314
+ "grad_norm": 4.104985239339571,
315
+ "learning_rate": 2.822964040137805e-05,
316
+ "loss": 1.6827,
317
+ "step": 132
318
+ },
319
+ {
320
+ "epoch": 0.4864864864864865,
321
+ "grad_norm": 3.7948515475231286,
322
+ "learning_rate": 2.8149969846115894e-05,
323
+ "loss": 1.6333,
324
+ "step": 135
325
+ },
326
+ {
327
+ "epoch": 0.4972972972972973,
328
+ "grad_norm": 4.449225329061536,
329
+ "learning_rate": 2.8068663419710182e-05,
330
+ "loss": 1.6185,
331
+ "step": 138
332
+ },
333
+ {
334
+ "epoch": 0.5081081081081081,
335
+ "grad_norm": 4.391987231579949,
336
+ "learning_rate": 2.7985731236772448e-05,
337
+ "loss": 1.6078,
338
+ "step": 141
339
+ },
340
+ {
341
+ "epoch": 0.518918918918919,
342
+ "grad_norm": 4.982415169833182,
343
+ "learning_rate": 2.7901183614160185e-05,
344
+ "loss": 1.6529,
345
+ "step": 144
346
+ },
347
+ {
348
+ "epoch": 0.5297297297297298,
349
+ "grad_norm": 4.176595151214056,
350
+ "learning_rate": 2.7815031069693412e-05,
351
+ "loss": 1.6073,
352
+ "step": 147
353
+ },
354
+ {
355
+ "epoch": 0.5405405405405406,
356
+ "grad_norm": 4.3206148554703105,
357
+ "learning_rate": 2.7727284320846246e-05,
358
+ "loss": 1.5561,
359
+ "step": 150
360
+ },
361
+ {
362
+ "epoch": 0.5513513513513514,
363
+ "grad_norm": 4.424758608775709,
364
+ "learning_rate": 2.7637954283413632e-05,
365
+ "loss": 1.6253,
366
+ "step": 153
367
+ },
368
+ {
369
+ "epoch": 0.5621621621621622,
370
+ "grad_norm": 5.349711813640235,
371
+ "learning_rate": 2.75470520701534e-05,
372
+ "loss": 1.7059,
373
+ "step": 156
374
+ },
375
+ {
376
+ "epoch": 0.572972972972973,
377
+ "grad_norm": 4.578654891344146,
378
+ "learning_rate": 2.7454588989403858e-05,
379
+ "loss": 1.6107,
380
+ "step": 159
381
+ },
382
+ {
383
+ "epoch": 0.5837837837837838,
384
+ "grad_norm": 40.22880683574773,
385
+ "learning_rate": 2.7360576543676972e-05,
386
+ "loss": 1.6278,
387
+ "step": 162
388
+ },
389
+ {
390
+ "epoch": 0.5945945945945946,
391
+ "grad_norm": 4.155039894851776,
392
+ "learning_rate": 2.7265026428227476e-05,
393
+ "loss": 1.6301,
394
+ "step": 165
395
+ },
396
+ {
397
+ "epoch": 0.6054054054054054,
398
+ "grad_norm": 4.159866031946415,
399
+ "learning_rate": 2.7167950529597963e-05,
400
+ "loss": 1.5342,
401
+ "step": 168
402
+ },
403
+ {
404
+ "epoch": 0.6162162162162163,
405
+ "grad_norm": 4.087141493968059,
406
+ "learning_rate": 2.706936092414018e-05,
407
+ "loss": 1.6033,
408
+ "step": 171
409
+ },
410
+ {
411
+ "epoch": 0.6270270270270271,
412
+ "grad_norm": 3.825646270675215,
413
+ "learning_rate": 2.696926987651271e-05,
414
+ "loss": 1.5288,
415
+ "step": 174
416
+ },
417
+ {
418
+ "epoch": 0.6378378378378379,
419
+ "grad_norm": 3.917523159059879,
420
+ "learning_rate": 2.686768983815526e-05,
421
+ "loss": 1.6363,
422
+ "step": 177
423
+ },
424
+ {
425
+ "epoch": 0.6486486486486487,
426
+ "grad_norm": 4.202629239471907,
427
+ "learning_rate": 2.676463344573965e-05,
428
+ "loss": 1.6052,
429
+ "step": 180
430
+ },
431
+ {
432
+ "epoch": 0.6594594594594595,
433
+ "grad_norm": 3.6368092847747304,
434
+ "learning_rate": 2.666011351959783e-05,
435
+ "loss": 1.6309,
436
+ "step": 183
437
+ },
438
+ {
439
+ "epoch": 0.6702702702702703,
440
+ "grad_norm": 4.253168243144118,
441
+ "learning_rate": 2.6554143062126995e-05,
442
+ "loss": 1.5592,
443
+ "step": 186
444
+ },
445
+ {
446
+ "epoch": 0.6810810810810811,
447
+ "grad_norm": 4.995354779998164,
448
+ "learning_rate": 2.6446735256172092e-05,
449
+ "loss": 1.6303,
450
+ "step": 189
451
+ },
452
+ {
453
+ "epoch": 0.6918918918918919,
454
+ "grad_norm": 4.421549411402136,
455
+ "learning_rate": 2.6337903463385836e-05,
456
+ "loss": 1.5769,
457
+ "step": 192
458
+ },
459
+ {
460
+ "epoch": 0.7027027027027027,
461
+ "grad_norm": 4.32615026522547,
462
+ "learning_rate": 2.6227661222566516e-05,
463
+ "loss": 1.613,
464
+ "step": 195
465
+ },
466
+ {
467
+ "epoch": 0.7135135135135136,
468
+ "grad_norm": 3.8575639988103836,
469
+ "learning_rate": 2.6116022247973773e-05,
470
+ "loss": 1.5844,
471
+ "step": 198
472
+ },
473
+ {
474
+ "epoch": 0.7243243243243244,
475
+ "grad_norm": 3.7279832633133028,
476
+ "learning_rate": 2.6003000427622484e-05,
477
+ "loss": 1.5301,
478
+ "step": 201
479
+ },
480
+ {
481
+ "epoch": 0.7351351351351352,
482
+ "grad_norm": 4.190711163922663,
483
+ "learning_rate": 2.5888609821555127e-05,
484
+ "loss": 1.592,
485
+ "step": 204
486
+ },
487
+ {
488
+ "epoch": 0.745945945945946,
489
+ "grad_norm": 4.733000892445367,
490
+ "learning_rate": 2.577286466009266e-05,
491
+ "loss": 1.6574,
492
+ "step": 207
493
+ },
494
+ {
495
+ "epoch": 0.7567567567567568,
496
+ "grad_norm": 4.577219211132897,
497
+ "learning_rate": 2.5655779342064276e-05,
498
+ "loss": 1.6289,
499
+ "step": 210
500
+ },
501
+ {
502
+ "epoch": 0.7675675675675676,
503
+ "grad_norm": 4.048131970531039,
504
+ "learning_rate": 2.553736843301615e-05,
505
+ "loss": 1.6169,
506
+ "step": 213
507
+ },
508
+ {
509
+ "epoch": 0.7783783783783784,
510
+ "grad_norm": 4.018546715630257,
511
+ "learning_rate": 2.5417646663399502e-05,
512
+ "loss": 1.5489,
513
+ "step": 216
514
+ },
515
+ {
516
+ "epoch": 0.7891891891891892,
517
+ "grad_norm": 3.7010313992210992,
518
+ "learning_rate": 2.529662892673806e-05,
519
+ "loss": 1.5596,
520
+ "step": 219
521
+ },
522
+ {
523
+ "epoch": 0.8,
524
+ "grad_norm": 4.557965597883243,
525
+ "learning_rate": 2.5174330277775354e-05,
