yeyongyu commited on
Commit
c1d2f20
Β·
1 Parent(s): 8509827

add: add model weight files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/apdcephfs_qy3/share_1443437/nlp_common/LLM_Models/qwen/Qwen2-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": 131072,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.41.2",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.41.2"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:217cc2741ab7512c77f858975269c2761ae05971e8586020e6749e4ba5dcb381
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f635bc78a7a9099fa911f9969a6a1be04ecfaf4188cc00c90164da4c8bf0185d
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ef4937476e8eb86229893b72268c26e28b676e179e8f07b63431447967c2bba
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5889769a9feeda1af7f8dac4cdf3e1af2d48e9d21283433ce72828ed9b52969
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36d2a2034ebb05cb71c510897f2795b31164e50f17b270bc25d2be3ad9a17b22
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:060dfdb1c49102cbdc8868a6031e68787601b4ccd782f3fb9b137e20c1fd2c7a
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af01895cb66e616591f2e4baa8dcd8151530eab133c73571ccb31c74f35422ce
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:677921992b1e0cef3aee776f245975003d22f51d9bd6ed20f248ded1deb72fa9
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d69353c629541c690c5471f8ec05fdab2bfecf3d37afaa436bc45939da6db68f
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e40ba6668cc03c9162c68a933d164bf38ae2d196a9a6fec03ae615491201185
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:870968fea834e24b2e099cf3e4fe1e3fb8caf38d8f8e5b790d7d47386d4d05f5
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9e19618bee7c6ef43256fea25abe19bca88535eb1e7dc213cde8929ae4e8180
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:352ea964838cb4c73533fd678ef15712779c86f713a3f69d2961f73d4ad24fa2
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% set system_message = 'You are a helpful assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 131072,
39
+ "pad_token": "<|endoftext|>",
40
+ "padding_side": "right",
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "Qwen2Tokenizer",
43
+ "unk_token": null
44
+ }
trainer_state.json ADDED
@@ -0,0 +1,1972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.001801801801802,
5
+ "eval_steps": 500,
6
+ "global_step": 833,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.010810810810810811,
13
+ "grad_norm": 12.305854329298121,
14
+ "learning_rate": 2.9999652701989443e-05,
15
+ "loss": 2.4911,
16
+ "step": 3
17
+ },
18
+ {
19
+ "epoch": 0.021621621621621623,
20
+ "grad_norm": 4.240144865945876,
21
+ "learning_rate": 2.9998610824039904e-05,
22
+ "loss": 2.0652,
23
+ "step": 6
24
+ },
25
+ {
26
+ "epoch": 0.032432432432432434,
27
+ "grad_norm": 3.2725279352000864,
28
+ "learning_rate": 2.9996874414396984e-05,
29
+ "loss": 1.9611,
30
+ "step": 9
31
+ },
32
+ {
33
+ "epoch": 0.043243243243243246,
34
+ "grad_norm": 3.303814919197607,
35
+ "learning_rate": 2.9994443553467584e-05,
36
+ "loss": 2.0248,
37
+ "step": 12
38
+ },
39
+ {
40
+ "epoch": 0.05405405405405406,
41
+ "grad_norm": 3.003679341904051,
42
+ "learning_rate": 2.9991318353816112e-05,
43
+ "loss": 1.9903,
44
+ "step": 15
45
+ },
46
+ {
47
+ "epoch": 0.06486486486486487,
48
+ "grad_norm": 2.986093823263424,
49
+ "learning_rate": 2.9987498960159325e-05,
50
+ "loss": 1.8813,
51
+ "step": 18
52
+ },
53
+ {
54
+ "epoch": 0.07567567567567568,
55
+ "grad_norm": 2.790555184817465,
56
+ "learning_rate": 2.99829855493596e-05,
57
+ "loss": 1.976,
58
+ "step": 21
59
+ },
60
+ {
61
+ "epoch": 0.08648648648648649,
62
+ "grad_norm": 2.986932414712697,
63
+ "learning_rate": 2.997777833041674e-05,
64
+ "loss": 1.9653,
65
+ "step": 24
66
+ },
67
+ {
68
+ "epoch": 0.0972972972972973,
69
+ "grad_norm": 2.656324556829213,
70
+ "learning_rate": 2.9971877544458325e-05,
71
+ "loss": 1.8551,
72
+ "step": 27
73
+ },
74
+ {
75
+ "epoch": 0.10810810810810811,
76
+ "grad_norm": 3.2168328469993335,
77
+ "learning_rate": 2.996528346472851e-05,
78
+ "loss": 1.9812,
79
+ "step": 30
80
+ },
81
+ {
82
+ "epoch": 0.11891891891891893,
83
+ "grad_norm": 2.696843177932571,
84
+ "learning_rate": 2.9957996396575407e-05,
85
+ "loss": 1.9728,
86
+ "step": 33
87
+ },
88
+ {
89
+ "epoch": 0.12972972972972974,
90
+ "grad_norm": 3.2884895488967603,
91
+ "learning_rate": 2.995001667743691e-05,
92
+ "loss": 2.0118,
93
+ "step": 36
94
+ },
95
+ {
96
+ "epoch": 0.14054054054054055,
