yeyongyu
commited on
Commit
β’
214cf2e
1
Parent(s):
e05fc19
add: add model weight files
Browse files- config.json +27 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model-00001-of-00005.safetensors +3 -0
- model-00002-of-00005.safetensors +3 -0
- model-00003-of-00005.safetensors +3 -0
- model-00004-of-00005.safetensors +3 -0
- model-00005-of-00005.safetensors +3 -0
- model.safetensors.index.json +370 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
- trainer_state.json +1972 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/apdcephfs_qy3/share_1443437/nlp_common/LLM_Models/Mistral-Nemo-Instruct-2407",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 5120,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 14336,
|
14 |
+
"max_position_embeddings": 1024000,
|
15 |
+
"model_type": "mistral",
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 40,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.44.0.dev0",
|
25 |
+
"use_cache": false,
|
26 |
+
"vocab_size": 131072
|
27 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.44.0.dev0"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eddbaab0dd87907a3664207ba1d5d44ebd3f567707242fd23794d16385325379
|
3 |
+
size 4865522496
|
model-00002-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:513c8486242d140f97fa1d61980b2f8ccff1da1e2b11daf8cea0dc1437a92e08
|
3 |
+
size 4907529424
|
model-00003-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9478ff981d155ded2d25bf19acbb98d719a618fc7456ce36ce0e8b9b918e0182
|
3 |
+
size 4907529456
|
model-00004-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95b64667576734edac02f7f7c42259933a215fd46414d992e0d6a3ed05543a9b
|
3 |
+
size 4907529456
|
model-00005-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22747854662c5c6b165b3017acfd73f1a66e165884fa7dbdca1b726fadc624b6
|
3 |
+
size 4907496272
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 24495564800
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00005-of-00005.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00005.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
368 |
+
"model.norm.weight": "model-00005-of-00005.safetensors"
|
369 |
+
}
|
370 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36d2a2034ebb05cb71c510897f2795b31164e50f17b270bc25d2be3ad9a17b22
|
3 |
+
size 15984
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:060dfdb1c49102cbdc8868a6031e68787601b4ccd782f3fb9b137e20c1fd2c7a
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af01895cb66e616591f2e4baa8dcd8151530eab133c73571ccb31c74f35422ce
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:677921992b1e0cef3aee776f245975003d22f51d9bd6ed20f248ded1deb72fa9
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d69353c629541c690c5471f8ec05fdab2bfecf3d37afaa436bc45939da6db68f
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e40ba6668cc03c9162c68a933d164bf38ae2d196a9a6fec03ae615491201185
|
3 |
+
size 15984
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:870968fea834e24b2e099cf3e4fe1e3fb8caf38d8f8e5b790d7d47386d4d05f5
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9e19618bee7c6ef43256fea25abe19bca88535eb1e7dc213cde8929ae4e8180
|
3 |
+
size 15984
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc9dbe3641a6ae5b4c7bb59a1b47c80bf7d86a0f2ae513de42b04233e8400d76
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
@@ -0,0 +1,1972 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.001801801801802,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 833,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.010810810810810811,
|
13 |
+
"grad_norm": 44.04393707727108,
|
14 |
+
"learning_rate": 2.9999066991504905e-05,
|
15 |
+
"loss": 2.3711,
|
16 |
+
"step": 3
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.021621621621621623,
|
20 |
+
"grad_norm": 31.04171552882201,
|
21 |
+
"learning_rate": 2.9996268082086924e-05,
|
22 |
+
"loss": 4.159,
|
23 |
+
"step": 6
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.032432432432432434,
|
27 |
+
"grad_norm": 11.54576214967521,
|
28 |
+
"learning_rate": 2.9991603619933566e-05,
|
29 |
+
"loss": 1.9733,
|
30 |
+
"step": 9
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.043243243243243246,
|
34 |
+
"grad_norm": 7.08841552325599,
|
35 |
+
"learning_rate": 2.9985074185309204e-05,
|
36 |
+
"loss": 1.7978,
|
37 |
+
"step": 12
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.05405405405405406,
|
41 |
+
"grad_norm": 5.949508626432288,
|
42 |
+
"learning_rate": 2.99766805904829e-05,
|
43 |
+
"loss": 1.7347,
|
44 |
+
"step": 15
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.06486486486486487,
|
48 |
+
"grad_norm": 6.168616775238258,
|
49 |
+
"learning_rate": 2.9966423879627356e-05,
|
50 |
+
"loss": 1.6033,
|
51 |
+
"step": 18
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07567567567567568,
|
55 |
+
"grad_norm": 5.728079542384497,
|
56 |
+
"learning_rate": 2.9954305328689024e-05,
|
57 |
+
"loss": 1.7134,
|
58 |
+
"step": 21
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.08648648648648649,
|
62 |
+
"grad_norm": 6.284326561040228,
|
63 |
+
"learning_rate": 2.9940326445229367e-05,
|
64 |
+
"loss": 1.6933,
|
65 |
+
"step": 24
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.0972972972972973,
|
69 |
+
"grad_norm": 6.92658975011714,
|
70 |
+
"learning_rate": 2.9924488968237316e-05,
|
71 |
+
"loss": 1.5923,
|
72 |
+
"step": 27
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.10810810810810811,
|
76 |
+
"grad_norm": 6.538508694879061,
|
77 |
+
"learning_rate": 2.9906794867912953e-05,
|
78 |
+
"loss": 1.6931,
|
79 |
+
"step": 30
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.11891891891891893,
|
83 |
+
"grad_norm": 4.685530306007965,
|
84 |
+
"learning_rate": 2.98872463454224e-05,
|
85 |
+
"loss": 1.6559,
|
86 |
+
"step": 33
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.12972972972972974,
|
90 |
+
"grad_norm": 5.65503266442286,
|
91 |
+
"learning_rate": 2.9865845832623993e-05,
|
92 |
+
"loss": 1.6982,
|
93 |
+
"step": 36
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.14054054054054055,
|
97 |
+
"grad_norm": 4.886380857119004,
|
98 |
+
"learning_rate": 2.9842595991765766e-05,
|
99 |
+
"loss": 1.6503,
|
100 |
+
"step": 39
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.15135135135135136,
|
104 |
+
"grad_norm": 5.026086310034092,
|
105 |
+
"learning_rate": 2.981749971515426e-05,
|
106 |
+
"loss": 1.632,
|
107 |
+
"step": 42
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.16216216216216217,
|
111 |
+
"grad_norm": 4.795570770299284,
|
112 |
+
"learning_rate": 2.9790560124794702e-05,
|
113 |
+
"loss": 1.6824,
|
114 |
+
"step": 45
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.17297297297297298,
|
118 |
+
"grad_norm": 4.756143563325781,
|
119 |
+
"learning_rate": 2.976178057200266e-05,
|
120 |
+
"loss": 1.6694,
|
121 |
+
"step": 48
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.1837837837837838,
|
125 |
+
"grad_norm": 5.364943432581566,
|
126 |
+
"learning_rate": 2.9731164636987088e-05,
|
127 |
+
"loss": 1.6659,
|
128 |
+
"step": 51
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1945945945945946,
|
132 |
+
"grad_norm": 5.181051766279552,
|
133 |
+
"learning_rate": 2.9698716128404985e-05,
|
134 |
+
"loss": 1.6443,
|
135 |
+
"step": 54
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.20540540540540542,
|
139 |
+
"grad_norm": 4.828479392346181,
|
140 |
+
"learning_rate": 2.9664439082887568e-05,
|
141 |
+
"loss": 1.6519,
|
142 |
+
"step": 57
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.21621621621621623,
|
146 |
+
"grad_norm": 5.824361936201152,
|
147 |
+
"learning_rate": 2.9628337764538135e-05,
|
148 |
+
"loss": 1.6532,
|
149 |
+
"step": 60
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.22702702702702704,
|
153 |
+
"grad_norm": 6.393887712988006,
|
154 |
+
"learning_rate": 2.9590416664401566e-05,
|
155 |
+
"loss": 1.6409,
|
156 |
+
"step": 63
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.23783783783783785,
|
160 |
+