526
+ "loss": 1.6145,
527
+ "step": 222
528
+ },
529
+ {
530
+ "epoch": 0.8108108108108109,
531
+ "grad_norm": 4.181549208740728,
532
+ "learning_rate": 2.5050765930601836e-05,
533
+ "loss": 1.5339,
534
+ "step": 225
535
+ },
536
+ {
537
+ "epoch": 0.8216216216216217,
538
+ "grad_norm": 3.7892758830012823,
539
+ "learning_rate": 2.4925951256762254e-05,
540
+ "loss": 1.5862,
541
+ "step": 228
542
+ },
543
+ {
544
+ "epoch": 0.8324324324324325,
545
+ "grad_norm": 3.6130747678919666,
546
+ "learning_rate": 2.4799901783343407e-05,
547
+ "loss": 1.4857,
548
+ "step": 231
549
+ },
550
+ {
551
+ "epoch": 0.8432432432432433,
552
+ "grad_norm": 3.639537345617851,
553
+ "learning_rate": 2.467263319104256e-05,
554
+ "loss": 1.5902,
555
+ "step": 234
556
+ },
557
+ {
558
+ "epoch": 0.8540540540540541,
559
+ "grad_norm": 4.0474919753332035,
560
+ "learning_rate": 2.4544161312216752e-05,
561
+ "loss": 1.5395,
562
+ "step": 237
563
+ },
564
+ {
565
+ "epoch": 0.8648648648648649,
566
+ "grad_norm": 3.800979434984059,
567
+ "learning_rate": 2.441450212891323e-05,
568
+ "loss": 1.5284,
569
+ "step": 240
570
+ },
571
+ {
572
+ "epoch": 0.8756756756756757,
573
+ "grad_norm": 3.3611120493742983,
574
+ "learning_rate": 2.4283671770881256e-05,
575
+ "loss": 1.515,
576
+ "step": 243
577
+ },
578
+ {
579
+ "epoch": 0.8864864864864865,
580
+ "grad_norm": 3.459228078638404,
581
+ "learning_rate": 2.415168651356556e-05,
582
+ "loss": 1.5745,
583
+ "step": 246
584
+ },
585
+ {
586
+ "epoch": 0.8972972972972973,
587
+ "grad_norm": 3.6185129562881513,
588
+ "learning_rate": 2.4018562776081643e-05,
589
+ "loss": 1.5989,
590
+ "step": 249
591
+ },
592
+ {
593
+ "epoch": 0.9081081081081082,
594
+ "grad_norm": 4.499909371969758,
595
+ "learning_rate": 2.388431711917324e-05,
596
+ "loss": 1.5609,
597
+ "step": 252
598
+ },
599
+ {
600
+ "epoch": 0.918918918918919,
601
+ "grad_norm": 3.6576864938242832,
602
+ "learning_rate": 2.3748966243152127e-05,
603
+ "loss": 1.5623,
604
+ "step": 255
605
+ },
606
+ {
607
+ "epoch": 0.9297297297297298,
608
+ "grad_norm": 4.261199238023545,
609
+ "learning_rate": 2.3612526985820586e-05,
610
+ "loss": 1.5523,
611
+ "step": 258
612
+ },
613
+ {
614
+ "epoch": 0.9405405405405406,
615
+ "grad_norm": 4.730374719738293,
616
+ "learning_rate": 2.347501632037678e-05,
617
+ "loss": 1.5813,
618
+ "step": 261
619
+ },
620
+ {
621
+ "epoch": 0.9513513513513514,
622
+ "grad_norm": 3.7110704143642503,
623
+ "learning_rate": 2.333645135330324e-05,
624
+ "loss": 1.4888,
625
+ "step": 264
626
+ },
627
+ {
628
+ "epoch": 0.9621621621621622,
629
+ "grad_norm": 3.481005791064881,
630
+ "learning_rate": 2.3196849322238816e-05,
631
+ "loss": 1.6186,
632
+ "step": 267
633
+ },
634
+ {
635
+ "epoch": 0.972972972972973,
636
+ "grad_norm": 3.9410070667987913,
637
+ "learning_rate": 2.3056227593834306e-05,
638
+ "loss": 1.5343,
639
+ "step": 270
640
+ },
641
+ {
642
+ "epoch": 0.9837837837837838,
643
+ "grad_norm": 3.73687483401855,
644
+ "learning_rate": 2.291460366159199e-05,
645
+ "loss": 1.527,
646
+ "step": 273
647
+ },
648
+ {
649
+ "epoch": 0.9945945945945946,
650
+ "grad_norm": 3.636935348418019,
651
+ "learning_rate": 2.277199514368947e-05,
652
+ "loss": 1.5228,
653
+ "step": 276
654
+ },
655
+ {
656
+ "epoch": 1.0054054054054054,
657
+ "grad_norm": 3.5028224113856457,
658
+ "learning_rate": 2.2628419780787887e-05,
659
+ "loss": 1.3043,
660
+ "step": 279
661
+ },
662
+ {
663
+ "epoch": 1.0162162162162163,
664
+ "grad_norm": 3.2714761796276455,
665
+ "learning_rate": 2.2483895433825023e-05,
666
+ "loss": 1.0507,
667
+ "step": 282
668
+ },
669
+ {
670
+ "epoch": 1.027027027027027,
671
+ "grad_norm": 3.180825722720309,
672
+ "learning_rate": 2.2338440081793332e-05,
673
+ "loss": 1.0155,
674
+ "step": 285
675
+ },
676
+ {
677
+ "epoch": 1.037837837837838,
678
+ "grad_norm": 2.9167211293609894,
679
+ "learning_rate": 2.2192071819503365e-05,
680
+ "loss": 1.0087,
681
+ "step": 288
682
+ },
683
+ {
684
+ "epoch": 1.0486486486486486,
685
+ "grad_norm": 3.1930797413555077,
686
+ "learning_rate": 2.2044808855332743e-05,
687
+ "loss": 0.9847,
688
+ "step": 291
689
+ },
690
+ {
691
+ "epoch": 1.0594594594594595,
692
+ "grad_norm": 3.0743072086936474,
693
+ "learning_rate": 2.1896669508961002e-05,
694
+ "loss": 1.0024,
695
+ "step": 294
696
+ },
697
+ {
698
+ "epoch": 1.0702702702702702,
699
+ "grad_norm": 3.3931402915538613,
700
+ "learning_rate": 2.1747672209090627e-05,
701
+ "loss": 1.0063,
702
+ "step": 297
703
+ },
704
+ {
705
+ "epoch": 1.0810810810810811,
706
+ "grad_norm": 3.427840497426894,
707
+ "learning_rate": 2.1597835491154495e-05,
708
+ "loss": 0.9924,
709
+ "step": 300
710
+ },
711
+ {
712
+ "epoch": 1.0918918918918918,
713
+ "grad_norm": 3.209752499479298,
714
+ "learning_rate": 2.1447177995010024e-05,
715
+ "loss": 1.0114,
716
+ "step": 303
717
+ },
718
+ {
719
+ "epoch": 1.1027027027027028,
720
+ "grad_norm": 2.9188122615255487,
721
+ "learning_rate": 2.1295718462620383e-05,
722
+ "loss": 0.9348,
723
+ "step": 306
724
+ },
725
+ {
726
+ "epoch": 1.1135135135135135,
727
+ "grad_norm": 3.2169410708018464,
728
+ "learning_rate": 2.1143475735722965e-05,
729
+ "loss": 0.9456,
730
+ "step": 309
731
+ },
732
+ {
733
+ "epoch": 1.1243243243243244,
734
+ "grad_norm": 3.2550857985332815,
735
+ "learning_rate": 2.099046875348543e-05,
736
+ "loss": 0.9704,
737
+ "step": 312
738