97
+ "grad_norm": 2.7402908143169555,
98
+ "learning_rate": 2.9941344676825106e-05,
99
+ "loss": 1.9478,
100
+ "step": 39
101
+ },
102
+ {
103
+ "epoch": 0.15135135135135136,
104
+ "grad_norm": 2.375732605463657,
105
+ "learning_rate": 2.993198079630913e-05,
106
+ "loss": 1.9092,
107
+ "step": 42
108
+ },
109
+ {
110
+ "epoch": 0.16216216216216217,
111
+ "grad_norm": 2.6770114768040143,
112
+ "learning_rate": 2.9921925469496594e-05,
113
+ "loss": 2.0062,
114
+ "step": 45
115
+ },
116
+ {
117
+ "epoch": 0.17297297297297298,
118
+ "grad_norm": 2.7654577179498943,
119
+ "learning_rate": 2.9911179162013495e-05,
120
+ "loss": 1.9634,
121
+ "step": 48
122
+ },
123
+ {
124
+ "epoch": 0.1837837837837838,
125
+ "grad_norm": 2.9383093484984966,
126
+ "learning_rate": 2.9899742371482663e-05,
127
+ "loss": 1.9553,
128
+ "step": 51
129
+ },
130
+ {
131
+ "epoch": 0.1945945945945946,
132
+ "grad_norm": 2.5901057077516443,
133
+ "learning_rate": 2.988761562750071e-05,
134
+ "loss": 1.9399,
135
+ "step": 54
136
+ },
137
+ {
138
+ "epoch": 0.20540540540540542,
139
+ "grad_norm": 2.381483900812707,
140
+ "learning_rate": 2.9874799491613513e-05,
141
+ "loss": 1.9434,
142
+ "step": 57
143
+ },
144
+ {
145
+ "epoch": 0.21621621621621623,
146
+ "grad_norm": 2.4229562035711263,
147
+ "learning_rate": 2.9861294557290205e-05,
148
+ "loss": 1.9481,
149
+ "step": 60
150
+ },
151
+ {
152
+ "epoch": 0.22702702702702704,
153
+ "grad_norm": 2.5010028477455393,
154
+ "learning_rate": 2.9847101449895692e-05,
155
+ "loss": 1.9495,
156
+ "step": 63
157
+ },
158
+ {
159
+ "epoch": 0.23783783783783785,
160
+ "grad_norm": 2.3138487877840244,
161
+ "learning_rate": 2.9832220826661707e-05,
162
+ "loss": 1.9259,
163
+ "step": 66
164
+ },
165
+ {
166
+ "epoch": 0.24864864864864866,
167
+ "grad_norm": 2.5123033559714245,
168
+ "learning_rate": 2.981665337665636e-05,
169
+ "loss": 1.9731,
170
+ "step": 69
171
+ },
172
+ {
173
+ "epoch": 0.2594594594594595,
174
+ "grad_norm": 2.6439754352664644,
175
+ "learning_rate": 2.9800399820752236e-05,
176
+ "loss": 1.9819,
177
+ "step": 72
178
+ },
179
+ {
180
+ "epoch": 0.2702702702702703,
181
+ "grad_norm": 2.3833028996710746,
182
+ "learning_rate": 2.9783460911593024e-05,
183
+ "loss": 1.8926,
184
+ "step": 75
185
+ },
186
+ {
187
+ "epoch": 0.2810810810810811,
188
+ "grad_norm": 2.4316596585025687,
189
+ "learning_rate": 2.9765837433558652e-05,
190
+ "loss": 1.9008,
191
+ "step": 78
192
+ },
193
+ {
194
+ "epoch": 0.2918918918918919,
195
+ "grad_norm": 2.492002538880973,
196
+ "learning_rate": 2.9747530202728965e-05,
197
+ "loss": 1.9837,
198
+ "step": 81
199
+ },
200
+ {
201
+ "epoch": 0.3027027027027027,
202
+ "grad_norm": 2.50223915481049,
203
+ "learning_rate": 2.9728540066845944e-05,
204
+ "loss": 1.9134,
205
+ "step": 84
206
+ },
207
+ {
208
+ "epoch": 0.31351351351351353,
209
+ "grad_norm": 2.79878301554176,
210
+ "learning_rate": 2.9708867905274444e-05,
211
+ "loss": 1.9226,
212
+ "step": 87
213
+ },
214
+ {
215
+ "epoch": 0.32432432432432434,
216
+ "grad_norm": 2.2798098795033477,
217
+ "learning_rate": 2.9688514628961473e-05,
218
+ "loss": 1.9029,
219
+ "step": 90
220
+ },
221
+ {
222
+ "epoch": 0.33513513513513515,
223
+ "grad_norm": 2.2032821621350536,
224
+ "learning_rate": 2.966748118039402e-05,
225
+ "loss": 1.917,
226
+ "step": 93
227
+ },
228
+ {
229
+ "epoch": 0.34594594594594597,
230
+ "grad_norm": 2.434797694487723,
231
+ "learning_rate": 2.9645768533555387e-05,
232
+ "loss": 1.9226,
233
+ "step": 96
234
+ },
235
+ {
236
+ "epoch": 0.3567567567567568,
237
+ "grad_norm": 2.2306447173589947,
238
+ "learning_rate": 2.9623377693880123e-05,
239
+ "loss": 1.9273,
240
+ "step": 99
241
+ },
242
+ {
243
+ "epoch": 0.3675675675675676,
244
+ "grad_norm": 2.4678527947600046,
245
+ "learning_rate": 2.9600309698207435e-05,
246
+ "loss": 1.8761,
247
+ "step": 102
248
+ },
249
+ {
250
+ "epoch": 0.3783783783783784,
251
+ "grad_norm": 2.172069501103823,
252
+ "learning_rate": 2.957656561473319e-05,
253
+ "loss": 1.9297,
254
+ "step": 105
255
+ },
256
+ {
257
+ "epoch": 0.3891891891891892,
258
+ "grad_norm": 2.009177875410658,
259
+ "learning_rate": 2.955214654296045e-05,
260
+ "loss": 1.8419,
261
+ "step": 108
262
+ },
263
+ {
264
+ "epoch": 0.4,
265
+ "grad_norm": 2.8950203407246216,
266
+ "learning_rate": 2.952705361364855e-05,
267
+ "loss": 1.9594,
268
+ "step": 111
269
+ },
270
+ {
271
+ "epoch": 0.41081081081081083,
272
+ "grad_norm": 2.5653163311951106,
273
+ "learning_rate": 2.950128798876075e-05,