"grad_norm": 5.8650966692501765,
|
161 |
+
"learning_rate": 2.955068049990568e-05,
|
162 |
+
"loss": 1.6105,
|
163 |
+
"step": 66
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.24864864864864866,
|
167 |
+
"grad_norm": 4.755849083042293,
|
168 |
+
"learning_rate": 2.9509134214274343e-05,
|
169 |
+
"loss": 1.6618,
|
170 |
+
"step": 69
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2594594594594595,
|
174 |
+
"grad_norm": 3.9789106042521962,
|
175 |
+
"learning_rate": 2.9465782975912553e-05,
|
176 |
+
"loss": 1.6645,
|
177 |
+
"step": 72
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.2702702702702703,
|
181 |
+
"grad_norm": 4.592578050100414,
|
182 |
+
"learning_rate": 2.942063217776346e-05,
|
183 |
+
"loss": 1.605,
|
184 |
+
"step": 75
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.2810810810810811,
|
188 |
+
"grad_norm": 4.299733571350802,
|
189 |
+
"learning_rate": 2.9373687436637492e-05,
|
190 |
+
"loss": 1.6233,
|
191 |
+
"step": 78
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.2918918918918919,
|
195 |
+
"grad_norm": 4.585181401202116,
|
196 |
+
"learning_rate": 2.9324954592513626e-05,
|
197 |
+
"loss": 1.6587,
|
198 |
+
"step": 81
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.3027027027027027,
|
202 |
+
"grad_norm": 4.530135718622418,
|
203 |
+
"learning_rate": 2.927443970781287e-05,
|
204 |
+
"loss": 1.6333,
|
205 |
+
"step": 84
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.31351351351351353,
|
209 |
+
"grad_norm": 5.349009947479682,
|
210 |
+
"learning_rate": 2.9222149066644088e-05,
|
211 |
+
"loss": 1.6431,
|
212 |
+
"step": 87
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.32432432432432434,
|
216 |
+
"grad_norm": 4.266181060344957,
|
217 |
+
"learning_rate": 2.916808917402228e-05,
|
218 |
+
"loss": 1.598,
|
219 |
+
"step": 90
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.33513513513513515,
|
223 |
+
"grad_norm": 4.628674419343668,
|
224 |
+
"learning_rate": 2.911226675505932e-05,
|
225 |
+
"loss": 1.6375,
|
226 |
+
"step": 93
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.34594594594594597,
|
230 |
+
"grad_norm": 5.058644550344611,
|
231 |
+
"learning_rate": 2.905468875412735e-05,
|
232 |
+
"loss": 1.6427,
|
233 |
+
"step": 96
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.3567567567567568,
|
237 |
+
"grad_norm": 4.417115318512762,
|
238 |
+
"learning_rate": 2.8995362333994906e-05,
|
239 |
+
"loss": 1.6333,
|
240 |
+
"step": 99
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.3675675675675676,
|
244 |
+
"grad_norm": 4.0811273644284345,
|
245 |
+
"learning_rate": 2.8934294874935848e-05,
|
246 |
+
"loss": 1.5855,
|
247 |
+
"step": 102
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.3783783783783784,
|
251 |
+
"grad_norm": 3.962543949681069,
|
252 |
+
"learning_rate": 2.887149397381126e-05,
|
253 |
+
"loss": 1.6171,
|
254 |
+
"step": 105
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.3891891891891892,
|
258 |
+
"grad_norm": 3.934001274285887,
|
259 |
+
"learning_rate": 2.8806967443124372e-05,
|
260 |
+
"loss": 1.5538,
|
261 |
+
"step": 108
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.4,
|
265 |
+
"grad_norm": 4.891305018487301,
|
266 |
+
"learning_rate": 2.8740723310048682e-05,
|
267 |
+
"loss": 1.6476,
|
268 |
+
"step": 111
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.41081081081081083,
|
272 |
+
"grad_norm": 4.553656766898869,
|
273 |
+
"learning_rate": 2.8672769815429385e-05,
|
274 |
+
"loss": 1.5889,
|
275 |
+
"step": 114
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.42162162162162165,
|
279 |
+
"grad_norm": 4.450034079395778,
|
280 |
+
"learning_rate": 2.860311541275818e-05,
|
281 |
+
"loss": 1.5896,
|
282 |
+
"step": 117
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.43243243243243246,
|
286 |
+
"grad_norm": 3.9485209950285274,
|
287 |
+
"learning_rate": 2.8531768767121656e-05,
|
288 |
+
"loss": 1.6198,
|
289 |
+
"step": 120
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.44324324324324327,
|
293 |
+
"grad_norm": 4.35512448284715,
|
294 |
+
"learning_rate": 2.845873875412335e-05,
|
295 |
+
"loss": 1.6443,
|
296 |
+
"step": 123
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.4540540540540541,
|
300 |
+
"grad_norm": 4.651266887881564,
|
301 |
+
"learning_rate": 2.838403445877958e-05,
|
302 |
+
"loss": 1.6542,
|
303 |
+
"step": 126
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.4648648648648649,
|
307 |
+
"grad_norm": 4.5294288157069,
|
308 |
+
"learning_rate": 2.8307665174389323e-05,
|
309 |
+
"loss": 1.655,
|
310 |
+
"step": 129
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.4756756756756757,
|
314 |
+
"grad_norm": 4.104985239339571,
|
315 |
+
"learning_rate": 2.822964040137805e-05,
|
316 |
+
"loss": 1.6827,
|
317 |
+
"step": 132
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.4864864864864865,
|
321 |
+
"grad_norm": 3.7948515475231286,
|
322 |
+
"learning_rate": 2.8149969846115894e-05,
|
323 |
+
"loss": 1.6333,
|
324 |
+
"step": 135
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.4972972972972973,
|
328 |
+
"grad_norm": 4.449225329061536,
|
329 |
+
"learning_rate": 2.8068663419710182e-05,
|
330 |
+
"loss": 1.6185,
|
331 |
+
"step": 138
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.5081081081081081,
|
335 |
+
"grad_norm": 4.391987231579949,
|
336 |
+
"learning_rate": 2.7985731236772448e-05,
|
337 |
+
"loss": 1.6078,
|
338 |
+
"step": 141
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.518918918918919,
|
342 |
+
"grad_norm": 4.982415169833182,
|
343 |
+
"learning_rate": 2.7901183614160185e-05,
|
344 |
+
"loss": 1.6529,
|
345 |
+
"step": 144
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.5297297297297298,
|
349 |
+
"grad_norm": 4.176595151214056,
|
350 |
+
"learning_rate": 2.7815031069693412e-05,
|
351 |
+
"loss": 1.6073,
|
352 |
+
"step": 147
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.5405405405405406,
|
356 |
+
"grad_norm": 4.3206148554703105,
|
357 |
+
"learning_rate": 2.7727284320846246e-05,
|
358 |
+
"loss": 1.5561,
|
359 |
+
"step": 150
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.5513513513513514,
|
363 |
+
"grad_norm": 4.424758608775709,
|
364 |
+
"learning_rate": 2.7637954283413632e-05,
|
365 |
+
"loss": 1.6253,
|
366 |
+
"step": 153
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.5621621621621622,
|
370 |
+
"grad_norm": 5.349711813640235,
|
371 |
+
"learning_rate": 2.75470520701534e-05,
|
372 |
+
"loss": 1.7059,
|
373 |
+
"step": 156
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.572972972972973,
|
377 |
+
"grad_norm": 4.578654891344146,
|
378 |
+
"learning_rate": 2.7454588989403858e-05,
|
379 |
+
"loss": 1.6107,
|
380 |
+
"step": 159
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.5837837837837838,
|
384 |
+
"grad_norm": 40.22880683574773,
|
385 |
+
"learning_rate": 2.7360576543676972e-05,
|
386 |
+
"loss": 1.6278,
|
387 |
+
"step": 162
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.5945945945945946,
|
391 |
+
"grad_norm": 4.155039894851776,
|
392 |
+
"learning_rate": 2.7265026428227476e-05,
|
393 |
+
"loss": 1.6301,
|
394 |
+
"step": 165
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.6054054054054054,
|
398 |
+
"grad_norm": 4.159866031946415,
|
399 |
+
"learning_rate": 2.7167950529597963e-05,
|
400 |
+
"loss": 1.5342,
|
401 |
+
"step": 168
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.6162162162162163,
|
405 |
+
"grad_norm": 4.087141493968059,
|
406 |
+
"learning_rate": 2.706936092414018e-05,
|
407 |
+
"loss": 1.6033,
|
408 |
+
"step": 171
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.6270270270270271,
|
412 |
+
"grad_norm": 3.825646270675215,
|
413 |
+
"learning_rate": 2.696926987651271e-05,
|
414 |
+
"loss": 1.5288,
|
415 |
+
"step": 174
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.6378378378378379,
|
419 |
+
"grad_norm": 3.917523159059879,
|
420 |
+
"learning_rate": 2.686768983815526e-05,
|
421 |
+
"loss": 1.6363,
|
422 |
+
"step": 177