+ },
739
+ {
740
+ "epoch": 1.135135135135135,
741
+ "grad_norm": 3.200798957813093,
742
+ "learning_rate": 2.0836716550149685e-05,
743
+ "loss": 1.0187,
744
+ "step": 315
745
+ },
746
+ {
747
+ "epoch": 1.145945945945946,
748
+ "grad_norm": 3.026699827485341,
749
+ "learning_rate": 2.068223825266397e-05,
750
+ "loss": 0.9959,
751
+ "step": 318
752
+ },
753
+ {
754
+ "epoch": 1.1567567567567567,
755
+ "grad_norm": 2.966340597816754,
756
+ "learning_rate": 2.0527053078303463e-05,
757
+ "loss": 0.9672,
758
+ "step": 321
759
+ },
760
+ {
761
+ "epoch": 1.1675675675675676,
762
+ "grad_norm": 3.4796215218810578,
763
+ "learning_rate": 2.0371180332279642e-05,
764
+ "loss": 0.9631,
765
+ "step": 324
766
+ },
767
+ {
768
+ "epoch": 1.1783783783783783,
769
+ "grad_norm": 2.9446475013457203,
770
+ "learning_rate": 2.0214639405338653e-05,
771
+ "loss": 0.9922,
772
+ "step": 327
773
+ },
774
+ {
775
+ "epoch": 1.1891891891891893,
776
+ "grad_norm": 3.0107017661224447,
777
+ "learning_rate": 2.0057449771349123e-05,
778
+ "loss": 0.9846,
779
+ "step": 330
780
+ },
781
+ {
782
+ "epoch": 1.2,
783
+ "grad_norm": 3.1589173902147203,
784
+ "learning_rate": 1.989963098487957e-05,
785
+ "loss": 0.9945,
786
+ "step": 333
787
+ },
788
+ {
789
+ "epoch": 1.2108108108108109,
790
+ "grad_norm": 3.291095419768011,
791
+ "learning_rate": 1.9741202678765785e-05,
792
+ "loss": 1.0006,
793
+ "step": 336
794
+ },
795
+ {
796
+ "epoch": 1.2216216216216216,
797
+ "grad_norm": 3.0439357766975768,
798
+ "learning_rate": 1.9582184561668496e-05,
799
+ "loss": 1.0247,
800
+ "step": 339
801
+ },
802
+ {
803
+ "epoch": 1.2324324324324325,
804
+ "grad_norm": 2.7398517472244133,
805
+ "learning_rate": 1.942259641562159e-05,
806
+ "loss": 1.0129,
807
+ "step": 342
808
+ },
809
+ {
810
+ "epoch": 1.2432432432432432,
811
+ "grad_norm": 3.0466059717106098,
812
+ "learning_rate": 1.9262458093571193e-05,
813
+ "loss": 1.0257,
814
+ "step": 345
815
+ },
816
+ {
817
+ "epoch": 1.2540540540540541,
818
+ "grad_norm": 2.8458132575753714,
819
+ "learning_rate": 1.9101789516905953e-05,
820
+ "loss": 0.9715,
821
+ "step": 348
822
+ },
823
+ {
824
+ "epoch": 1.2648648648648648,
825
+ "grad_norm": 2.8328426905654656,
826
+ "learning_rate": 1.8940610672978803e-05,
827
+ "loss": 0.961,
828
+ "step": 351
829
+ },
830
+ {
831
+ "epoch": 1.2756756756756757,
832
+ "grad_norm": 3.030835646521939,
833
+ "learning_rate": 1.8778941612620482e-05,
834
+ "loss": 0.9884,
835
+ "step": 354
836
+ },
837
+ {
838
+ "epoch": 1.2864864864864864,
839
+ "grad_norm": 2.8633899892085024,
840
+ "learning_rate": 1.8616802447645223e-05,
841
+ "loss": 0.9937,
842
+ "step": 357
843
+ },
844
+ {
845
+ "epoch": 1.2972972972972974,
846
+ "grad_norm": 3.338996158976475,
847
+ "learning_rate": 1.8454213348348797e-05,
848
+ "loss": 0.9809,
849
+ "step": 360
850
+ },
851
+ {
852
+ "epoch": 1.308108108108108,
853
+ "grad_norm": 2.924814513226331,
854
+ "learning_rate": 1.8291194540999322e-05,
855
+ "loss": 0.9526,
856
+ "step": 363
857
+ },
858
+ {
859
+ "epoch": 1.318918918918919,
860
+ "grad_norm": 3.090470952947,
861
+ "learning_rate": 1.8127766305321072e-05,
862
+ "loss": 0.9912,
863
+ "step": 366
864
+ },
865
+ {
866
+ "epoch": 1.3297297297297297,
867
+ "grad_norm": 2.9540976533352867,
868
+ "learning_rate": 1.7963948971971686e-05,
869
+ "loss": 0.9725,
870
+ "step": 369
871
+ },
872
+ {
873
+ "epoch": 1.3405405405405406,
874
+ "grad_norm": 2.9280101457384986,
875
+ "learning_rate": 1.7799762920012982e-05,
876
+ "loss": 0.9508,
877
+ "step": 372
878
+ },
879
+ {
880
+ "epoch": 1.3513513513513513,
881
+ "grad_norm": 3.129222083901634,
882
+ "learning_rate": 1.763522857437579e-05,
883
+ "loss": 0.9952,
884
+ "step": 375
885
+ },
886
+ {
887
+ "epoch": 1.3621621621621622,
888
+ "grad_norm": 3.3207813445482315,
889
+ "learning_rate": 1.747036640331908e-05,
890
+ "loss": 0.9778,
891
+ "step": 378
892
+ },
893
+ {
894
+ "epoch": 1.372972972972973,
895
+ "grad_norm": 2.941815984953935,
896
+ "learning_rate": 1.7305196915883662e-05,
897
+ "loss": 0.9922,
898
+ "step": 381
899
+ },
900
+ {
901
+ "epoch": 1.3837837837837839,
902
+ "grad_norm": 3.1943275224301475,
903
+ "learning_rate": 1.713974065934086e-05,
904
+ "loss": 0.9738,
905
+ "step": 384
906
+ },
907
+ {
908
+ "epoch": 1.3945945945945946,
909
+ "grad_norm": 2.9545782873135478,
910
+ "learning_rate": 1.6974018216636394e-05,
911
+ "loss": 0.9712,
912
+ "step": 387
913
+ },
914
+ {
915
+ "epoch": 1.4054054054054055,
916
+ "grad_norm": 2.832796057451163,
917
+ "learning_rate": 1.6808050203829845e-05,
918
+ "loss": 1.0121,
919
+ "step": 390
920
+ },
921
+ {
922
+ "epoch": 1.4162162162162162,
923
+ "grad_norm": 3.2139763823586196,
924
+ "learning_rate": 1.6641857267530003e-05,
925
+ "loss": 0.9702,
926
+ "step": 393
927
+ },
928
+ {
929
+ "epoch": 1.427027027027027,
930
+ "grad_norm": 3.3210065946822827,
931
+ "learning_rate": 1.6475460082326377e-05,
932
+ "loss": 1.0018,
933
+ "step": 396
934
+ },
935
+ {
936
+ "epoch": 1.4378378378378378,
937
+ "grad_norm": 3.166940843865695,
938
+ "learning_rate": 1.6308879348217293e-05,
939
+ "loss": 0.9959,
940
+ "step": 399
941
+ },
942
+ {
943
+ "epoch": 1.4486486486486487,
944
+ "grad_norm": 3.1486302485385878,
945
+ "learning_rate": 1.6142135788034743e-05,
946
+ "loss": 0.9477,
947
+ "step": 402
948
+ },
949
+ {
950
+ "epoch": 1.4594594594594594,
951