274
+ "loss": 1.8869,
275
+ "step": 114
276
+ },
277
+ {
278
+ "epoch": 0.42162162162162165,
279
+ "grad_norm": 2.732827590601958,
280
+ "learning_rate": 2.947485086141042e-05,
281
+ "loss": 1.8974,
282
+ "step": 117
283
+ },
284
+ {
285
+ "epoch": 0.43243243243243246,
286
+ "grad_norm": 2.144285276139079,
287
+ "learning_rate": 2.9447743455805793e-05,
288
+ "loss": 1.9196,
289
+ "step": 120
290
+ },
291
+ {
292
+ "epoch": 0.44324324324324327,
293
+ "grad_norm": 2.4409981534782914,
294
+ "learning_rate": 2.9419967027193267e-05,
295
+ "loss": 1.9428,
296
+ "step": 123
297
+ },
298
+ {
299
+ "epoch": 0.4540540540540541,
300
+ "grad_norm": 2.646738039623452,
301
+ "learning_rate": 2.9391522861799298e-05,
302
+ "loss": 1.9737,
303
+ "step": 126
304
+ },
305
+ {
306
+ "epoch": 0.4648648648648649,
307
+ "grad_norm": 2.3721501035510233,
308
+ "learning_rate": 2.9362412276770833e-05,
309
+ "loss": 1.9554,
310
+ "step": 129
311
+ },
312
+ {
313
+ "epoch": 0.4756756756756757,
314
+ "grad_norm": 2.423435489971938,
315
+ "learning_rate": 2.93326366201143e-05,
316
+ "loss": 1.9787,
317
+ "step": 132
318
+ },
319
+ {
320
+ "epoch": 0.4864864864864865,
321
+ "grad_norm": 2.207859877546887,
322
+ "learning_rate": 2.9302197270633207e-05,
323
+ "loss": 1.9259,
324
+ "step": 135
325
+ },
326
+ {
327
+ "epoch": 0.4972972972972973,
328
+ "grad_norm": 2.4856913311288733,
329
+ "learning_rate": 2.9271095637864295e-05,
330
+ "loss": 1.9433,
331
+ "step": 138
332
+ },
333
+ {
334
+ "epoch": 0.5081081081081081,
335
+ "grad_norm": 2.440879046484796,
336
+ "learning_rate": 2.9239333162012256e-05,
337
+ "loss": 1.8939,
338
+ "step": 141
339
+ },
340
+ {
341
+ "epoch": 0.518918918918919,
342
+ "grad_norm": 2.45798549198192,
343
+ "learning_rate": 2.9206911313883037e-05,
344
+ "loss": 1.9845,
345
+ "step": 144
346
+ },
347
+ {
348
+ "epoch": 0.5297297297297298,
349
+ "grad_norm": 2.3336768971980706,
350
+ "learning_rate": 2.9173831594815768e-05,
351
+ "loss": 1.916,
352
+ "step": 147
353
+ },
354
+ {
355
+ "epoch": 0.5405405405405406,
356
+ "grad_norm": 2.39094175177689,
357
+ "learning_rate": 2.9140095536613182e-05,
358
+ "loss": 1.8494,
359
+ "step": 150
360
+ },
361
+ {
362
+ "epoch": 0.5513513513513514,
363
+ "grad_norm": 2.429522504872439,
364
+ "learning_rate": 2.9105704701470744e-05,
365
+ "loss": 1.9189,
366
+ "step": 153
367
+ },
368
+ {
369
+ "epoch": 0.5621621621621622,
370
+ "grad_norm": 2.7779327685196957,
371
+ "learning_rate": 2.907066068190426e-05,
372
+ "loss": 2.027,
373
+ "step": 156
374
+ },
375
+ {
376
+ "epoch": 0.572972972972973,
377
+ "grad_norm": 2.4829217011923106,
378
+ "learning_rate": 2.903496510067618e-05,
379
+ "loss": 1.9414,
380
+ "step": 159
381
+ },
382
+ {
383
+ "epoch": 0.5837837837837838,
384
+ "grad_norm": 2.307375658362859,
385
+ "learning_rate": 2.899861961072041e-05,
386
+ "loss": 1.9,
387
+ "step": 162
388
+ },
389
+ {
390
+ "epoch": 0.5945945945945946,
391
+ "grad_norm": 2.5317691911892855,
392
+ "learning_rate": 2.896162589506579e-05,
393
+ "loss": 1.9359,
394
+ "step": 165
395
+ },
396
+ {
397
+ "epoch": 0.6054054054054054,
398
+ "grad_norm": 2.4918163002128138,
399
+ "learning_rate": 2.8923985666758178e-05,
400
+ "loss": 1.8599,
401
+ "step": 168
402
+ },
403
+ {
404
+ "epoch": 0.6162162162162163,
405
+ "grad_norm": 2.076258038368402,
406
+ "learning_rate": 2.888570066878109e-05,
407
+ "loss": 1.9127,
408
+ "step": 171
409
+ },
410
+ {
411
+ "epoch": 0.6270270270270271,
412
+ "grad_norm": 2.185928367527268,
413
+ "learning_rate": 2.884677267397502e-05,
414
+ "loss": 1.8128,
415
+ "step": 174
416
+ },
417
+ {
418
+ "epoch": 0.6378378378378379,
419
+ "grad_norm": 2.866856917703555,
420
+ "learning_rate": 2.88072034849553e-05,
421
+ "loss": 1.9267,
422
+ "step": 177
423
+ },
424
+ {
425
+ "epoch": 0.6486486486486487,
426
+ "grad_norm": 2.403239863727176,
427
+ "learning_rate": 2.8766994934028697e-05,
428
+ "loss": 1.9034,
429
+ "step": 180
430
+ },
431
+ {
432
+ "epoch": 0.6594594594594595,
433
+ "grad_norm": 2.156072962852351,
434
+ "learning_rate": 2.8726148883108505e-05,
435
+ "loss": 1.9516,
436
+ "step": 183
437
+ },
438
+ {
439
+ "epoch": 0.6702702702702703,
440
+ "grad_norm": 2.511207967261495,
441
+ "learning_rate": 2.868466722362836e-05,
442
+ "loss": 1.8811,
443
+ "step": 186
444
+ },
445
+ {
446
+ "epoch": 0.6810810810810811,
447
+ "grad_norm": 2.3602190597776467,
448
+ "learning_rate": 2.8642551876454625e-05,
449
+ "loss": 1.9503,
450
+ "step": 189
451
+ },
452
+ {
453