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.6486486486486487,
|
426 |
+
"grad_norm": 4.202629239471907,
|
427 |
+
"learning_rate": 2.676463344573965e-05,
|
428 |
+
"loss": 1.6052,
|
429 |
+
"step": 180
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.6594594594594595,
|
433 |
+
"grad_norm": 3.6368092847747304,
|
434 |
+
"learning_rate": 2.666011351959783e-05,
|
435 |
+
"loss": 1.6309,
|
436 |
+
"step": 183
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.6702702702702703,
|
440 |
+
"grad_norm": 4.253168243144118,
|
441 |
+
"learning_rate": 2.6554143062126995e-05,
|
442 |
+
"loss": 1.5592,
|
443 |
+
"step": 186
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.6810810810810811,
|
447 |
+
"grad_norm": 4.995354779998164,
|
448 |
+
"learning_rate": 2.6446735256172092e-05,
|
449 |
+
"loss": 1.6303,
|
450 |
+
"step": 189
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.6918918918918919,
|
454 |
+
"grad_norm": 4.421549411402136,
|
455 |
+
"learning_rate": 2.6337903463385836e-05,
|
456 |
+
"loss": 1.5769,
|
457 |
+
"step": 192
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.7027027027027027,
|
461 |
+
"grad_norm": 4.32615026522547,
|
462 |
+
"learning_rate": 2.6227661222566516e-05,
|
463 |
+
"loss": 1.613,
|
464 |
+
"step": 195
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.7135135135135136,
|
468 |
+
"grad_norm": 3.8575639988103836,
|
469 |
+
"learning_rate": 2.6116022247973773e-05,
|
470 |
+
"loss": 1.5844,
|
471 |
+
"step": 198
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.7243243243243244,
|
475 |
+
"grad_norm": 3.7279832633133028,
|
476 |
+
"learning_rate": 2.6003000427622484e-05,
|
477 |
+
"loss": 1.5301,
|
478 |
+
"step": 201
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.7351351351351352,
|
482 |
+
"grad_norm": 4.190711163922663,
|
483 |
+
"learning_rate": 2.5888609821555127e-05,
|
484 |
+
"loss": 1.592,
|
485 |
+
"step": 204
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.745945945945946,
|
489 |
+
"grad_norm": 4.733000892445367,
|
490 |
+
"learning_rate": 2.577286466009266e-05,
|
491 |
+
"loss": 1.6574,
|
492 |
+
"step": 207
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.7567567567567568,
|
496 |
+
"grad_norm": 4.577219211132897,
|
497 |
+
"learning_rate": 2.5655779342064276e-05,
|
498 |
+
"loss": 1.6289,
|
499 |
+
"step": 210
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.7675675675675676,
|
503 |
+
"grad_norm": 4.048131970531039,
|
504 |
+
"learning_rate": 2.553736843301615e-05,
|
505 |
+
"loss": 1.6169,
|
506 |
+
"step": 213
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.7783783783783784,
|
510 |
+
"grad_norm": 4.018546715630257,
|
511 |
+
"learning_rate": 2.5417646663399502e-05,
|
512 |
+
"loss": 1.5489,
|
513 |
+
"step": 216
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.7891891891891892,
|
517 |
+
"grad_norm": 3.7010313992210992,
|
518 |
+
"learning_rate": 2.529662892673806e-05,
|
519 |
+
"loss": 1.5596,
|
520 |
+
"step": 219
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.8,
|
524 |
+
"grad_norm": 4.557965597883243,
|
525 |
+
"learning_rate": 2.5174330277775354e-05,
|
526 |
+
"loss": 1.6145,
|
527 |
+
"step": 222
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.8108108108108109,
|
531 |
+
"grad_norm": 4.181549208740728,
|
532 |
+
"learning_rate": 2.5050765930601836e-05,
|
533 |
+
"loss": 1.5339,
|
534 |
+
"step": 225
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.8216216216216217,
|
538 |
+
"grad_norm": 3.7892758830012823,
|
539 |
+
"learning_rate": 2.4925951256762254e-05,
|
540 |
+
"loss": 1.5862,
|
541 |
+
"step": 228
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.8324324324324325,
|
545 |
+
"grad_norm": 3.6130747678919666,
|
546 |
+
"learning_rate": 2.4799901783343407e-05,
|
547 |
+
"loss": 1.4857,
|
548 |
+
"step": 231
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.8432432432432433,
|
552 |
+
"grad_norm": 3.639537345617851,
|
553 |
+
"learning_rate": 2.467263319104256e-05,
|
554 |
+
"loss": 1.5902,
|
555 |
+
"step": 234
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.8540540540540541,
|
559 |
+
"grad_norm": 4.0474919753332035,
|
560 |
+
"learning_rate": 2.4544161312216752e-05,
|
561 |
+
"loss": 1.5395,
|
562 |
+
"step": 237
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.8648648648648649,
|
566 |
+
"grad_norm": 3.800979434984059,
|
567 |
+
"learning_rate": 2.441450212891323e-05,
|
568 |
+
"loss": 1.5284,
|
569 |
+
"step": 240
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.8756756756756757,
|
573 |
+
"grad_norm": 3.3611120493742983,
|
574 |
+
"learning_rate": 2.4283671770881256e-05,
|
575 |
+
"loss": 1.515,
|
576 |
+
"step": 243
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.8864864864864865,
|
580 |
+
"grad_norm": 3.459228078638404,
|
581 |
+
"learning_rate": 2.415168651356556e-05,
|
582 |
+
"loss": 1.5745,
|
583 |
+
"step": 246
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.8972972972972973,
|
587 |
+
"grad_norm": 3.6185129562881513,
|
588 |
+
"learning_rate": 2.4018562776081643e-05,
|
589 |
+
"loss": 1.5989,
|
590 |
+
"step": 249
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.9081081081081082,
|
594 |
+
"grad_norm": 4.499909371969758,
|
595 |
+
"learning_rate": 2.388431711917324e-05,
|
596 |
+
"loss": 1.5609,
|
597 |
+
"step": 252
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.918918918918919,
|
601 |
+
"grad_norm": 3.6576864938242832,
|
602 |
+
"learning_rate": 2.3748966243152127e-05,
|
603 |
+
"loss": 1.5623,
|
604 |
+
"step": 255
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.9297297297297298,
|
608 |
+
"grad_norm": 4.261199238023545,
|
609 |
+
"learning_rate": 2.3612526985820586e-05,
|
610 |
+
"loss": 1.5523,
|
611 |
+
"step": 258
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.9405405405405406,
|
615 |
+
"grad_norm": 4.730374719738293,
|
616 |
+
"learning_rate": 2.347501632037678e-05,
|
617 |
+
"loss": 1.5813,
|
618 |
+
"step": 261
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.9513513513513514,
|
622 |
+
"grad_norm": 3.7110704143642503,
|
623 |
+
"learning_rate": 2.333645135330324e-05,
|
624 |
+
"loss": 1.4888,
|
625 |
+
"step": 264
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.9621621621621622,
|
629 |
+
"grad_norm": 3.481005791064881,
|
630 |
+
"learning_rate": 2.3196849322238816e-05,
|
631 |
+
"loss": 1.6186,
|
632 |
+
"step": 267
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.972972972972973,
|
636 |
+
"grad_norm": 3.9410070667987913,
|
637 |
+
"learning_rate": 2.3056227593834306e-05,
|
638 |
+
"loss": 1.5343,
|
639 |
+
"step": 270
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.9837837837837838,
|
643 |
+
"grad_norm": 3.73687483401855,
|
644 |
+
"learning_rate": 2.291460366159199e-05,
|
645 |
+
"loss": 1.527,
|
646 |
+
"step": 273
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.9945945945945946,
|
650 |
+
"grad_norm": 3.636935348418019,
|
651 |
+
"learning_rate": 2.277199514368947e-05,
|
652 |
+
"loss": 1.5228,
|
653 |
+
"step": 276
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.0054054054054054,
|
657 |
+
"grad_norm": 3.5028224113856457,
|
658 |
+
"learning_rate": 2.2628419780787887e-05,
|
659 |
+
"loss": 1.3043,
|
660 |
+
"step": 279
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.0162162162162163,
|
664 |
+
"grad_norm": 3.2714761796276455,
|
665 |
+
"learning_rate": 2.2483895433825023e-05,
|
666 |
+
"loss": 1.0507,
|
667 |
+
"step": 282
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.027027027027027,
|
671 |
+
"grad_norm": 3.180825722720309,
|
672 |
+
"learning_rate": 2.2338440081793332e-05,
|
673 |
+
"loss": 1.0155,
|
674 |
+
"step": 285
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.037837837837838,
|
678 |
+
"grad_norm": 2.9167211293609894,
|
679 |
+
"learning_rate": 2.2192071819503365e-05,
|
680 |
+
"loss": 1.0087,
|
681 |
+
"step": 288
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.0486486486486486,
|
685 |
+
"grad_norm": 3.1930797413555077,
|
686 |
+