+ "grad_norm": 3.1328749208815547,
952
+ "learning_rate": 1.5975250144866492e-05,
953
+ "loss": 0.9854,
954
+ "step": 405
955
+ },
956
+ {
957
+ "epoch": 1.4702702702702704,
958
+ "grad_norm": 2.9503463010514035,
959
+ "learning_rate": 1.5808243179475568e-05,
960
+ "loss": 1.0001,
961
+ "step": 408
962
+ },
963
+ {
964
+ "epoch": 1.481081081081081,
965
+ "grad_norm": 2.8925905903725355,
966
+ "learning_rate": 1.564113566771764e-05,
967
+ "loss": 0.9475,
968
+ "step": 411
969
+ },
970
+ {
971
+ "epoch": 1.491891891891892,
972
+ "grad_norm": 3.2184062381528196,
973
+ "learning_rate": 1.547394839795645e-05,
974
+ "loss": 0.9862,
975
+ "step": 414
976
+ },
977
+ {
978
+ "epoch": 1.5027027027027027,
979
+ "grad_norm": 3.0205819182026077,
980
+ "learning_rate": 1.530670216847772e-05,
981
+ "loss": 0.9689,
982
+ "step": 417
983
+ },
984
+ {
985
+ "epoch": 1.5135135135135136,
986
+ "grad_norm": 2.886699137488658,
987
+ "learning_rate": 1.5139417784901836e-05,
988
+ "loss": 0.9578,
989
+ "step": 420
990
+ },
991
+ {
992
+ "epoch": 1.5243243243243243,
993
+ "grad_norm": 3.0019029659558494,
994
+ "learning_rate": 1.4972116057595592e-05,
995
+ "loss": 0.9526,
996
+ "step": 423
997
+ },
998
+ {
999
+ "epoch": 1.535135135135135,
1000
+ "grad_norm": 3.141168035086649,
1001
+ "learning_rate": 1.480481779908337e-05,
1002
+ "loss": 0.9621,
1003
+ "step": 426
1004
+ },
1005
+ {
1006
+ "epoch": 1.545945945945946,
1007
+ "grad_norm": 2.842053920465437,
1008
+ "learning_rate": 1.463754382145802e-05,
1009
+ "loss": 0.9821,
1010
+ "step": 429
1011
+ },
1012
+ {
1013
+ "epoch": 1.5567567567567568,
1014
+ "grad_norm": 3.220671922556498,
1015
+ "learning_rate": 1.4470314933791828e-05,
1016
+ "loss": 0.9547,
1017
+ "step": 432
1018
+ },
1019
+ {
1020
+ "epoch": 1.5675675675675675,
1021
+ "grad_norm": 2.9122625506605586,
1022
+ "learning_rate": 1.430315193954783e-05,
1023
+ "loss": 0.9678,
1024
+ "step": 435
1025
+ },
1026
+ {
1027
+ "epoch": 1.5783783783783782,
1028
+ "grad_norm": 2.6568836209674274,
1029
+ "learning_rate": 1.4136075633991864e-05,
1030
+ "loss": 0.9566,
1031
+ "step": 438
1032
+ },
1033
+ {
1034
+ "epoch": 1.5891891891891892,
1035
+ "grad_norm": 2.7282858715379077,
1036
+ "learning_rate": 1.3969106801605577e-05,
1037
+ "loss": 0.9195,
1038
+ "step": 441
1039
+ },
1040
+ {
1041
+ "epoch": 1.6,
1042
+ "grad_norm": 2.602059773028646,
1043
+ "learning_rate": 1.3802266213500843e-05,
1044
+ "loss": 0.955,
1045
+ "step": 444
1046
+ },
1047
+ {
1048
+ "epoch": 1.6108108108108108,
1049
+ "grad_norm": 3.3786673839231423,
1050
+ "learning_rate": 1.3635574624835798e-05,
1051
+ "loss": 0.9645,
1052
+ "step": 447
1053
+ },
1054
+ {
1055
+ "epoch": 1.6216216216216215,
1056
+ "grad_norm": 2.6986089589909,
1057
+ "learning_rate": 1.3469052772232874e-05,
1058
+ "loss": 0.98,
1059
+ "step": 450
1060
+ },
1061
+ {
1062
+ "epoch": 1.6324324324324324,
1063
+ "grad_norm": 2.89235283174837,
1064
+ "learning_rate": 1.3302721371199165e-05,
1065
+ "loss": 0.9588,
1066
+ "step": 453
1067
+ },
1068
+ {
1069
+ "epoch": 1.6432432432432433,
1070
+ "grad_norm": 2.935829812088402,
1071
+ "learning_rate": 1.3136601113549349e-05,
1072
+ "loss": 0.9354,
1073
+ "step": 456
1074
+ },
1075
+ {
1076
+ "epoch": 1.654054054054054,
1077
+ "grad_norm": 2.737725384464134,
1078
+ "learning_rate": 1.2970712664831644e-05,
1079
+ "loss": 0.9574,
1080
+ "step": 459
1081
+ },
1082
+ {
1083
+ "epoch": 1.6648648648648647,
1084
+ "grad_norm": 2.867513411111901,
1085
+ "learning_rate": 1.2805076661756965e-05,
1086
+ "loss": 0.9446,
1087
+ "step": 462
1088
+ },
1089
+ {
1090
+ "epoch": 1.6756756756756757,
1091
+ "grad_norm": 2.787422977164954,
1092
+ "learning_rate": 1.2639713709631709e-05,
1093
+ "loss": 0.9558,
1094
+ "step": 465
1095
+ },
1096
+ {
1097
+ "epoch": 1.6864864864864866,
1098
+ "grad_norm": 2.9076119130942026,
1099
+ "learning_rate": 1.2474644379794421e-05,
1100
+ "loss": 0.9286,
1101
+ "step": 468
1102
+ },
1103
+ {
1104
+ "epoch": 1.6972972972972973,
1105
+ "grad_norm": 2.826910897786021,
1106
+ "learning_rate": 1.2309889207056708e-05,
1107
+ "loss": 0.9556,
1108
+ "step": 471
1109
+ },
1110
+ {
1111
+ "epoch": 1.708108108108108,
1112
+ "grad_norm": 3.027330313518151,
1113
+ "learning_rate": 1.2145468687148672e-05,
1114
+ "loss": 0.9157,
1115
+ "step": 474
1116
+ },
1117
+ {
1118
+ "epoch": 1.718918918918919,
1119
+ "grad_norm": 2.870766642781988,
1120
+ "learning_rate": 1.1981403274169219e-05,
1121
+ "loss": 0.9708,
1122
+ "step": 477
1123
+ },
1124
+ {
1125
+ "epoch": 1.7297297297297298,
1126
+ "grad_norm": 2.745031713488,
1127
+ "learning_rate": 1.1817713378041568e-05,
1128
+ "loss": 0.9404,
1129
+ "step": 480
1130
+ },
1131
+ {
1132
+ "epoch": 1.7405405405405405,
1133
+ "grad_norm": 2.8171111310049506,
1134
+ "learning_rate": 1.1654419361974195e-05,
1135
+ "loss": 0.9423,
1136
+ "step": 483
1137
+ },
1138
+ {
1139
+ "epoch": 1.7513513513513512,
1140
+ "grad_norm": 2.8549039042787503,
1141
+ "learning_rate": 1.1491541539927668e-05,
1142
+ "loss": 0.951,
1143
+ "step": 486
1144
+ },
1145
+ {
1146
+ "epoch": 1.7621621621621621,
1147
+ "grad_norm": 2.664120980356897,
1148
+ "learning_rate": 1.1329100174087534e-05,
1149
+ "loss": 0.9287,
1150
+ "step": 489
1151
+ },
1152
+ {
1153
+ "epoch": 1.772972972972973,
1154
+ "grad_norm": 2.7039305514008096,
1155
+ "learning_rate": 1.1167115472343693e-05,
1156
+ "loss": 0.9584,
1157