+ "epoch": 0.6918918918918919,
454
+ "grad_norm": 2.482488878028461,
455
+ "learning_rate": 2.8599804791797483e-05,
456
+ "loss": 1.8807,
457
+ "step": 192
458
+ },
459
+ {
460
+ "epoch": 0.7027027027027027,
461
+ "grad_norm": 2.587845075067827,
462
+ "learning_rate": 2.8556427949120587e-05,
463
+ "loss": 1.9359,
464
+ "step": 195
465
+ },
466
+ {
467
+ "epoch": 0.7135135135135136,
468
+ "grad_norm": 2.209476666719861,
469
+ "learning_rate": 2.851242335704943e-05,
470
+ "loss": 1.898,
471
+ "step": 198
472
+ },
473
+ {
474
+ "epoch": 0.7243243243243244,
475
+ "grad_norm": 2.419802615785546,
476
+ "learning_rate": 2.8467793053278318e-05,
477
+ "loss": 1.8444,
478
+ "step": 201
479
+ },
480
+ {
481
+ "epoch": 0.7351351351351352,
482
+ "grad_norm": 2.226045413120279,
483
+ "learning_rate": 2.842253910447601e-05,
484
+ "loss": 1.8982,
485
+ "step": 204
486
+ },
487
+ {
488
+ "epoch": 0.745945945945946,
489
+ "grad_norm": 2.44484302970035,
490
+ "learning_rate": 2.837666360619002e-05,
491
+ "loss": 1.9596,
492
+ "step": 207
493
+ },
494
+ {
495
+ "epoch": 0.7567567567567568,
496
+ "grad_norm": 2.43331348143749,
497
+ "learning_rate": 2.8330168682749594e-05,
498
+ "loss": 1.9313,
499
+ "step": 210
500
+ },
501
+ {
502
+ "epoch": 0.7675675675675676,
503
+ "grad_norm": 2.0567115700480247,
504
+ "learning_rate": 2.8283056487167313e-05,
505
+ "loss": 1.9314,
506
+ "step": 213
507
+ },
508
+ {
509
+ "epoch": 0.7783783783783784,
510
+ "grad_norm": 2.3852531892957223,
511
+ "learning_rate": 2.8235329201039424e-05,
512
+ "loss": 1.8631,
513
+ "step": 216
514
+ },
515
+ {
516
+ "epoch": 0.7891891891891892,
517
+ "grad_norm": 2.136466132414422,
518
+ "learning_rate": 2.8186989034444794e-05,
519
+ "loss": 1.859,
520
+ "step": 219
521
+ },
522
+ {
523
+ "epoch": 0.8,
524
+ "grad_norm": 2.592701276826683,
525
+ "learning_rate": 2.8138038225842577e-05,
526
+ "loss": 1.96,
527
+ "step": 222
528
+ },
529
+ {
530
+ "epoch": 0.8108108108108109,
531
+ "grad_norm": 2.0512819357757,
532
+ "learning_rate": 2.808847904196857e-05,
533
+ "loss": 1.8646,
534
+ "step": 225
535
+ },
536
+ {
537
+ "epoch": 0.8216216216216217,
538
+ "grad_norm": 2.1496899989713767,
539
+ "learning_rate": 2.8038313777730237e-05,
540
+ "loss": 1.8924,
541
+ "step": 228
542
+ },
543
+ {
544
+ "epoch": 0.8324324324324325,
545
+ "grad_norm": 2.150493531375372,
546
+ "learning_rate": 2.798754475610044e-05,
547
+ "loss": 1.7991,
548
+ "step": 231
549
+ },
550
+ {
551
+ "epoch": 0.8432432432432433,
552
+ "grad_norm": 2.094639871928105,
553
+ "learning_rate": 2.7936174328009864e-05,
554
+ "loss": 1.9364,
555
+ "step": 234
556
+ },
557
+ {
558
+ "epoch": 0.8540540540540541,
559
+ "grad_norm": 2.3155422463173623,
560
+ "learning_rate": 2.7884204872238182e-05,
561
+ "loss": 1.8647,
562
+ "step": 237
563
+ },
564
+ {
565
+ "epoch": 0.8648648648648649,
566
+ "grad_norm": 2.2606435766654234,
567
+ "learning_rate": 2.7831638795303873e-05,
568
+ "loss": 1.8224,
569
+ "step": 240
570
+ },
571
+ {
572
+ "epoch": 0.8756756756756757,
573
+ "grad_norm": 2.2579963330786774,
574
+ "learning_rate": 2.7778478531352795e-05,
575
+ "loss": 1.8282,
576
+ "step": 243
577
+ },
578
+ {
579
+ "epoch": 0.8864864864864865,
580
+ "grad_norm": 1.9817080023633638,
581
+ "learning_rate": 2.7724726542045463e-05,
582
+ "loss": 1.8818,
583
+ "step": 246
584
+ },
585
+ {
586
+ "epoch": 0.8972972972972973,
587
+ "grad_norm": 2.24441068506298,
588
+ "learning_rate": 2.7670385316443084e-05,
589
+ "loss": 1.9305,
590
+ "step": 249
591
+ },
592
+ {
593
+ "epoch": 0.9081081081081082,
594
+ "grad_norm": 2.541165407563793,
595
+ "learning_rate": 2.7615457370892257e-05,
596
+ "loss": 1.8736,
597
+ "step": 252
598
+ },
599
+ {
600
+ "epoch": 0.918918918918919,
601
+ "grad_norm": 1.9510813262964137,
602
+ "learning_rate": 2.7559945248908468e-05,
603
+ "loss": 1.8999,
604
+ "step": 255
605
+ },
606
+ {
607
+ "epoch": 0.9297297297297298,
608
+ "grad_norm": 2.4719694412540245,
609
+ "learning_rate": 2.7503851521058333e-05,
610
+ "loss": 1.8846,
611
+ "step": 258
612
+ },
613
+ {
614
+ "epoch": 0.9405405405405406,
615
+ "grad_norm": 2.3098919918683096,
616
+ "learning_rate": 2.744717878484053e-05,
617
+ "loss": 1.8999,
618
+ "step": 261
619
+ },
620
+ {
621
+ "epoch": 0.9513513513513514,
622
+ "grad_norm": 2.465948183249405,
623
+ "learning_rate": 2.7389929664565523e-05,
624
+ "loss": 1.8028,
625
+ "step": 264
626
+ },
627
+ {
628
+ "epoch": 0.9621621621621622,
629
+ "grad_norm": 2.204108562575812,
630
+ "learning_rate": 2.733210681123406e-05,