"learning_rate": 2.2044808855332743e-05,
|
687 |
+
"loss": 0.9847,
|
688 |
+
"step": 291
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.0594594594594595,
|
692 |
+
"grad_norm": 3.0743072086936474,
|
693 |
+
"learning_rate": 2.1896669508961002e-05,
|
694 |
+
"loss": 1.0024,
|
695 |
+
"step": 294
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 1.0702702702702702,
|
699 |
+
"grad_norm": 3.3931402915538613,
|
700 |
+
"learning_rate": 2.1747672209090627e-05,
|
701 |
+
"loss": 1.0063,
|
702 |
+
"step": 297
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 1.0810810810810811,
|
706 |
+
"grad_norm": 3.427840497426894,
|
707 |
+
"learning_rate": 2.1597835491154495e-05,
|
708 |
+
"loss": 0.9924,
|
709 |
+
"step": 300
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 1.0918918918918918,
|
713 |
+
"grad_norm": 3.209752499479298,
|
714 |
+
"learning_rate": 2.1447177995010024e-05,
|
715 |
+
"loss": 1.0114,
|
716 |
+
"step": 303
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.1027027027027028,
|
720 |
+
"grad_norm": 2.9188122615255487,
|
721 |
+
"learning_rate": 2.1295718462620383e-05,
|
722 |
+
"loss": 0.9348,
|
723 |
+
"step": 306
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.1135135135135135,
|
727 |
+
"grad_norm": 3.2169410708018464,
|
728 |
+
"learning_rate": 2.1143475735722965e-05,
|
729 |
+
"loss": 0.9456,
|
730 |
+
"step": 309
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.1243243243243244,
|
734 |
+
"grad_norm": 3.2550857985332815,
|
735 |
+
"learning_rate": 2.099046875348543e-05,
|
736 |
+
"loss": 0.9704,
|
737 |
+
"step": 312
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.135135135135135,
|
741 |
+
"grad_norm": 3.200798957813093,
|
742 |
+
"learning_rate": 2.0836716550149685e-05,
|
743 |
+
"loss": 1.0187,
|
744 |
+
"step": 315
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.145945945945946,
|
748 |
+
"grad_norm": 3.026699827485341,
|
749 |
+
"learning_rate": 2.068223825266397e-05,
|
750 |
+
"loss": 0.9959,
|
751 |
+
"step": 318
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.1567567567567567,
|
755 |
+
"grad_norm": 2.966340597816754,
|
756 |
+
"learning_rate": 2.0527053078303463e-05,
|
757 |
+
"loss": 0.9672,
|
758 |
+
"step": 321
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.1675675675675676,
|
762 |
+
"grad_norm": 3.4796215218810578,
|
763 |
+
"learning_rate": 2.0371180332279642e-05,
|
764 |
+
"loss": 0.9631,
|
765 |
+
"step": 324
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.1783783783783783,
|
769 |
+
"grad_norm": 2.9446475013457203,
|
770 |
+
"learning_rate": 2.0214639405338653e-05,
|
771 |
+
"loss": 0.9922,
|
772 |
+
"step": 327
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 1.1891891891891893,
|
776 |
+
"grad_norm": 3.0107017661224447,
|
777 |
+
"learning_rate": 2.0057449771349123e-05,
|
778 |
+
"loss": 0.9846,
|
779 |
+
"step": 330
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 1.2,
|
783 |
+
"grad_norm": 3.1589173902147203,
|
784 |
+
"learning_rate": 1.989963098487957e-05,
|
785 |
+
"loss": 0.9945,
|
786 |
+
"step": 333
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 1.2108108108108109,
|
790 |
+
"grad_norm": 3.291095419768011,
|
791 |
+
"learning_rate": 1.9741202678765785e-05,
|
792 |
+
"loss": 1.0006,
|
793 |
+
"step": 336
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.2216216216216216,
|
797 |
+
"grad_norm": 3.0439357766975768,
|
798 |
+
"learning_rate": 1.9582184561668496e-05,
|
799 |
+
"loss": 1.0247,
|
800 |
+
"step": 339
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 1.2324324324324325,
|
804 |
+
"grad_norm": 2.7398517472244133,
|
805 |
+
"learning_rate": 1.942259641562159e-05,
|
806 |
+
"loss": 1.0129,
|
807 |
+
"step": 342
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 1.2432432432432432,
|
811 |
+
"grad_norm": 3.0466059717106098,
|
812 |
+
"learning_rate": 1.9262458093571193e-05,
|
813 |
+
"loss": 1.0257,
|
814 |
+
"step": 345
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 1.2540540540540541,
|
818 |
+
"grad_norm": 2.8458132575753714,
|
819 |
+
"learning_rate": 1.9101789516905953e-05,
|
820 |
+
"loss": 0.9715,
|
821 |
+
"step": 348
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 1.2648648648648648,
|
825 |
+
"grad_norm": 2.8328426905654656,
|
826 |
+
"learning_rate": 1.8940610672978803e-05,
|
827 |
+
"loss": 0.961,
|
828 |
+
"step": 351
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.2756756756756757,
|
832 |
+
"grad_norm": 3.030835646521939,
|
833 |
+
"learning_rate": 1.8778941612620482e-05,
|
834 |
+
"loss": 0.9884,
|
835 |
+
"step": 354
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.2864864864864864,
|
839 |
+
"grad_norm": 2.8633899892085024,
|
840 |
+
"learning_rate": 1.8616802447645223e-05,
|
841 |
+
"loss": 0.9937,
|
842 |
+
"step": 357
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.2972972972972974,
|
846 |
+
"grad_norm": 3.338996158976475,
|
847 |
+
"learning_rate": 1.8454213348348797e-05,
|
848 |
+
"loss": 0.9809,
|
849 |
+
"step": 360
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.308108108108108,
|
853 |
+
"grad_norm": 2.924814513226331,
|
854 |
+
"learning_rate": 1.8291194540999322e-05,
|
855 |
+
"loss": 0.9526,
|
856 |
+
"step": 363
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.318918918918919,
|
860 |
+
"grad_norm": 3.090470952947,
|
861 |
+
"learning_rate": 1.8127766305321072e-05,
|
862 |
+
"loss": 0.9912,
|
863 |
+
"step": 366
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.3297297297297297,
|
867 |
+
"grad_norm": 2.9540976533352867,
|
868 |
+
"learning_rate": 1.7963948971971686e-05,
|
869 |
+
"loss": 0.9725,
|
870 |
+
"step": 369
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.3405405405405406,
|
874 |
+
"grad_norm": 2.9280101457384986,
|
875 |
+
"learning_rate": 1.7799762920012982e-05,
|
876 |
+
"loss": 0.9508,
|
877 |
+
"step": 372
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.3513513513513513,
|
881 |
+
"grad_norm": 3.129222083901634,
|
882 |
+
"learning_rate": 1.763522857437579e-05,
|
883 |
+
"loss": 0.9952,
|
884 |
+
"step": 375
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.3621621621621622,
|
888 |
+
"grad_norm": 3.3207813445482315,
|
889 |
+
"learning_rate": 1.747036640331908e-05,
|
890 |
+
"loss": 0.9778,
|
891 |
+
"step": 378
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.372972972972973,
|
895 |
+
"grad_norm": 2.941815984953935,
|
896 |
+
"learning_rate": 1.7305196915883662e-05,
|
897 |
+
"loss": 0.9922,
|
898 |
+
"step": 381
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.3837837837837839,
|
902 |
+
"grad_norm": 3.1943275224301475,
|
903 |
+
"learning_rate": 1.713974065934086e-05,
|
904 |
+
"loss": 0.9738,
|
905 |
+
"step": 384
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.3945945945945946,
|
909 |
+
"grad_norm": 2.9545782873135478,
|
910 |
+
"learning_rate": 1.6974018216636394e-05,
|
911 |
+
"loss": 0.9712,
|
912 |
+
"step": 387
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.4054054054054055,
|
916 |
+
"grad_norm": 2.832796057451163,
|
917 |
+
"learning_rate": 1.6808050203829845e-05,
|
918 |
+
"loss": 1.0121,
|
919 |
+
"step": 390
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.4162162162162162,
|
923 |
+
"grad_norm": 3.2139763823586196,
|
924 |
+
"learning_rate": 1.6641857267530003e-05,
|
925 |
+
"loss": 0.9702,
|
926 |
+
"step": 393
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.427027027027027,
|
930 |
+
"grad_norm": 3.3210065946822827,
|
931 |
+
"learning_rate": 1.6475460082326377e-05,
|
932 |
+
"loss": 1.0018,
|
933 |
+
"step": 396
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.4378378378378378,
|
937 |
+
"grad_norm": 3.166940843865695,
|
938 |
+
"learning_rate": 1.6308879348217293e-05,
|
939 |
+
"loss": 0.9959,
|
940 |
+
"step": 399
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.4486486486486487,
|
944 |
+
"grad_norm": 3.1486302485385878,
|
945 |
+
"learning_rate": 1.6142135788034743e-05,
|
946 |
+
"loss": 0.9477,
|
947 |
+
"step": 402