+ "step": 492
1158
+ },
1159
+ {
1160
+ "epoch": 1.7837837837837838,
1161
+ "grad_norm": 2.6778342659825025,
1162
+ "learning_rate": 1.1005607585776527e-05,
1163
+ "loss": 0.9151,
1164
+ "step": 495
1165
+ },
1166
+ {
1167
+ "epoch": 1.7945945945945945,
1168
+ "grad_norm": 2.6005910068753857,
1169
+ "learning_rate": 1.0844596606150055e-05,
1170
+ "loss": 0.9501,
1171
+ "step": 498
1172
+ },
1173
+ {
1174
+ "epoch": 1.8054054054054054,
1175
+ "grad_norm": 2.6765741105098364,
1176
+ "learning_rate": 1.0684102563412519e-05,
1177
+ "loss": 0.931,
1178
+ "step": 501
1179
+ },
1180
+ {
1181
+ "epoch": 1.8162162162162163,
1182
+ "grad_norm": 2.811327607536862,
1183
+ "learning_rate": 1.0524145423204623e-05,
1184
+ "loss": 0.9793,
1185
+ "step": 504
1186
+ },
1187
+ {
1188
+ "epoch": 1.827027027027027,
1189
+ "grad_norm": 2.92527323842401,
1190
+ "learning_rate": 1.036474508437579e-05,
1191
+ "loss": 0.9776,
1192
+ "step": 507
1193
+ },
1194
+ {
1195
+ "epoch": 1.8378378378378377,
1196
+ "grad_norm": 2.789416429817517,
1197
+ "learning_rate": 1.020592137650872e-05,
1198
+ "loss": 0.947,
1199
+ "step": 510
1200
+ },
1201
+ {
1202
+ "epoch": 1.8486486486486486,
1203
+ "grad_norm": 2.754589393028259,
1204
+ "learning_rate": 1.004769405745257e-05,
1205
+ "loss": 0.9685,
1206
+ "step": 513
1207
+ },
1208
+ {
1209
+ "epoch": 1.8594594594594596,
1210
+ "grad_norm": 2.593923465827381,
1211
+ "learning_rate": 9.890082810865046e-06,
1212
+ "loss": 0.9317,
1213
+ "step": 516
1214
+ },
1215
+ {
1216
+ "epoch": 1.8702702702702703,
1217
+ "grad_norm": 3.005765748087634,
1218
+ "learning_rate": 9.733107243763754e-06,
1219
+ "loss": 0.9612,
1220
+ "step": 519
1221
+ },
1222
+ {
1223
+ "epoch": 1.881081081081081,
1224
+ "grad_norm": 2.6391444135921462,
1225
+ "learning_rate": 9.576786884087037e-06,
1226
+ "loss": 0.9431,
1227
+ "step": 522
1228
+ },
1229
+ {
1230
+ "epoch": 1.8918918918918919,
1231
+ "grad_norm": 2.7958859686864823,
1232
+ "learning_rate": 9.421141178264702e-06,
1233
+ "loss": 0.9473,
1234
+ "step": 525
1235
+ },
1236
+ {
1237
+ "epoch": 1.9027027027027028,
1238
+ "grad_norm": 2.8853568858381746,
1239
+ "learning_rate": 9.266189488798854e-06,
1240
+ "loss": 0.9404,
1241
+ "step": 528
1242
+ },
1243
+ {
1244
+ "epoch": 1.9135135135135135,
1245
+ "grad_norm": 3.011863176958825,
1246
+ "learning_rate": 9.111951091855164e-06,
1247
+ "loss": 0.9424,
1248
+ "step": 531
1249
+ },
1250
+ {
1251
+ "epoch": 1.9243243243243242,
1252
+ "grad_norm": 2.624513223364359,
1253
+ "learning_rate": 8.95844517486492e-06,
1254
+ "loss": 0.9404,
1255
+ "step": 534
1256
+ },
1257
+ {
1258
+ "epoch": 1.9351351351351351,
1259
+ "grad_norm": 2.629936136635792,
1260
+ "learning_rate": 8.805690834138076e-06,
1261
+ "loss": 0.9588,
1262
+ "step": 537
1263
+ },
1264
+ {
1265
+ "epoch": 1.945945945945946,
1266
+ "grad_norm": 2.8522026479916023,
1267
+ "learning_rate": 8.65370707248763e-06,
1268
+ "loss": 0.9339,
1269
+ "step": 540
1270
+ },
1271
+ {
1272
+ "epoch": 1.9567567567567568,
1273
+ "grad_norm": 3.097766550094928,
1274
+ "learning_rate": 8.502512796865686e-06,
1275
+ "loss": 0.9394,
1276
+ "step": 543
1277
+ },
1278
+ {
1279
+ "epoch": 1.9675675675675675,
1280
+ "grad_norm": 2.749849929848188,
1281
+ "learning_rate": 8.352126816011382e-06,
1282
+ "loss": 0.9402,
1283
+ "step": 546
1284
+ },
1285
+ {
1286
+ "epoch": 1.9783783783783784,
1287
+ "grad_norm": 2.792496713680321,
1288
+ "learning_rate": 8.202567838111078e-06,
1289
+ "loss": 0.9403,
1290
+ "step": 549
1291
+ },
1292
+ {
1293
+ "epoch": 1.9891891891891893,
1294
+ "grad_norm": 2.742908628148625,
1295
+ "learning_rate": 8.053854468471025e-06,
1296
+ "loss": 0.9475,
1297
+ "step": 552
1298
+ },
1299
+ {
1300
+ "epoch": 2.0,
1301
+ "grad_norm": 2.80461985695162,
1302
+ "learning_rate": 7.906005207202852e-06,
1303
+ "loss": 0.9251,
1304
+ "step": 555
1305
+ },
1306
+ {
1307
+ "epoch": 2.0108108108108107,
1308
+ "grad_norm": 2.712256627105201,
1309
+ "learning_rate": 7.75903844692212e-06,
1310
+ "loss": 0.4979,
1311
+ "step": 558
1312
+ },
1313
+ {
1314
+ "epoch": 2.0216216216216214,
1315
+ "grad_norm": 2.2575975329190823,
1316
+ "learning_rate": 7.61297247046029e-06,
1317
+ "loss": 0.4357,
1318
+ "step": 561
1319
+ },
1320
+ {
1321
+ "epoch": 2.0324324324324325,
1322
+ "grad_norm": 2.8247101377056865,
1323
+ "learning_rate": 7.4678254485902675e-06,
1324
+ "loss": 0.4334,
1325
+ "step": 564
1326
+ },
1327
+ {
1328
+ "epoch": 2.0432432432432432,
1329
+ "grad_norm": 2.588953106795816,
1330
+ "learning_rate": 7.3236154377659825e-06,
1331
+ "loss": 0.4327,
1332
+ "step": 567
1333
+ },
1334
+ {
1335
+ "epoch": 2.054054054054054,
1336
+ "grad_norm": 2.2112157456197807,
1337
+ "learning_rate": 7.180360377876125e-06,
1338
+ "loss": 0.4301,
1339
+ "step": 570
1340
+ },
1341
+ {
1342
+ "epoch": 2.064864864864865,
1343
+ "grad_norm": 2.1916524154888903,
1344
+ "learning_rate": 7.038078090012406e-06,
1345
+ "loss": 0.4254,
1346
+ "step": 573
1347
+ },
1348
+ {
1349
+ "epoch": 2.075675675675676,
1350
+ "grad_norm": 2.092153236540328,
1351
+ "learning_rate": 6.896786274252595e-06,
1352
+ "loss": 0.4066,
1353
+ "step": 576
1354
+ },
1355
+ {
1356
+ "epoch": 2.0864864864864865,
1357
+ "grad_norm": 2.1223817949774033,
1358
+ "learning_rate": 6.7565025074586145e-06,
1359
+ "loss": 0.4018,
1360
+ "step": 579
1361
+ },
1362
+ {
1363
+ "epoch": 2.097297297297297,
1364