631
+ "loss": 1.9526,
632
+ "step": 267
633
+ },
634
+ {
635
+ "epoch": 0.972972972972973,
636
+ "grad_norm": 2.3661976037384815,
637
+ "learning_rate": 2.7273712902414396e-05,
638
+ "loss": 1.8472,
639
+ "step": 270
640
+ },
641
+ {
642
+ "epoch": 0.9837837837837838,
643
+ "grad_norm": 2.1596420136763137,
644
+ "learning_rate": 2.7214750642118315e-05,
645
+ "loss": 1.849,
646
+ "step": 273
647
+ },
648
+ {
649
+ "epoch": 0.9945945945945946,
650
+ "grad_norm": 2.1642232408896453,
651
+ "learning_rate": 2.715522276067591e-05,
652
+ "loss": 1.8476,
653
+ "step": 276
654
+ },
655
+ {
656
+ "epoch": 1.0054054054054054,
657
+ "grad_norm": 2.102003078375359,
658
+ "learning_rate": 2.709513201460915e-05,
659
+ "loss": 1.6092,
660
+ "step": 279
661
+ },
662
+ {
663
+ "epoch": 1.0162162162162163,
664
+ "grad_norm": 2.580181780728641,
665
+ "learning_rate": 2.7034481186504253e-05,
666
+ "loss": 1.3409,
667
+ "step": 282
668
+ },
669
+ {
670
+ "epoch": 1.027027027027027,
671
+ "grad_norm": 1.987111465217205,
672
+ "learning_rate": 2.6973273084882802e-05,
673
+ "loss": 1.3026,
674
+ "step": 285
675
+ },
676
+ {
677
+ "epoch": 1.037837837837838,
678
+ "grad_norm": 1.835737689431998,
679
+ "learning_rate": 2.691151054407172e-05,
680
+ "loss": 1.2992,
681
+ "step": 288
682
+ },
683
+ {
684
+ "epoch": 1.0486486486486486,
685
+ "grad_norm": 2.075134750486952,
686
+ "learning_rate": 2.684919642407202e-05,
687
+ "loss": 1.2751,
688
+ "step": 291
689
+ },
690
+ {
691
+ "epoch": 1.0594594594594595,
692
+ "grad_norm": 2.154847674569881,
693
+ "learning_rate": 2.6786333610426353e-05,
694
+ "loss": 1.2951,
695
+ "step": 294
696
+ },
697
+ {
698
+ "epoch": 1.0702702702702702,
699
+ "grad_norm": 2.201259061666919,
700
+ "learning_rate": 2.67229250140854e-05,
701
+ "loss": 1.2813,
702
+ "step": 297
703
+ },
704
+ {
705
+ "epoch": 1.0810810810810811,
706
+ "grad_norm": 2.099199218269766,
707
+ "learning_rate": 2.6658973571273077e-05,
708
+ "loss": 1.2422,
709
+ "step": 300
710
+ },
711
+ {
712
+ "epoch": 1.0918918918918918,
713
+ "grad_norm": 2.1682257578187185,
714
+ "learning_rate": 2.6594482243350558e-05,
715
+ "loss": 1.2958,
716
+ "step": 303
717
+ },
718
+ {
719
+ "epoch": 1.1027027027027028,
720
+ "grad_norm": 1.9450085810744047,
721
+ "learning_rate": 2.6529454016679175e-05,
722
+ "loss": 1.2175,
723
+ "step": 306
724
+ },
725
+ {
726
+ "epoch": 1.1135135135135135,
727
+ "grad_norm": 1.9627021282761483,
728
+ "learning_rate": 2.6463891902482087e-05,
729
+ "loss": 1.2143,
730
+ "step": 309
731
+ },
732
+ {
733
+ "epoch": 1.1243243243243244,
734
+ "grad_norm": 2.0335479254484716,
735
+ "learning_rate": 2.639779893670487e-05,
736
+ "loss": 1.2425,
737
+ "step": 312
738
+ },
739
+ {
740
+ "epoch": 1.135135135135135,
741
+ "grad_norm": 2.004046748177982,
742
+ "learning_rate": 2.6331178179874934e-05,
743
+ "loss": 1.2834,
744
+ "step": 315
745
+ },
746
+ {
747
+ "epoch": 1.145945945945946,
748
+ "grad_norm": 2.1051127397939333,
749
+ "learning_rate": 2.6264032716959778e-05,
750
+ "loss": 1.2787,
751
+ "step": 318
752
+ },
753
+ {
754
+ "epoch": 1.1567567567567567,
755
+ "grad_norm": 1.941259889065534,
756
+ "learning_rate": 2.6196365657224166e-05,
757
+ "loss": 1.2456,
758
+ "step": 321
759
+ },
760
+ {
761
+ "epoch": 1.1675675675675676,
762
+ "grad_norm": 2.4331557433084643,
763
+ "learning_rate": 2.612818013408613e-05,
764
+ "loss": 1.2398,
765
+ "step": 324
766
+ },
767
+ {
768
+ "epoch": 1.1783783783783783,
769
+ "grad_norm": 2.125511278222413,
770
+ "learning_rate": 2.6059479304971867e-05,
771
+ "loss": 1.2717,
772
+ "step": 327
773
+ },
774
+ {
775
+ "epoch": 1.1891891891891893,
776
+ "grad_norm": 2.254173095275699,
777
+ "learning_rate": 2.5990266351169554e-05,
778
+ "loss": 1.2694,
779
+ "step": 330
780
+ },
781
+ {
782
+ "epoch": 1.2,
783
+ "grad_norm": 1.9756822137444563,
784
+ "learning_rate": 2.5920544477682012e-05,
785
+ "loss": 1.2747,
786
+ "step": 333
787
+ },
788
+ {
789
+ "epoch": 1.2108108108108109,
790
+ "grad_norm": 2.1110444161525077,
791
+ "learning_rate": 2.5850316913078298e-05,
792
+ "loss": 1.295,
793
+ "step": 336
794
+ },
795
+ {
796
+ "epoch": 1.2216216216216216,
797
+ "grad_norm": 2.1222020915135995,
798
+ "learning_rate": 2.5779586909344206e-05,
799
+ "loss": 1.3109,
800
+ "step": 339
801
+ },
802
+ {
803
+ "epoch": 1.2324324324324325,
804
+ "grad_norm": 1.8417665825926723,
805
+ "learning_rate": 2.570835774173169e-05,
806
+ "loss": 1.3056,
807
+ "step": 342
808
+ },
809
+ {
810
+ "epoch": 1.2432432432432432,