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.4594594594594594,
|
951 |
+
"grad_norm": 3.1328749208815547,
|
952 |
+
"learning_rate": 1.5975250144866492e-05,
|
953 |
+
"loss": 0.9854,
|
954 |
+
"step": 405
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.4702702702702704,
|
958 |
+
"grad_norm": 2.9503463010514035,
|
959 |
+
"learning_rate": 1.5808243179475568e-05,
|
960 |
+
"loss": 1.0001,
|
961 |
+
"step": 408
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.481081081081081,
|
965 |
+
"grad_norm": 2.8925905903725355,
|
966 |
+
"learning_rate": 1.564113566771764e-05,
|
967 |
+
"loss": 0.9475,
|
968 |
+
"step": 411
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.491891891891892,
|
972 |
+
"grad_norm": 3.2184062381528196,
|
973 |
+
"learning_rate": 1.547394839795645e-05,
|
974 |
+
"loss": 0.9862,
|
975 |
+
"step": 414
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.5027027027027027,
|
979 |
+
"grad_norm": 3.0205819182026077,
|
980 |
+
"learning_rate": 1.530670216847772e-05,
|
981 |
+
"loss": 0.9689,
|
982 |
+
"step": 417
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.5135135135135136,
|
986 |
+
"grad_norm": 2.886699137488658,
|
987 |
+
"learning_rate": 1.5139417784901836e-05,
|
988 |
+
"loss": 0.9578,
|
989 |
+
"step": 420
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.5243243243243243,
|
993 |
+
"grad_norm": 3.0019029659558494,
|
994 |
+
"learning_rate": 1.4972116057595592e-05,
|
995 |
+
"loss": 0.9526,
|
996 |
+
"step": 423
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.535135135135135,
|
1000 |
+
"grad_norm": 3.141168035086649,
|
1001 |
+
"learning_rate": 1.480481779908337e-05,
|
1002 |
+
"loss": 0.9621,
|
1003 |
+
"step": 426
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.545945945945946,
|
1007 |
+
"grad_norm": 2.842053920465437,
|
1008 |
+
"learning_rate": 1.463754382145802e-05,
|
1009 |
+
"loss": 0.9821,
|
1010 |
+
"step": 429
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.5567567567567568,
|
1014 |
+
"grad_norm": 3.220671922556498,
|
1015 |
+
"learning_rate": 1.4470314933791828e-05,
|
1016 |
+
"loss": 0.9547,
|
1017 |
+
"step": 432
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.5675675675675675,
|
1021 |
+
"grad_norm": 2.9122625506605586,
|
1022 |
+
"learning_rate": 1.430315193954783e-05,
|
1023 |
+
"loss": 0.9678,
|
1024 |
+
"step": 435
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.5783783783783782,
|
1028 |
+
"grad_norm": 2.6568836209674274,
|
1029 |
+
"learning_rate": 1.4136075633991864e-05,
|
1030 |
+
"loss": 0.9566,
|
1031 |
+
"step": 438
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.5891891891891892,
|
1035 |
+
"grad_norm": 2.7282858715379077,
|
1036 |
+
"learning_rate": 1.3969106801605577e-05,
|
1037 |
+
"loss": 0.9195,
|
1038 |
+
"step": 441
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.6,
|
1042 |
+
"grad_norm": 2.602059773028646,
|
1043 |
+
"learning_rate": 1.3802266213500843e-05,
|
1044 |
+
"loss": 0.955,
|
1045 |
+
"step": 444
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.6108108108108108,
|
1049 |
+
"grad_norm": 3.3786673839231423,
|
1050 |
+
"learning_rate": 1.3635574624835798e-05,
|
1051 |
+
"loss": 0.9645,
|
1052 |
+
"step": 447
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.6216216216216215,
|
1056 |
+
"grad_norm": 2.6986089589909,
|
1057 |
+
"learning_rate": 1.3469052772232874e-05,
|
1058 |
+
"loss": 0.98,
|
1059 |
+
"step": 450
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.6324324324324324,
|
1063 |
+
"grad_norm": 2.89235283174837,
|
1064 |
+
"learning_rate": 1.3302721371199165e-05,
|
1065 |
+
"loss": 0.9588,
|
1066 |
+
"step": 453
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.6432432432432433,
|
1070 |
+
"grad_norm": 2.935829812088402,
|
1071 |
+
"learning_rate": 1.3136601113549349e-05,
|
1072 |
+
"loss": 0.9354,
|
1073 |
+
"step": 456
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.654054054054054,
|
1077 |
+
"grad_norm": 2.737725384464134,
|
1078 |
+
"learning_rate": 1.2970712664831644e-05,
|
1079 |
+
"loss": 0.9574,
|
1080 |
+
"step": 459
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.6648648648648647,
|
1084 |
+
"grad_norm": 2.867513411111901,
|
1085 |
+
"learning_rate": 1.2805076661756965e-05,
|
1086 |
+
"loss": 0.9446,
|
1087 |
+
"step": 462
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.6756756756756757,
|
1091 |
+
"grad_norm": 2.787422977164954,
|
1092 |
+
"learning_rate": 1.2639713709631709e-05,
|
1093 |
+
"loss": 0.9558,
|
1094 |
+
"step": 465
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.6864864864864866,
|
1098 |
+
"grad_norm": 2.9076119130942026,
|
1099 |
+
"learning_rate": 1.2474644379794421e-05,
|
1100 |
+
"loss": 0.9286,
|
1101 |
+
"step": 468
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.6972972972972973,
|
1105 |
+
"grad_norm": 2.826910897786021,
|
1106 |
+
"learning_rate": 1.2309889207056708e-05,
|
1107 |
+
"loss": 0.9556,
|
1108 |
+
"step": 471
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.708108108108108,
|
1112 |
+
"grad_norm": 3.027330313518151,
|
1113 |
+
"learning_rate": 1.2145468687148672e-05,
|
1114 |
+
"loss": 0.9157,
|
1115 |
+
"step": 474
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.718918918918919,
|
1119 |
+
"grad_norm": 2.870766642781988,
|
1120 |
+
"learning_rate": 1.1981403274169219e-05,
|
1121 |
+
"loss": 0.9708,
|
1122 |
+
"step": 477
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.7297297297297298,
|
1126 |
+
"grad_norm": 2.745031713488,
|
1127 |
+
"learning_rate": 1.1817713378041568e-05,
|
1128 |
+
"loss": 0.9404,
|
1129 |
+
"step": 480
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.7405405405405405,
|
1133 |
+
"grad_norm": 2.8171111310049506,
|
1134 |
+
"learning_rate": 1.1654419361974195e-05,
|
1135 |
+
"loss": 0.9423,
|
1136 |
+
"step": 483
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.7513513513513512,
|
1140 |
+
"grad_norm": 2.8549039042787503,
|
1141 |
+
"learning_rate": 1.1491541539927668e-05,
|
1142 |
+
"loss": 0.951,
|
1143 |
+
"step": 486
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.7621621621621621,
|
1147 |
+
"grad_norm": 2.664120980356897,
|
1148 |
+
"learning_rate": 1.1329100174087534e-05,
|
1149 |
+
"loss": 0.9287,
|
1150 |
+
"step": 489
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 1.772972972972973,
|
1154 |
+
"grad_norm": 2.7039305514008096,
|
1155 |
+
"learning_rate": 1.1167115472343693e-05,
|
1156 |
+
"loss": 0.9584,
|
1157 |
+
"step": 492
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 1.7837837837837838,
|
1161 |
+
"grad_norm": 2.6778342659825025,
|
1162 |
+
"learning_rate": 1.1005607585776527e-05,
|
1163 |
+
"loss": 0.9151,
|
1164 |
+
"step": 495
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 1.7945945945945945,
|
1168 |
+
"grad_norm": 2.6005910068753857,
|
1169 |
+
"learning_rate": 1.0844596606150055e-05,
|
1170 |
+
"loss": 0.9501,
|
1171 |
+
"step": 498
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 1.8054054054054054,
|
1175 |
+
"grad_norm": 2.6765741105098364,
|
1176 |
+
"learning_rate": 1.0684102563412519e-05,
|
1177 |
+
"loss": 0.931,
|
1178 |
+
"step": 501
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.8162162162162163,
|
1182 |
+
"grad_norm": 2.811327607536862,
|
1183 |
+
"learning_rate": 1.0524145423204623e-05,
|
1184 |
+
"loss": 0.9793,
|
1185 |
+
"step": 504
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.827027027027027,
|
1189 |
+
"grad_norm": 2.92527323842401,
|
1190 |
+
"learning_rate": 1.036474508437579e-05,
|
1191 |
+
"loss": 0.9776,
|
1192 |
+
"step": 507
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.8378378378378377,
|
1196 |
+
"grad_norm": 2.789416429817517,
|
1197 |
+
"learning_rate": 1.020592137650872e-05,
|
1198 |
+
"loss": 0.947,
|
1199 |
+
"step": 510
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 1.8486486486486486,
|
1203 |
+
"grad_norm": 2.754589393028259,
|
1204 |
+
"learning_rate": 1.004769405745257e-05,
|
1205 |
+
"loss": 0.9685,
|
1206 |
+
"step": 513