+ "grad_norm": 1.975599624746057,
1365
+ "learning_rate": 6.617244241089947e-06,
1366
+ "loss": 0.3899,
1367
+ "step": 582
1368
+ },
1369
+ {
1370
+ "epoch": 2.108108108108108,
1371
+ "grad_norm": 1.8893909454422486,
1372
+ "learning_rate": 6.479028799032664e-06,
1373
+ "loss": 0.397,
1374
+ "step": 585
1375
+ },
1376
+ {
1377
+ "epoch": 2.118918918918919,
1378
+ "grad_norm": 1.875678473328706,
1379
+ "learning_rate": 6.3418733754443136e-06,
1380
+ "loss": 0.407,
1381
+ "step": 588
1382
+ },
1383
+ {
1384
+ "epoch": 2.1297297297297297,
1385
+ "grad_norm": 2.210895295229888,
1386
+ "learning_rate": 6.205795032614943e-06,
1387
+ "loss": 0.4039,
1388
+ "step": 591
1389
+ },
1390
+ {
1391
+ "epoch": 2.1405405405405404,
1392
+ "grad_norm": 2.2866290593300573,
1393
+ "learning_rate": 6.07081069884453e-06,
1394
+ "loss": 0.3975,
1395
+ "step": 594
1396
+ },
1397
+ {
1398
+ "epoch": 2.1513513513513516,
1399
+ "grad_norm": 2.169724698947998,
1400
+ "learning_rate": 5.936937166337093e-06,
1401
+ "loss": 0.404,
1402
+ "step": 597
1403
+ },
1404
+ {
1405
+ "epoch": 2.1621621621621623,
1406
+ "grad_norm": 2.5885052465204503,
1407
+ "learning_rate": 5.804191089111711e-06,
1408
+ "loss": 0.4137,
1409
+ "step": 600
1410
+ },
1411
+ {
1412
+ "epoch": 2.172972972972973,
1413
+ "grad_norm": 2.1184895283704273,
1414
+ "learning_rate": 5.6725889809307486e-06,
1415
+ "loss": 0.4069,
1416
+ "step": 603
1417
+ },
1418
+ {
1419
+ "epoch": 2.1837837837837837,
1420
+ "grad_norm": 2.055767847916725,
1421
+ "learning_rate": 5.5421472132455285e-06,
1422
+ "loss": 0.4309,
1423
+ "step": 606
1424
+ },
1425
+ {
1426
+ "epoch": 2.1945945945945944,
1427
+ "grad_norm": 1.9387007802838037,
1428
+ "learning_rate": 5.412882013159697e-06,
1429
+ "loss": 0.3989,
1430
+ "step": 609
1431
+ },
1432
+ {
1433
+ "epoch": 2.2054054054054055,
1434
+ "grad_norm": 1.9041479568200537,
1435
+ "learning_rate": 5.284809461410556e-06,
1436
+ "loss": 0.4013,
1437
+ "step": 612
1438
+ },
1439
+ {
1440
+ "epoch": 2.2162162162162162,
1441
+ "grad_norm": 2.0548881191902018,
1442
+ "learning_rate": 5.157945490368621e-06,
1443
+ "loss": 0.4205,
1444
+ "step": 615
1445
+ },
1446
+ {
1447
+ "epoch": 2.227027027027027,
1448
+ "grad_norm": 2.0831599061407204,
1449
+ "learning_rate": 5.03230588205558e-06,
1450
+ "loss": 0.4122,
1451
+ "step": 618
1452
+ },
1453
+ {
1454
+ "epoch": 2.237837837837838,
1455
+ "grad_norm": 1.971310383757786,
1456
+ "learning_rate": 4.907906266181014e-06,
1457
+ "loss": 0.3837,
1458
+ "step": 621
1459
+ },
1460
+ {
1461
+ "epoch": 2.2486486486486488,
1462
+ "grad_norm": 1.977557211024187,
1463
+ "learning_rate": 4.784762118198041e-06,
1464
+ "loss": 0.3981,
1465
+ "step": 624
1466
+ },
1467
+ {
1468
+ "epoch": 2.2594594594594595,
1469
+ "grad_norm": 1.9559375507208316,
1470
+ "learning_rate": 4.66288875737816e-06,
1471
+ "loss": 0.4094,
1472
+ "step": 627
1473
+ },
1474
+ {
1475
+ "epoch": 2.27027027027027,
1476
+ "grad_norm": 1.9123345255397275,
1477
+ "learning_rate": 4.542301344905496e-06,
1478
+ "loss": 0.3863,
1479
+ "step": 630
1480
+ },
1481
+ {
1482
+ "epoch": 2.281081081081081,
1483
+ "grad_norm": 1.8524912274987262,
1484
+ "learning_rate": 4.423014881990751e-06,
1485
+ "loss": 0.3908,
1486
+ "step": 633
1487
+ },
1488
+ {
1489
+ "epoch": 2.291891891891892,
1490
+ "grad_norm": 2.0911936019239246,
1491
+ "learning_rate": 4.305044208005023e-06,
1492
+ "loss": 0.4167,
1493
+ "step": 636
1494
+ },
1495
+ {
1496
+ "epoch": 2.3027027027027027,
1497
+ "grad_norm": 1.9050565892596198,
1498
+ "learning_rate": 4.188403998633775e-06,
1499
+ "loss": 0.3955,
1500
+ "step": 639
1501
+ },
1502
+ {
1503
+ "epoch": 2.3135135135135134,
1504
+ "grad_norm": 1.8967742593703636,
1505
+ "learning_rate": 4.0731087640511735e-06,
1506
+ "loss": 0.4163,
1507
+ "step": 642
1508
+ },
1509
+ {
1510
+ "epoch": 2.3243243243243246,
1511
+ "grad_norm": 2.051977219640454,
1512
+ "learning_rate": 3.959172847114991e-06,
1513
+ "loss": 0.4024,
1514
+ "step": 645
1515
+ },
1516
+ {
1517
+ "epoch": 2.3351351351351353,
1518
+ "grad_norm": 2.0012355554132792,
1519
+ "learning_rate": 3.846610421582349e-06,
1520
+ "loss": 0.4157,
1521
+ "step": 648
1522
+ },
1523
+ {
1524
+ "epoch": 2.345945945945946,
1525
+ "grad_norm": 2.175698094340077,
1526
+ "learning_rate": 3.7354354903464793e-06,
1527
+ "loss": 0.4024,
1528
+ "step": 651
1529
+ },
1530
+ {
1531
+ "epoch": 2.3567567567567567,
1532
+ "grad_norm": 2.0526759215687362,
1533
+ "learning_rate": 3.625661883694753e-06,
1534
+ "loss": 0.3939,
1535
+ "step": 654
1536
+ },
1537
+ {
1538
+ "epoch": 2.3675675675675674,
1539
+ "grad_norm": 1.960306969771245,
1540
+ "learning_rate": 3.5173032575881768e-06,
1541
+ "loss": 0.4074,
1542
+ "step": 657
1543
+ },
1544
+ {
1545
+ "epoch": 2.3783783783783785,
1546
+ "grad_norm": 2.1570885212061826,
1547
+ "learning_rate": 3.4103730919625753e-06,
1548
+ "loss": 0.3976,
1549
+ "step": 660
1550
+ },
1551
+ {
1552
+ "epoch": 2.389189189189189,
1553
+ "grad_norm": 1.8949986677811612,
1554
+ "learning_rate": 3.3048846890516658e-06,
1555
+ "loss": 0.4,
1556
+ "step": 663
1557
+ },
1558
+ {
1559
+ "epoch": 2.4,
1560
+ "grad_norm": 1.982249761308161,
1561
+ "learning_rate": 3.2008511717322593e-06,
1562
+ "loss": 0.4133,
1563
+ "step": 666
1564
+ },
1565
+ {
1566
+ "epoch": 2.410810810810811,
1567
+ "grad_norm": 1.980047898141974,
1568
+ "learning_rate": 3.098285481891745e-06,