811
+ "grad_norm": 2.0280022835044016,
812
+ "learning_rate": 2.563663270860717e-05,
813
+ "loss": 1.32,
814
+ "step": 345
815
+ },
816
+ {
817
+ "epoch": 1.2540540540540541,
818
+ "grad_norm": 2.025208781667826,
819
+ "learning_rate": 2.5564415131298824e-05,
820
+ "loss": 1.2705,
821
+ "step": 348
822
+ },
823
+ {
824
+ "epoch": 1.2648648648648648,
825
+ "grad_norm": 1.9120753635362695,
826
+ "learning_rate": 2.5491708353942773e-05,
827
+ "loss": 1.2645,
828
+ "step": 351
829
+ },
830
+ {
831
+ "epoch": 1.2756756756756757,
832
+ "grad_norm": 1.9983727272207963,
833
+ "learning_rate": 2.5418515743328232e-05,
834
+ "loss": 1.2795,
835
+ "step": 354
836
+ },
837
+ {
838
+ "epoch": 1.2864864864864864,
839
+ "grad_norm": 2.0065772123507735,
840
+ "learning_rate": 2.534484068874162e-05,
841
+ "loss": 1.3017,
842
+ "step": 357
843
+ },
844
+ {
845
+ "epoch": 1.2972972972972974,
846
+ "grad_norm": 2.0474786433390335,
847
+ "learning_rate": 2.5270686601809577e-05,
848
+ "loss": 1.25,
849
+ "step": 360
850
+ },
851
+ {
852
+ "epoch": 1.308108108108108,
853
+ "grad_norm": 1.9384897745280192,
854
+ "learning_rate": 2.5196056916341016e-05,
855
+ "loss": 1.2294,
856
+ "step": 363
857
+ },
858
+ {
859
+ "epoch": 1.318918918918919,
860
+ "grad_norm": 1.9918888965378558,
861
+ "learning_rate": 2.512095508816812e-05,
862
+ "loss": 1.2941,
863
+ "step": 366
864
+ },
865
+ {
866
+ "epoch": 1.3297297297297297,
867
+ "grad_norm": 1.9846908820959408,
868
+ "learning_rate": 2.5045384594986285e-05,
869
+ "loss": 1.2538,
870
+ "step": 369
871
+ },
872
+ {
873
+ "epoch": 1.3405405405405406,
874
+ "grad_norm": 2.080792691569016,
875
+ "learning_rate": 2.4969348936193102e-05,
876
+ "loss": 1.2543,
877
+ "step": 372
878
+ },
879
+ {
880
+ "epoch": 1.3513513513513513,
881
+ "grad_norm": 2.0125722435554514,
882
+ "learning_rate": 2.4892851632726306e-05,
883
+ "loss": 1.2757,
884
+ "step": 375
885
+ },
886
+ {
887
+ "epoch": 1.3621621621621622,
888
+ "grad_norm": 1.9764284092403845,
889
+ "learning_rate": 2.481589622690075e-05,
890
+ "loss": 1.2625,
891
+ "step": 378
892
+ },
893
+ {
894
+ "epoch": 1.372972972972973,
895
+ "grad_norm": 2.027142138762262,
896
+ "learning_rate": 2.4738486282244333e-05,
897
+ "loss": 1.2831,
898
+ "step": 381
899
+ },
900
+ {
901
+ "epoch": 1.3837837837837839,
902
+ "grad_norm": 1.9798502988269455,
903
+ "learning_rate": 2.4660625383333028e-05,
904
+ "loss": 1.2673,
905
+ "step": 384
906
+ },
907
+ {
908
+ "epoch": 1.3945945945945946,
909
+ "grad_norm": 2.047403010408032,
910
+ "learning_rate": 2.4582317135624886e-05,
911
+ "loss": 1.2698,
912
+ "step": 387
913
+ },
914
+ {
915
+ "epoch": 1.4054054054054055,
916
+ "grad_norm": 2.012366168035498,
917
+ "learning_rate": 2.450356516529304e-05,
918
+ "loss": 1.3192,
919
+ "step": 390
920
+ },
921
+ {
922
+ "epoch": 1.4162162162162162,
923
+ "grad_norm": 2.05238416440222,
924
+ "learning_rate": 2.4424373119057852e-05,
925
+ "loss": 1.2696,
926
+ "step": 393
927
+ },
928
+ {
929
+ "epoch": 1.427027027027027,
930
+ "grad_norm": 2.2479201479489923,
931
+ "learning_rate": 2.4344744664018e-05,
932
+ "loss": 1.3024,
933
+ "step": 396
934
+ },
935
+ {
936
+ "epoch": 1.4378378378378378,
937
+ "grad_norm": 2.1894458789904583,
938
+ "learning_rate": 2.4264683487480687e-05,
939
+ "loss": 1.3099,
940
+ "step": 399
941
+ },
942
+ {
943
+ "epoch": 1.4486486486486487,
944
+ "grad_norm": 2.037077094665106,
945
+ "learning_rate": 2.4184193296790887e-05,
946
+ "loss": 1.2514,
947
+ "step": 402
948
+ },
949
+ {
950
+ "epoch": 1.4594594594594594,
951
+ "grad_norm": 2.0273525133084087,
952
+ "learning_rate": 2.410327781915969e-05,
953
+ "loss": 1.2798,
954
+ "step": 405
955
+ },
956
+ {
957
+ "epoch": 1.4702702702702704,
958
+ "grad_norm": 2.1689507381607713,
959
+ "learning_rate": 2.402194080149167e-05,
960
+ "loss": 1.3066,
961
+ "step": 408
962
+ },
963
+ {
964
+ "epoch": 1.481081081081081,
965
+ "grad_norm": 1.9503795898614715,
966
+ "learning_rate": 2.394018601021143e-05,
967
+ "loss": 1.2582,
968
+ "step": 411
969
+ },
970
+ {
971
+ "epoch": 1.491891891891892,
972
+ "grad_norm": 2.2761809415998706,
973
+ "learning_rate": 2.385801723108914e-05,
974
+ "loss": 1.2981,
975
+ "step": 414
976
+ },
977
+ {
978
+ "epoch": 1.5027027027027027,
979
+ "grad_norm": 2.0356459303417296,
980
+ "learning_rate": 2.3775438269065277e-05,
981
+ "loss": 1.2505,
982
+ "step": 417
983
+ },
984
+ {
985
+ "epoch": 1.5135135135135136,
986
+ "grad_norm": 1.9297970402246538,
987
+ "learning_rate": 2.3692452948074395e-05,