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 1.8594594594594596,
|
1210 |
+
"grad_norm": 2.593923465827381,
|
1211 |
+
"learning_rate": 9.890082810865046e-06,
|
1212 |
+
"loss": 0.9317,
|
1213 |
+
"step": 516
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 1.8702702702702703,
|
1217 |
+
"grad_norm": 3.005765748087634,
|
1218 |
+
"learning_rate": 9.733107243763754e-06,
|
1219 |
+
"loss": 0.9612,
|
1220 |
+
"step": 519
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.881081081081081,
|
1224 |
+
"grad_norm": 2.6391444135921462,
|
1225 |
+
"learning_rate": 9.576786884087037e-06,
|
1226 |
+
"loss": 0.9431,
|
1227 |
+
"step": 522
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.8918918918918919,
|
1231 |
+
"grad_norm": 2.7958859686864823,
|
1232 |
+
"learning_rate": 9.421141178264702e-06,
|
1233 |
+
"loss": 0.9473,
|
1234 |
+
"step": 525
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.9027027027027028,
|
1238 |
+
"grad_norm": 2.8853568858381746,
|
1239 |
+
"learning_rate": 9.266189488798854e-06,
|
1240 |
+
"loss": 0.9404,
|
1241 |
+
"step": 528
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.9135135135135135,
|
1245 |
+
"grad_norm": 3.011863176958825,
|
1246 |
+
"learning_rate": 9.111951091855164e-06,
|
1247 |
+
"loss": 0.9424,
|
1248 |
+
"step": 531
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.9243243243243242,
|
1252 |
+
"grad_norm": 2.624513223364359,
|
1253 |
+
"learning_rate": 8.95844517486492e-06,
|
1254 |
+
"loss": 0.9404,
|
1255 |
+
"step": 534
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.9351351351351351,
|
1259 |
+
"grad_norm": 2.629936136635792,
|
1260 |
+
"learning_rate": 8.805690834138076e-06,
|
1261 |
+
"loss": 0.9588,
|
1262 |
+
"step": 537
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.945945945945946,
|
1266 |
+
"grad_norm": 2.8522026479916023,
|
1267 |
+
"learning_rate": 8.65370707248763e-06,
|
1268 |
+
"loss": 0.9339,
|
1269 |
+
"step": 540
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.9567567567567568,
|
1273 |
+
"grad_norm": 3.097766550094928,
|
1274 |
+
"learning_rate": 8.502512796865686e-06,
|
1275 |
+
"loss": 0.9394,
|
1276 |
+
"step": 543
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.9675675675675675,
|
1280 |
+
"grad_norm": 2.749849929848188,
|
1281 |
+
"learning_rate": 8.352126816011382e-06,
|
1282 |
+
"loss": 0.9402,
|
1283 |
+
"step": 546
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.9783783783783784,
|
1287 |
+
"grad_norm": 2.792496713680321,
|
1288 |
+
"learning_rate": 8.202567838111078e-06,
|
1289 |
+
"loss": 0.9403,
|
1290 |
+
"step": 549
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.9891891891891893,
|
1294 |
+
"grad_norm": 2.742908628148625,
|
1295 |
+
"learning_rate": 8.053854468471025e-06,
|
1296 |
+
"loss": 0.9475,
|
1297 |
+
"step": 552
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 2.0,
|
1301 |
+
"grad_norm": 2.80461985695162,
|
1302 |
+
"learning_rate": 7.906005207202852e-06,
|
1303 |
+
"loss": 0.9251,
|
1304 |
+
"step": 555
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 2.0108108108108107,
|
1308 |
+
"grad_norm": 2.712256627105201,
|
1309 |
+
"learning_rate": 7.75903844692212e-06,
|
1310 |
+
"loss": 0.4979,
|
1311 |
+
"step": 558
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 2.0216216216216214,
|
1315 |
+
"grad_norm": 2.2575975329190823,
|
1316 |
+
"learning_rate": 7.61297247046029e-06,
|
1317 |
+
"loss": 0.4357,
|
1318 |
+
"step": 561
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 2.0324324324324325,
|
1322 |
+
"grad_norm": 2.8247101377056865,
|
1323 |
+
"learning_rate": 7.4678254485902675e-06,
|
1324 |
+
"loss": 0.4334,
|
1325 |
+
"step": 564
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 2.0432432432432432,
|
1329 |
+
"grad_norm": 2.588953106795816,
|
1330 |
+
"learning_rate": 7.3236154377659825e-06,
|
1331 |
+
"loss": 0.4327,
|
1332 |
+
"step": 567
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 2.054054054054054,
|
1336 |
+
"grad_norm": 2.2112157456197807,
|
1337 |
+
"learning_rate": 7.180360377876125e-06,
|
1338 |
+
"loss": 0.4301,
|
1339 |
+
"step": 570
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 2.064864864864865,
|
1343 |
+
"grad_norm": 2.1916524154888903,
|
1344 |
+
"learning_rate": 7.038078090012406e-06,
|
1345 |
+
"loss": 0.4254,
|
1346 |
+
"step": 573
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 2.075675675675676,
|
1350 |
+
"grad_norm": 2.092153236540328,
|
1351 |
+
"learning_rate": 6.896786274252595e-06,
|
1352 |
+
"loss": 0.4066,
|
1353 |
+
"step": 576
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 2.0864864864864865,
|
1357 |
+
"grad_norm": 2.1223817949774033,
|
1358 |
+
"learning_rate": 6.7565025074586145e-06,
|
1359 |
+
"loss": 0.4018,
|
1360 |
+
"step": 579
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 2.097297297297297,
|
1364 |
+
"grad_norm": 1.975599624746057,
|
1365 |
+
"learning_rate": 6.617244241089947e-06,
|
1366 |
+
"loss": 0.3899,
|
1367 |
+
"step": 582
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 2.108108108108108,
|
1371 |
+
"grad_norm": 1.8893909454422486,
|
1372 |
+
"learning_rate": 6.479028799032664e-06,
|
1373 |
+
"loss": 0.397,
|
1374 |
+
"step": 585
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 2.118918918918919,
|
1378 |
+
"grad_norm": 1.875678473328706,
|
1379 |
+
"learning_rate": 6.3418733754443136e-06,
|
1380 |
+
"loss": 0.407,
|
1381 |
+
"step": 588
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 2.1297297297297297,
|
1385 |
+
"grad_norm": 2.210895295229888,
|
1386 |
+
"learning_rate": 6.205795032614943e-06,
|
1387 |
+
"loss": 0.4039,
|
1388 |
+
"step": 591
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 2.1405405405405404,
|
1392 |
+
"grad_norm": 2.2866290593300573,
|
1393 |
+
"learning_rate": 6.07081069884453e-06,
|
1394 |
+
"loss": 0.3975,
|
1395 |
+
"step": 594
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 2.1513513513513516,
|
1399 |
+
"grad_norm": 2.169724698947998,
|
1400 |
+
"learning_rate": 5.936937166337093e-06,
|
1401 |
+
"loss": 0.404,
|
1402 |
+
"step": 597
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 2.1621621621621623,
|
1406 |
+
"grad_norm": 2.5885052465204503,
|
1407 |
+
"learning_rate": 5.804191089111711e-06,
|
1408 |
+
"loss": 0.4137,
|
1409 |
+
"step": 600
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 2.172972972972973,
|
1413 |
+
"grad_norm": 2.1184895283704273,
|
1414 |
+
"learning_rate": 5.6725889809307486e-06,
|
1415 |
+
"loss": 0.4069,
|
1416 |
+
"step": 603
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 2.1837837837837837,
|
1420 |
+
"grad_norm": 2.055767847916725,
|
1421 |
+
"learning_rate": 5.5421472132455285e-06,
|
1422 |
+
"loss": 0.4309,
|
1423 |
+
"step": 606
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 2.1945945945945944,
|
1427 |
+
"grad_norm": 1.9387007802838037,
|
1428 |
+
"learning_rate": 5.412882013159697e-06,
|
1429 |
+
"loss": 0.3989,
|
1430 |
+
"step": 609
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 2.2054054054054055,
|
1434 |
+
"grad_norm": 1.9041479568200537,
|
1435 |
+
"learning_rate": 5.284809461410556e-06,
|
1436 |
+
"loss": 0.4013,
|
1437 |
+
"step": 612
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 2.2162162162162162,
|
1441 |
+
"grad_norm": 2.0548881191902018,
|
1442 |
+
"learning_rate": 5.157945490368621e-06,
|
1443 |
+
"loss": 0.4205,
|
1444 |
+
"step": 615
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 2.227027027027027,
|
1448 |
+
"grad_norm": 2.0831599061407204,
|
1449 |
+
"learning_rate": 5.03230588205558e-06,
|
1450 |
+
"loss": 0.4122,
|
1451 |
+
"step": 618
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 2.237837837837838,
|
1455 |
+
"grad_norm": 1.971310383757786,
|
1456 |
+
"learning_rate": 4.907906266181014e-06,
|
1457 |
+
"loss": 0.3837,
|
1458 |
+
"step": 621
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 2.2486486486486488,
|
1462 |
+
"grad_norm": 1.977557211024187,
|
1463 |
+
"learning_rate": 4.784762118198041e-06,
|