1569
+ "loss": 0.3939,
1570
+ "step": 669
1571
+ },
1572
+ {
1573
+ "epoch": 2.4216216216216218,
1574
+ "grad_norm": 2.0049995734478965,
1575
+ "learning_rate": 2.9972003788181146e-06,
1576
+ "loss": 0.3926,
1577
+ "step": 672
1578
+ },
1579
+ {
1580
+ "epoch": 2.4324324324324325,
1581
+ "grad_norm": 1.8400258173639734,
1582
+ "learning_rate": 2.8976084376126848e-06,
1583
+ "loss": 0.3936,
1584
+ "step": 675
1585
+ },
1586
+ {
1587
+ "epoch": 2.443243243243243,
1588
+ "grad_norm": 1.9448462664129043,
1589
+ "learning_rate": 2.7995220476257482e-06,
1590
+ "loss": 0.388,
1591
+ "step": 678
1592
+ },
1593
+ {
1594
+ "epoch": 2.454054054054054,
1595
+ "grad_norm": 1.9031160601187072,
1596
+ "learning_rate": 2.7029534109153186e-06,
1597
+ "loss": 0.3909,
1598
+ "step": 681
1599
+ },
1600
+ {
1601
+ "epoch": 2.464864864864865,
1602
+ "grad_norm": 2.279997846004982,
1603
+ "learning_rate": 2.6079145407291877e-06,
1604
+ "loss": 0.3895,
1605
+ "step": 684
1606
+ },
1607
+ {
1608
+ "epoch": 2.4756756756756757,
1609
+ "grad_norm": 1.8403404089990134,
1610
+ "learning_rate": 2.514417260010455e-06,
1611
+ "loss": 0.3976,
1612
+ "step": 687
1613
+ },
1614
+ {
1615
+ "epoch": 2.4864864864864864,
1616
+ "grad_norm": 1.7969451736164892,
1617
+ "learning_rate": 2.4224731999267425e-06,
1618
+ "loss": 0.3999,
1619
+ "step": 690
1620
+ },
1621
+ {
1622
+ "epoch": 2.4972972972972975,
1623
+ "grad_norm": 1.9253974055183771,
1624
+ "learning_rate": 2.3320937984232664e-06,
1625
+ "loss": 0.3939,
1626
+ "step": 693
1627
+ },
1628
+ {
1629
+ "epoch": 2.5081081081081082,
1630
+ "grad_norm": 1.913704985114193,
1631
+ "learning_rate": 2.243290298799945e-06,
1632
+ "loss": 0.3984,
1633
+ "step": 696
1634
+ },
1635
+ {
1636
+ "epoch": 2.518918918918919,
1637
+ "grad_norm": 1.9790173152408796,
1638
+ "learning_rate": 2.156073748312721e-06,
1639
+ "loss": 0.3819,
1640
+ "step": 699
1641
+ },
1642
+ {
1643
+ "epoch": 2.5297297297297296,
1644
+ "grad_norm": 2.276492968512024,
1645
+ "learning_rate": 2.070454996799261e-06,
1646
+ "loss": 0.4039,
1647
+ "step": 702
1648
+ },
1649
+ {
1650
+ "epoch": 2.5405405405405403,
1651
+ "grad_norm": 1.7739681476430693,
1652
+ "learning_rate": 1.9864446953292313e-06,
1653
+ "loss": 0.3791,
1654
+ "step": 705
1655
+ },
1656
+ {
1657
+ "epoch": 2.5513513513513515,
1658
+ "grad_norm": 2.0336913560870196,
1659
+ "learning_rate": 1.9040532948792934e-06,
1660
+ "loss": 0.3847,
1661
+ "step": 708
1662
+ },
1663
+ {
1664
+ "epoch": 2.562162162162162,
1665
+ "grad_norm": 1.8946193097351467,
1666
+ "learning_rate": 1.8232910450329832e-06,
1667
+ "loss": 0.385,
1668
+ "step": 711
1669
+ },
1670
+ {
1671
+ "epoch": 2.572972972972973,
1672
+ "grad_norm": 1.9817636629737283,
1673
+ "learning_rate": 1.744167992705664e-06,
1674
+ "loss": 0.3914,
1675
+ "step": 714
1676
+ },
1677
+ {
1678
+ "epoch": 2.583783783783784,
1679
+ "grad_norm": 1.8202147731376643,
1680
+ "learning_rate": 1.6666939808946619e-06,
1681
+ "loss": 0.377,
1682
+ "step": 717
1683
+ },
1684
+ {
1685
+ "epoch": 2.5945945945945947,
1686
+ "grad_norm": 1.804624257938459,
1687
+ "learning_rate": 1.5908786474548004e-06,
1688
+ "loss": 0.3834,
1689
+ "step": 720
1690
+ },
1691
+ {
1692
+ "epoch": 2.6054054054054054,
1693
+ "grad_norm": 1.9478831371089558,
1694
+ "learning_rate": 1.5167314238994367e-06,
1695
+ "loss": 0.3802,
1696
+ "step": 723
1697
+ },
1698
+ {
1699
+ "epoch": 2.616216216216216,
1700
+ "grad_norm": 1.8418242757562502,
1701
+ "learning_rate": 1.4442615342271625e-06,
1702
+ "loss": 0.3742,
1703
+ "step": 726
1704
+ },
1705
+ {
1706
+ "epoch": 2.627027027027027,
1707
+ "grad_norm": 1.8235265917309187,
1708
+ "learning_rate": 1.3734779937743403e-06,
1709
+ "loss": 0.3763,
1710
+ "step": 729
1711
+ },
1712
+ {
1713
+ "epoch": 2.637837837837838,
1714
+ "grad_norm": 1.8148562882498185,
1715
+ "learning_rate": 1.3043896080935785e-06,
1716
+ "loss": 0.3764,
1717
+ "step": 732
1718
+ },
1719
+ {
1720
+ "epoch": 2.6486486486486487,
1721
+ "grad_norm": 1.9162200026873921,
1722
+ "learning_rate": 1.237004971858307e-06,
1723
+ "loss": 0.4009,
1724
+ "step": 735
1725
+ },
1726
+ {
1727
+ "epoch": 2.6594594594594594,
1728
+ "grad_norm": 1.971484443435529,
1729
+ "learning_rate": 1.1713324677936015e-06,
1730
+ "loss": 0.3894,
1731
+ "step": 738
1732
+ },
1733
+ {
1734
+ "epoch": 2.6702702702702705,
1735
+ "grad_norm": 2.6288039366865883,
1736
+ "learning_rate": 1.1073802656333548e-06,
1737
+ "loss": 0.3736,
1738
+ "step": 741
1739
+ },
1740
+ {
1741
+ "epoch": 2.6810810810810812,
1742
+ "grad_norm": 1.8111148825496188,
1743
+ "learning_rate": 1.0451563211039494e-06,
1744
+ "loss": 0.3996,
1745
+ "step": 744
1746
+ },
1747
+ {
1748
+ "epoch": 2.691891891891892,
1749
+ "grad_norm": 1.7806298978071708,
1750
+ "learning_rate": 9.846683749345648e-07,
1751
+ "loss": 0.383,
1752
+ "step": 747
1753
+ },
1754
+ {
1755
+ "epoch": 2.7027027027027026,
1756
+ "grad_norm": 4.0497002081385185,
1757
+ "learning_rate": 9.25923951894222e-07,
1758
+ "loss": 0.3965,
1759
+ "step": 750
1760
+ },
1761
+ {
1762
+ "epoch": 2.7135135135135133,
1763
+ "grad_norm": 1.8334211425058837,
1764
+ "learning_rate": 8.68930359855683e-07,
1765
+ "loss": 0.3989,
1766
+ "step": 753
1767
+ },
1768
+ {
1769
+ "epoch": 2.7243243243243245,
1770
+ "grad_norm": 1.7500539556657924,
1771
+ "learning_rate": 8.136946888863528e-07,
1772