988
+ "loss": 1.2546,
989
+ "step": 420
990
+ },
991
+ {
992
+ "epoch": 1.5243243243243243,
993
+ "grad_norm": 2.0123397178971714,
994
+ "learning_rate": 2.360906511086809e-05,
995
+ "loss": 1.2571,
996
+ "step": 423
997
+ },
998
+ {
999
+ "epoch": 1.535135135135135,
1000
+ "grad_norm": 2.3184894064368033,
1001
+ "learning_rate": 2.352527861883702e-05,
1002
+ "loss": 1.2625,
1003
+ "step": 426
1004
+ },
1005
+ {
1006
+ "epoch": 1.545945945945946,
1007
+ "grad_norm": 1.936734476547218,
1008
+ "learning_rate": 2.3441097351832113e-05,
1009
+ "loss": 1.3054,
1010
+ "step": 429
1011
+ },
1012
+ {
1013
+ "epoch": 1.5567567567567568,
1014
+ "grad_norm": 2.030353788212261,
1015
+ "learning_rate": 2.3356525207984916e-05,
1016
+ "loss": 1.2755,
1017
+ "step": 432
1018
+ },
1019
+ {
1020
+ "epoch": 1.5675675675675675,
1021
+ "grad_norm": 2.039094018045801,
1022
+ "learning_rate": 2.3271566103527063e-05,
1023
+ "loss": 1.2686,
1024
+ "step": 435
1025
+ },
1026
+ {
1027
+ "epoch": 1.5783783783783782,
1028
+ "grad_norm": 1.9514327297087253,
1029
+ "learning_rate": 2.318622397260896e-05,
1030
+ "loss": 1.2683,
1031
+ "step": 438
1032
+ },
1033
+ {
1034
+ "epoch": 1.5891891891891892,
1035
+ "grad_norm": 1.8736269848724938,
1036
+ "learning_rate": 2.3100502767117566e-05,
1037
+ "loss": 1.2255,
1038
+ "step": 441
1039
+ },
1040
+ {
1041
+ "epoch": 1.6,
1042
+ "grad_norm": 1.9037413275565993,
1043
+ "learning_rate": 2.301440645649344e-05,
1044
+ "loss": 1.2669,
1045
+ "step": 444
1046
+ },
1047
+ {
1048
+ "epoch": 1.6108108108108108,
1049
+ "grad_norm": 2.172424343159148,
1050
+ "learning_rate": 2.2927939027546895e-05,
1051
+ "loss": 1.2601,
1052
+ "step": 447
1053
+ },
1054
+ {
1055
+ "epoch": 1.6216216216216215,
1056
+ "grad_norm": 2.1709165438362152,
1057
+ "learning_rate": 2.284110448427341e-05,
1058
+ "loss": 1.2992,
1059
+ "step": 450
1060
+ },
1061
+ {
1062
+ "epoch": 1.6324324324324324,
1063
+ "grad_norm": 1.9517268177516773,
1064
+ "learning_rate": 2.2753906847668197e-05,
1065
+ "loss": 1.2602,
1066
+ "step": 453
1067
+ },
1068
+ {
1069
+ "epoch": 1.6432432432432433,
1070
+ "grad_norm": 2.142716687001655,
1071
+ "learning_rate": 2.266635015554002e-05,
1072
+ "loss": 1.2387,
1073
+ "step": 456
1074
+ },
1075
+ {
1076
+ "epoch": 1.654054054054054,
1077
+ "grad_norm": 1.892430237031948,
1078
+ "learning_rate": 2.2578438462324214e-05,
1079
+ "loss": 1.2796,
1080
+ "step": 459
1081
+ },
1082
+ {
1083
+ "epoch": 1.6648648648648647,
1084
+ "grad_norm": 1.9831414889207626,
1085
+ "learning_rate": 2.2490175838894928e-05,
1086
+ "loss": 1.2693,
1087
+ "step": 462
1088
+ },
1089
+ {
1090
+ "epoch": 1.6756756756756757,
1091
+ "grad_norm": 1.968788091532238,
1092
+ "learning_rate": 2.2401566372376635e-05,
1093
+ "loss": 1.2826,
1094
+ "step": 465
1095
+ },
1096
+ {
1097
+ "epoch": 1.6864864864864866,
1098
+ "grad_norm": 2.028829960671371,
1099
+ "learning_rate": 2.231261416595486e-05,
1100
+ "loss": 1.2412,
1101
+ "step": 468
1102
+ },
1103
+ {
1104
+ "epoch": 1.6972972972972973,
1105
+ "grad_norm": 2.0761836559826126,
1106
+ "learning_rate": 2.222332333868618e-05,
1107
+ "loss": 1.2907,
1108
+ "step": 471
1109
+ },
1110
+ {
1111
+ "epoch": 1.708108108108108,
1112
+ "grad_norm": 2.0505303769583714,
1113
+ "learning_rate": 2.2133698025307487e-05,
1114
+ "loss": 1.2164,
1115
+ "step": 474
1116
+ },
1117
+ {
1118
+ "epoch": 1.718918918918919,
1119
+ "grad_norm": 1.9892599771865245,
1120
+ "learning_rate": 2.2043742376044507e-05,
1121
+ "loss": 1.3029,
1122
+ "step": 477
1123
+ },
1124
+ {
1125
+ "epoch": 1.7297297297297298,
1126
+ "grad_norm": 2.056680185472525,
1127
+ "learning_rate": 2.195346055641966e-05,
1128
+ "loss": 1.2532,
1129
+ "step": 480
1130
+ },
1131
+ {
1132
+ "epoch": 1.7405405405405405,
1133
+ "grad_norm": 2.020031485543879,
1134
+ "learning_rate": 2.186285674705911e-05,
1135
+ "loss": 1.2752,
1136
+ "step": 483
1137
+ },
1138
+ {
1139
+ "epoch": 1.7513513513513512,
1140
+ "grad_norm": 1.976348646730665,
1141
+ "learning_rate": 2.1771935143499233e-05,
1142
+ "loss": 1.281,
1143
+ "step": 486
1144
+ },
1145
+ {
1146
+ "epoch": 1.7621621621621621,
1147
+ "grad_norm": 1.9671362390239506,
1148
+ "learning_rate": 2.1680699955992295e-05,
1149
+ "loss": 1.2567,
1150
+ "step": 489
1151
+ },
1152
+ {
1153
+ "epoch": 1.772972972972973,
1154
+ "grad_norm": 1.9862314788875317,
1155
+ "learning_rate": 2.1589155409311514e-05,
1156
+ "loss": 1.2722,
1157
+ "step": 492
1158
+ },
1159
+ {
1160
+ "epoch": 1.7837837837837838,
1161