1464 |
+
"loss": 0.3981,
|
1465 |
+
"step": 624
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 2.2594594594594595,
|
1469 |
+
"grad_norm": 1.9559375507208316,
|
1470 |
+
"learning_rate": 4.66288875737816e-06,
|
1471 |
+
"loss": 0.4094,
|
1472 |
+
"step": 627
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 2.27027027027027,
|
1476 |
+
"grad_norm": 1.9123345255397275,
|
1477 |
+
"learning_rate": 4.542301344905496e-06,
|
1478 |
+
"loss": 0.3863,
|
1479 |
+
"step": 630
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 2.281081081081081,
|
1483 |
+
"grad_norm": 1.8524912274987262,
|
1484 |
+
"learning_rate": 4.423014881990751e-06,
|
1485 |
+
"loss": 0.3908,
|
1486 |
+
"step": 633
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 2.291891891891892,
|
1490 |
+
"grad_norm": 2.0911936019239246,
|
1491 |
+
"learning_rate": 4.305044208005023e-06,
|
1492 |
+
"loss": 0.4167,
|
1493 |
+
"step": 636
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 2.3027027027027027,
|
1497 |
+
"grad_norm": 1.9050565892596198,
|
1498 |
+
"learning_rate": 4.188403998633775e-06,
|
1499 |
+
"loss": 0.3955,
|
1500 |
+
"step": 639
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 2.3135135135135134,
|
1504 |
+
"grad_norm": 1.8967742593703636,
|
1505 |
+
"learning_rate": 4.0731087640511735e-06,
|
1506 |
+
"loss": 0.4163,
|
1507 |
+
"step": 642
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 2.3243243243243246,
|
1511 |
+
"grad_norm": 2.051977219640454,
|
1512 |
+
"learning_rate": 3.959172847114991e-06,
|
1513 |
+
"loss": 0.4024,
|
1514 |
+
"step": 645
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 2.3351351351351353,
|
1518 |
+
"grad_norm": 2.0012355554132792,
|
1519 |
+
"learning_rate": 3.846610421582349e-06,
|
1520 |
+
"loss": 0.4157,
|
1521 |
+
"step": 648
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 2.345945945945946,
|
1525 |
+
"grad_norm": 2.175698094340077,
|
1526 |
+
"learning_rate": 3.7354354903464793e-06,
|
1527 |
+
"loss": 0.4024,
|
1528 |
+
"step": 651
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 2.3567567567567567,
|
1532 |
+
"grad_norm": 2.0526759215687362,
|
1533 |
+
"learning_rate": 3.625661883694753e-06,
|
1534 |
+
"loss": 0.3939,
|
1535 |
+
"step": 654
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 2.3675675675675674,
|
1539 |
+
"grad_norm": 1.960306969771245,
|
1540 |
+
"learning_rate": 3.5173032575881768e-06,
|
1541 |
+
"loss": 0.4074,
|
1542 |
+
"step": 657
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 2.3783783783783785,
|
1546 |
+
"grad_norm": 2.1570885212061826,
|
1547 |
+
"learning_rate": 3.4103730919625753e-06,
|
1548 |
+
"loss": 0.3976,
|
1549 |
+
"step": 660
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 2.389189189189189,
|
1553 |
+
"grad_norm": 1.8949986677811612,
|
1554 |
+
"learning_rate": 3.3048846890516658e-06,
|
1555 |
+
"loss": 0.4,
|
1556 |
+
"step": 663
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 2.4,
|
1560 |
+
"grad_norm": 1.982249761308161,
|
1561 |
+
"learning_rate": 3.2008511717322593e-06,
|
1562 |
+
"loss": 0.4133,
|
1563 |
+
"step": 666
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 2.410810810810811,
|
1567 |
+
"grad_norm": 1.980047898141974,
|
1568 |
+
"learning_rate": 3.098285481891745e-06,
|
1569 |
+
"loss": 0.3939,
|
1570 |
+
"step": 669
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 2.4216216216216218,
|
1574 |
+
"grad_norm": 2.0049995734478965,
|
1575 |
+
"learning_rate": 2.9972003788181146e-06,
|
1576 |
+
"loss": 0.3926,
|
1577 |
+
"step": 672
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 2.4324324324324325,
|
1581 |
+
"grad_norm": 1.8400258173639734,
|
1582 |
+
"learning_rate": 2.8976084376126848e-06,
|
1583 |
+
"loss": 0.3936,
|
1584 |
+
"step": 675
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 2.443243243243243,
|
1588 |
+
"grad_norm": 1.9448462664129043,
|
1589 |
+
"learning_rate": 2.7995220476257482e-06,
|
1590 |
+
"loss": 0.388,
|
1591 |
+
"step": 678
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 2.454054054054054,
|
1595 |
+
"grad_norm": 1.9031160601187072,
|
1596 |
+
"learning_rate": 2.7029534109153186e-06,
|
1597 |
+
"loss": 0.3909,
|
1598 |
+
"step": 681
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 2.464864864864865,
|
1602 |
+
"grad_norm": 2.279997846004982,
|
1603 |
+
"learning_rate": 2.6079145407291877e-06,
|
1604 |
+
"loss": 0.3895,
|
1605 |
+
"step": 684
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 2.4756756756756757,
|
1609 |
+
"grad_norm": 1.8403404089990134,
|
1610 |
+
"learning_rate": 2.514417260010455e-06,
|
1611 |
+
"loss": 0.3976,
|
1612 |
+
"step": 687
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 2.4864864864864864,
|
1616 |
+
"grad_norm": 1.7969451736164892,
|
1617 |
+
"learning_rate": 2.4224731999267425e-06,
|
1618 |
+
"loss": 0.3999,
|
1619 |
+
"step": 690
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 2.4972972972972975,
|
1623 |
+
"grad_norm": 1.9253974055183771,
|
1624 |
+
"learning_rate": 2.3320937984232664e-06,
|
1625 |
+
"loss": 0.3939,
|
1626 |
+
"step": 693
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 2.5081081081081082,
|
1630 |
+
"grad_norm": 1.913704985114193,
|
1631 |
+
"learning_rate": 2.243290298799945e-06,
|
1632 |
+
"loss": 0.3984,
|
1633 |
+
"step": 696
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 2.518918918918919,
|
1637 |
+
"grad_norm": 1.9790173152408796,
|
1638 |
+
"learning_rate": 2.156073748312721e-06,
|
1639 |
+
"loss": 0.3819,
|
1640 |
+
"step": 699
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 2.5297297297297296,
|
1644 |
+
"grad_norm": 2.276492968512024,
|
1645 |
+
"learning_rate": 2.070454996799261e-06,
|
1646 |
+
"loss": 0.4039,
|
1647 |
+
"step": 702
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 2.5405405405405403,
|
1651 |
+
"grad_norm": 1.7739681476430693,
|
1652 |
+
"learning_rate": 1.9864446953292313e-06,
|
1653 |
+
"loss": 0.3791,
|
1654 |
+
"step": 705
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 2.5513513513513515,
|
1658 |
+
"grad_norm": 2.0336913560870196,
|
1659 |
+
"learning_rate": 1.9040532948792934e-06,
|
1660 |
+
"loss": 0.3847,
|
1661 |
+
"step": 708
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 2.562162162162162,
|
1665 |
+
"grad_norm": 1.8946193097351467,
|
1666 |
+
"learning_rate": 1.8232910450329832e-06,
|
1667 |
+
"loss": 0.385,
|
1668 |
+
"step": 711
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 2.572972972972973,
|
1672 |
+
"grad_norm": 1.9817636629737283,
|
1673 |
+
"learning_rate": 1.744167992705664e-06,
|
1674 |
+
"loss": 0.3914,
|
1675 |
+
"step": 714
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 2.583783783783784,
|
1679 |
+
"grad_norm": 1.8202147731376643,
|
1680 |
+
"learning_rate": 1.6666939808946619e-06,
|
1681 |
+
"loss": 0.377,
|
1682 |
+
"step": 717
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 2.5945945945945947,
|
1686 |
+
"grad_norm": 1.804624257938459,
|
1687 |
+
"learning_rate": 1.5908786474548004e-06,
|
1688 |
+
"loss": 0.3834,
|
1689 |
+
"step": 720
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 2.6054054054054054,
|
1693 |
+
"grad_norm": 1.9478831371089558,
|
1694 |
+
"learning_rate": 1.5167314238994367e-06,
|
1695 |
+
"loss": 0.3802,
|
1696 |
+
"step": 723
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 2.616216216216216,
|
1700 |
+
"grad_norm": 1.8418242757562502,
|
1701 |
+
"learning_rate": 1.4442615342271625e-06,
|
1702 |
+
"loss": 0.3742,
|
1703 |
+
"step": 726
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 2.627027027027027,
|
1707 |
+
"grad_norm": 1.8235265917309187,
|
1708 |
+
"learning_rate": 1.3734779937743403e-06,
|
1709 |
+
"loss": 0.3763,
|
1710 |
+
"step": 729
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 2.637837837837838,
|
1714 |
+
"grad_norm": 1.8148562882498185,
|
1715 |
+
"learning_rate": 1.3043896080935785e-06,
|
1716 |
+
"loss": 0.3764,
|
1717 |
+
"step": 732
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 2.6486486486486487,
|