+ "loss": 0.395,
1773
+ "step": 756
1774
+ },
1775
+ {
1776
+ "epoch": 2.735135135135135,
1777
+ "grad_norm": 1.9130969263501059,
1778
+ "learning_rate": 7.602238103662646e-07,
1779
+ "loss": 0.3853,
1780
+ "step": 759
1781
+ },
1782
+ {
1783
+ "epoch": 2.745945945945946,
1784
+ "grad_norm": 1.8404236110308207,
1785
+ "learning_rate": 7.085243761332738e-07,
1786
+ "loss": 0.393,
1787
+ "step": 762
1788
+ },
1789
+ {
1790
+ "epoch": 2.756756756756757,
1791
+ "grad_norm": 1.7456858490902225,
1792
+ "learning_rate": 6.586028176555536e-07,
1793
+ "loss": 0.3944,
1794
+ "step": 765
1795
+ },
1796
+ {
1797
+ "epoch": 2.7675675675675677,
1798
+ "grad_norm": 1.837065449202062,
1799
+ "learning_rate": 6.104653452315279e-07,
1800
+ "loss": 0.3798,
1801
+ "step": 768
1802
+ },
1803
+ {
1804
+ "epoch": 2.7783783783783784,
1805
+ "grad_norm": 2.3308657348413058,
1806
+ "learning_rate": 5.641179472172875e-07,
1807
+ "loss": 0.3798,
1808
+ "step": 771
1809
+ },
1810
+ {
1811
+ "epoch": 2.789189189189189,
1812
+ "grad_norm": 1.7969746620946272,
1813
+ "learning_rate": 5.195663892816432e-07,
1814
+ "loss": 0.3817,
1815
+ "step": 774
1816
+ },
1817
+ {
1818
+ "epoch": 2.8,
1819
+ "grad_norm": 1.8403934823419463,
1820
+ "learning_rate": 4.768162136888643e-07,
1821
+ "loss": 0.3791,
1822
+ "step": 777
1823
+ },
1824
+ {
1825
+ "epoch": 2.810810810810811,
1826
+ "grad_norm": 1.8084423900988431,
1827
+ "learning_rate": 4.3587273860921985e-07,
1828
+ "loss": 0.3613,
1829
+ "step": 780
1830
+ },
1831
+ {
1832
+ "epoch": 2.8216216216216217,
1833
+ "grad_norm": 1.8704402298319724,
1834
+ "learning_rate": 3.9674105745738155e-07,
1835
+ "loss": 0.3771,
1836
+ "step": 783
1837
+ },
1838
+ {
1839
+ "epoch": 2.8324324324324324,
1840
+ "grad_norm": 1.818023687371634,
1841
+ "learning_rate": 3.594260382588105e-07,
1842
+ "loss": 0.3888,
1843
+ "step": 786
1844
+ },
1845
+ {
1846
+ "epoch": 2.8432432432432435,
1847
+ "grad_norm": 1.8608896733650853,
1848
+ "learning_rate": 3.239323230441615e-07,
1849
+ "loss": 0.3888,
1850
+ "step": 789
1851
+ },
1852
+ {
1853
+ "epoch": 2.854054054054054,
1854
+ "grad_norm": 1.938515453919976,
1855
+ "learning_rate": 2.902643272718086e-07,
1856
+ "loss": 0.4002,
1857
+ "step": 792
1858
+ },
1859
+ {
1860
+ "epoch": 2.864864864864865,
1861
+ "grad_norm": 1.94145103701424,
1862
+ "learning_rate": 2.5842623927856244e-07,
1863
+ "loss": 0.3858,
1864
+ "step": 795
1865
+ },
1866
+ {
1867
+ "epoch": 2.8756756756756756,
1868
+ "grad_norm": 1.7260066637899822,
1869
+ "learning_rate": 2.28422019758629e-07,
1870
+ "loss": 0.3905,
1871
+ "step": 798
1872
+ },
1873
+ {
1874
+ "epoch": 2.8864864864864863,
1875
+ "grad_norm": 1.8230164360318986,
1876
+ "learning_rate": 2.0025540127090513e-07,
1877
+ "loss": 0.3977,
1878
+ "step": 801
1879
+ },
1880
+ {
1881
+ "epoch": 2.8972972972972975,
1882
+ "grad_norm": 1.7780456307114303,
1883
+ "learning_rate": 1.7392988777463202e-07,
1884
+ "loss": 0.3881,
1885
+ "step": 804
1886
+ },
1887
+ {
1888
+ "epoch": 2.908108108108108,
1889
+ "grad_norm": 1.9497490854182644,
1890
+ "learning_rate": 1.4944875419350855e-07,
1891
+ "loss": 0.3797,
1892
+ "step": 807
1893
+ },
1894
+ {
1895
+ "epoch": 2.918918918918919,
1896
+ "grad_norm": 1.6524262781562993,
1897
+ "learning_rate": 1.268150460082823e-07,
1898
+ "loss": 0.3645,
1899
+ "step": 810
1900
+ },
1901
+ {
1902
+ "epoch": 2.92972972972973,
1903
+ "grad_norm": 1.8325737906994488,
1904
+ "learning_rate": 1.0603157887788428e-07,
1905
+ "loss": 0.3574,
1906
+ "step": 813
1907
+ },
1908
+ {
1909
+ "epoch": 2.9405405405405407,
1910
+ "grad_norm": 1.8188448217016162,
1911
+ "learning_rate": 8.710093828917076e-08,
1912
+ "loss": 0.3829,
1913
+ "step": 816
1914
+ },
1915
+ {
1916
+ "epoch": 2.9513513513513514,
1917
+ "grad_norm": 1.774843520134497,
1918
+ "learning_rate": 7.002547923527058e-08,
1919
+ "loss": 0.3945,
1920
+ "step": 819
1921
+ },
1922
+ {
1923
+ "epoch": 2.962162162162162,
1924
+ "grad_norm": 1.7417401019158905,
1925
+ "learning_rate": 5.4807325922632825e-08,
1926
+ "loss": 0.37,
1927
+ "step": 822
1928
+ },
1929
+ {
1930
+ "epoch": 2.972972972972973,
1931
+ "grad_norm": 1.6997699000548114,
1932
+ "learning_rate": 4.14483715067665e-08,
1933
+ "loss": 0.3702,
1934
+ "step": 825
1935
+ },
1936
+ {
1937
+ "epoch": 2.983783783783784,
1938
+ "grad_norm": 1.7185773019727228,
1939
+ "learning_rate": 2.995027785673066e-08,
1940
+ "loss": 0.3829,
1941
+ "step": 828
1942
+ },
1943
+ {
1944
+ "epoch": 2.9945945945945946,
1945
+ "grad_norm": 1.7433824271169698,
1946
+ "learning_rate": 2.0314475348401362e-08,
1947
+ "loss": 0.3777,
1948
+ "step": 831
1949
+ }
1950
+ ],
1951
+ "logging_steps": 3,
1952
+ "max_steps": 845,
1953
+ "num_input_tokens_seen": 0,
1954
+ "num_train_epochs": 4,
1955
+ "save_steps": 833,
1956
+ "stateful_callbacks": {
1957
+ "TrainerControl": {
1958
+ "args": {
1959
+ "should_epoch_stop": false,
1960
+ "should_evaluate": false,
1961
+ "should_log": false,
1962
+ "should_save": true,
1963
+ "should_training_stop": false
1964
+ },
1965
+ "attributes": {}
1966
+ }
1967
+ },
1968
+ "total_flos": 232851391348736.0,
1969
+ "train_batch_size": 1,
1970
+ "trial_name": null,
1971
+ "trial_params": null
1972
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9542b63bd8930ae4e5f7ec4d5bd7a3f040f7b8cb6bfd6948da2ff10488d90d3
3
+ size 7288
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)