1721 |
+
"grad_norm": 1.9162200026873921,
|
1722 |
+
"learning_rate": 1.237004971858307e-06,
|
1723 |
+
"loss": 0.4009,
|
1724 |
+
"step": 735
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 2.6594594594594594,
|
1728 |
+
"grad_norm": 1.971484443435529,
|
1729 |
+
"learning_rate": 1.1713324677936015e-06,
|
1730 |
+
"loss": 0.3894,
|
1731 |
+
"step": 738
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 2.6702702702702705,
|
1735 |
+
"grad_norm": 2.6288039366865883,
|
1736 |
+
"learning_rate": 1.1073802656333548e-06,
|
1737 |
+
"loss": 0.3736,
|
1738 |
+
"step": 741
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 2.6810810810810812,
|
1742 |
+
"grad_norm": 1.8111148825496188,
|
1743 |
+
"learning_rate": 1.0451563211039494e-06,
|
1744 |
+
"loss": 0.3996,
|
1745 |
+
"step": 744
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 2.691891891891892,
|
1749 |
+
"grad_norm": 1.7806298978071708,
|
1750 |
+
"learning_rate": 9.846683749345648e-07,
|
1751 |
+
"loss": 0.383,
|
1752 |
+
"step": 747
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 2.7027027027027026,
|
1756 |
+
"grad_norm": 4.0497002081385185,
|
1757 |
+
"learning_rate": 9.25923951894222e-07,
|
1758 |
+
"loss": 0.3965,
|
1759 |
+
"step": 750
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 2.7135135135135133,
|
1763 |
+
"grad_norm": 1.8334211425058837,
|
1764 |
+
"learning_rate": 8.68930359855683e-07,
|
1765 |
+
"loss": 0.3989,
|
1766 |
+
"step": 753
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 2.7243243243243245,
|
1770 |
+
"grad_norm": 1.7500539556657924,
|
1771 |
+
"learning_rate": 8.136946888863528e-07,
|
1772 |
+
"loss": 0.395,
|
1773 |
+
"step": 756
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 2.735135135135135,
|
1777 |
+
"grad_norm": 1.9130969263501059,
|
1778 |
+
"learning_rate": 7.602238103662646e-07,
|
1779 |
+
"loss": 0.3853,
|
1780 |
+
"step": 759
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 2.745945945945946,
|
1784 |
+
"grad_norm": 1.8404236110308207,
|
1785 |
+
"learning_rate": 7.085243761332738e-07,
|
1786 |
+
"loss": 0.393,
|
1787 |
+
"step": 762
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 2.756756756756757,
|
1791 |
+
"grad_norm": 1.7456858490902225,
|
1792 |
+
"learning_rate": 6.586028176555536e-07,
|
1793 |
+
"loss": 0.3944,
|
1794 |
+
"step": 765
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 2.7675675675675677,
|
1798 |
+
"grad_norm": 1.837065449202062,
|
1799 |
+
"learning_rate": 6.104653452315279e-07,
|
1800 |
+
"loss": 0.3798,
|
1801 |
+
"step": 768
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 2.7783783783783784,
|
1805 |
+
"grad_norm": 2.3308657348413058,
|
1806 |
+
"learning_rate": 5.641179472172875e-07,
|
1807 |
+
"loss": 0.3798,
|
1808 |
+
"step": 771
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 2.789189189189189,
|
1812 |
+
"grad_norm": 1.7969746620946272,
|
1813 |
+
"learning_rate": 5.195663892816432e-07,
|
1814 |
+
"loss": 0.3817,
|
1815 |
+
"step": 774
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 2.8,
|
1819 |
+
"grad_norm": 1.8403934823419463,
|
1820 |
+
"learning_rate": 4.768162136888643e-07,
|
1821 |
+
"loss": 0.3791,
|
1822 |
+
"step": 777
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 2.810810810810811,
|
1826 |
+
"grad_norm": 1.8084423900988431,
|
1827 |
+
"learning_rate": 4.3587273860921985e-07,
|
1828 |
+
"loss": 0.3613,
|
1829 |
+
"step": 780
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 2.8216216216216217,
|
1833 |
+
"grad_norm": 1.8704402298319724,
|
1834 |
+
"learning_rate": 3.9674105745738155e-07,
|
1835 |
+
"loss": 0.3771,
|
1836 |
+
"step": 783
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 2.8324324324324324,
|
1840 |
+
"grad_norm": 1.818023687371634,
|
1841 |
+
"learning_rate": 3.594260382588105e-07,
|
1842 |
+
"loss": 0.3888,
|
1843 |
+
"step": 786
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 2.8432432432432435,
|
1847 |
+
"grad_norm": 1.8608896733650853,
|
1848 |
+
"learning_rate": 3.239323230441615e-07,
|
1849 |
+
"loss": 0.3888,
|
1850 |
+
"step": 789
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 2.854054054054054,
|
1854 |
+
"grad_norm": 1.938515453919976,
|
1855 |
+
"learning_rate": 2.902643272718086e-07,
|
1856 |
+
"loss": 0.4002,
|
1857 |
+
"step": 792
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 2.864864864864865,
|
1861 |
+
"grad_norm": 1.94145103701424,
|
1862 |
+
"learning_rate": 2.5842623927856244e-07,
|
1863 |
+
"loss": 0.3858,
|
1864 |
+
"step": 795
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 2.8756756756756756,
|
1868 |
+
"grad_norm": 1.7260066637899822,
|
1869 |
+
"learning_rate": 2.28422019758629e-07,
|
1870 |
+
"loss": 0.3905,
|
1871 |
+
"step": 798
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 2.8864864864864863,
|
1875 |
+
"grad_norm": 1.8230164360318986,
|
1876 |
+
"learning_rate": 2.0025540127090513e-07,
|
1877 |
+
"loss": 0.3977,
|
1878 |
+
"step": 801
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 2.8972972972972975,
|
1882 |
+
"grad_norm": 1.7780456307114303,
|
1883 |
+
"learning_rate": 1.7392988777463202e-07,
|
1884 |
+
"loss": 0.3881,
|
1885 |
+
"step": 804
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 2.908108108108108,
|
1889 |
+
"grad_norm": 1.9497490854182644,
|
1890 |
+
"learning_rate": 1.4944875419350855e-07,
|
1891 |
+
"loss": 0.3797,
|
1892 |
+
"step": 807
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 2.918918918918919,
|
1896 |
+
"grad_norm": 1.6524262781562993,
|
1897 |
+
"learning_rate": 1.268150460082823e-07,
|
1898 |
+
"loss": 0.3645,
|
1899 |
+
"step": 810
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 2.92972972972973,
|
1903 |
+
"grad_norm": 1.8325737906994488,
|
1904 |
+
"learning_rate": 1.0603157887788428e-07,
|
1905 |
+
"loss": 0.3574,
|
1906 |
+
"step": 813
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 2.9405405405405407,
|
1910 |
+
"grad_norm": 1.8188448217016162,
|
1911 |
+
"learning_rate": 8.710093828917076e-08,
|
1912 |
+
"loss": 0.3829,
|
1913 |
+
"step": 816
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 2.9513513513513514,
|
1917 |
+
"grad_norm": 1.774843520134497,
|
1918 |
+
"learning_rate": 7.002547923527058e-08,
|
1919 |
+
"loss": 0.3945,
|
1920 |
+
"step": 819
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 2.962162162162162,
|
1924 |
+
"grad_norm": 1.7417401019158905,
|
1925 |
+
"learning_rate": 5.4807325922632825e-08,
|
1926 |
+
"loss": 0.37,
|
1927 |
+
"step": 822
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 2.972972972972973,
|
1931 |
+
"grad_norm": 1.6997699000548114,
|
1932 |
+
"learning_rate": 4.14483715067665e-08,
|
1933 |
+
"loss": 0.3702,
|
1934 |
+
"step": 825
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 2.983783783783784,
|
1938 |
+
"grad_norm": 1.7185773019727228,
|
1939 |
+
"learning_rate": 2.995027785673066e-08,
|
1940 |
+
"loss": 0.3829,
|
1941 |
+
"step": 828
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 2.9945945945945946,
|
1945 |
+
"grad_norm": 1.7433824271169698,
|
1946 |
+
"learning_rate": 2.0314475348401362e-08,
|
1947 |
+
"loss": 0.3777,
|
1948 |
+
"step": 831
|
1949 |
+
}
|
1950 |
+
],
|
1951 |
+
"logging_steps": 3,
|
1952 |
+
"max_steps": 845,
|
1953 |
+
"num_input_tokens_seen": 0,
|
1954 |
+
"num_train_epochs": 4,
|
1955 |
+
"save_steps": 833,
|
1956 |
+
"stateful_callbacks": {
|
1957 |
+
"TrainerControl": {
|
1958 |
+
"args": {
|
1959 |
+
"should_epoch_stop": false,
|
1960 |
+
"should_evaluate": false,
|
1961 |
+
"should_log": false,
|
1962 |
+
"should_save": true,
|
1963 |
+
"should_training_stop": false
|
1964 |
+
},
|
1965 |
+
"attributes": {}
|
1966 |
+
}
|
1967 |
+
},
|
1968 |
+
"total_flos": 232851391348736.0,
|
1969 |
+
"train_batch_size": 1,
|
1970 |
+
"trial_name": null,
|
1971 |
+
"trial_params": null
|
1972 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9542b63bd8930ae4e5f7ec4d5bd7a3f040f7b8cb6bfd6948da2ff10488d90d3
|
3 |
+
size 7288
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|