+ "grad_norm": 1.8794017228975768,
1162
+ "learning_rate": 2.1497305742555416e-05,
1163
+ "loss": 1.2267,
1164
+ "step": 495
1165
+ },
1166
+ {
1167
+ "epoch": 1.7945945945945945,
1168
+ "grad_norm": 1.8537400724418822,
1169
+ "learning_rate": 2.140515520895154e-05,
1170
+ "loss": 1.2856,
1171
+ "step": 498
1172
+ },
1173
+ {
1174
+ "epoch": 1.8054054054054054,
1175
+ "grad_norm": 2.2140372302917424,
1176
+ "learning_rate": 2.131270807565948e-05,
1177
+ "loss": 1.2668,
1178
+ "step": 501
1179
+ },
1180
+ {
1181
+ "epoch": 1.8162162162162163,
1182
+ "grad_norm": 2.1224010879465514,
1183
+ "learning_rate": 2.1219968623573292e-05,
1184
+ "loss": 1.3403,
1185
+ "step": 504
1186
+ },
1187
+ {
1188
+ "epoch": 1.827027027027027,
1189
+ "grad_norm": 2.150717671959958,
1190
+ "learning_rate": 2.1126941147123285e-05,
1191
+ "loss": 1.3294,
1192
+ "step": 507
1193
+ },
1194
+ {
1195
+ "epoch": 1.8378378378378377,
1196
+ "grad_norm": 1.9412785818269171,
1197
+ "learning_rate": 2.1033629954077123e-05,
1198
+ "loss": 1.298,
1199
+ "step": 510
1200
+ },
1201
+ {
1202
+ "epoch": 1.8486486486486486,
1203
+ "grad_norm": 1.9061258724957593,
1204
+ "learning_rate": 2.0940039365340363e-05,
1205
+ "loss": 1.2984,
1206
+ "step": 513
1207
+ },
1208
+ {
1209
+ "epoch": 1.8594594594594596,
1210
+ "grad_norm": 1.91000429693783,
1211
+ "learning_rate": 2.0846173714756372e-05,
1212
+ "loss": 1.2541,
1213
+ "step": 516
1214
+ },
1215
+ {
1216
+ "epoch": 1.8702702702702703,
1217
+ "grad_norm": 2.0253367045491957,
1218
+ "learning_rate": 2.0752037348905656e-05,
1219
+ "loss": 1.3045,
1220
+ "step": 519
1221
+ },
1222
+ {
1223
+ "epoch": 1.881081081081081,
1224
+ "grad_norm": 2.099866673823967,
1225
+ "learning_rate": 2.0657634626904544e-05,
1226
+ "loss": 1.2841,
1227
+ "step": 522
1228
+ },
1229
+ {
1230
+ "epoch": 1.8918918918918919,
1231
+ "grad_norm": 2.053590437534557,
1232
+ "learning_rate": 2.056296992020339e-05,
1233
+ "loss": 1.2732,
1234
+ "step": 525
1235
+ },
1236
+ {
1237
+ "epoch": 1.9027027027027028,
1238
+ "grad_norm": 2.037664067587095,
1239
+ "learning_rate": 2.046804761238409e-05,
1240
+ "loss": 1.2661,
1241
+ "step": 528
1242
+ },
1243
+ {
1244
+ "epoch": 1.9135135135135135,
1245
+ "grad_norm": 2.1032576901560875,
1246
+ "learning_rate": 2.037287209895713e-05,
1247
+ "loss": 1.2815,
1248
+ "step": 531
1249
+ },
1250
+ {
1251
+ "epoch": 1.9243243243243242,
1252
+ "grad_norm": 2.0365409183820393,
1253
+ "learning_rate": 2.0277447787158057e-05,
1254
+ "loss": 1.281,
1255
+ "step": 534
1256
+ },
1257
+ {
1258
+ "epoch": 1.9351351351351351,
1259
+ "grad_norm": 1.9303661726886707,
1260
+ "learning_rate": 2.0181779095743335e-05,
1261
+ "loss": 1.3122,
1262
+ "step": 537
1263
+ },
1264
+ {
1265
+ "epoch": 1.945945945945946,
1266
+ "grad_norm": 2.0989107332254164,
1267
+ "learning_rate": 2.008587045478581e-05,
1268
+ "loss": 1.2766,
1269
+ "step": 540
1270
+ },
1271
+ {
1272
+ "epoch": 1.9567567567567568,
1273
+ "grad_norm": 2.2610013717867607,
1274
+ "learning_rate": 1.9989726305469497e-05,
1275
+ "loss": 1.2744,
1276
+ "step": 543
1277
+ },
1278
+ {
1279
+ "epoch": 1.9675675675675675,
1280
+ "grad_norm": 1.9759438397315554,
1281
+ "learning_rate": 1.989335109988397e-05,
1282
+ "loss": 1.2821,
1283
+ "step": 546
1284
+ },
1285
+ {
1286
+ "epoch": 1.9783783783783784,
1287
+ "grad_norm": 2.0630705322166185,
1288
+ "learning_rate": 1.9796749300818185e-05,
1289
+ "loss": 1.2964,
1290
+ "step": 549
1291
+ },
1292
+ {
1293
+ "epoch": 1.9891891891891893,
1294
+ "grad_norm": 2.062855518861247,
1295
+ "learning_rate": 1.9699925381553824e-05,
1296
+ "loss": 1.3101,
1297
+ "step": 552
1298
+ },
1299
+ {
1300
+ "epoch": 2.0,
1301
+ "grad_norm": 2.004529311768417,
1302
+ "learning_rate": 1.960288382565816e-05,
1303
+ "loss": 1.2436,
1304
+ "step": 555
1305
+ },
1306
+ {
1307
+ "epoch": 2.0108108108108107,
1308
+ "grad_norm": 1.8731442249653363,
1309
+ "learning_rate": 1.9505629126776435e-05,
1310
+ "loss": 0.7428,
1311
+ "step": 558
1312
+ },
1313
+ {
1314
+ "epoch": 2.0216216216216214,
1315
+ "grad_norm": 2.7743566111060356,
1316
+ "learning_rate": 1.9408165788423776e-05,
1317
+ "loss": 0.6521,
1318
+ "step": 561
1319
+ },
1320
+ {
1321
+ "epoch": 2.0324324324324325,
1322
+ "grad_norm": 2.4263480281287326,
1323
+ "learning_rate": 1.9310498323776642e-05,
1324
+ "loss": 0.6719,
1325
+ "step": 564
1326
+ },
1327
+ {
1328
+ "epoch": 2.0432432432432432,
1329
+ "grad_norm": 1.7971900573296662,
1330
+ "learning_rate": 1.9212631255463864e-05,
1331
+ "loss": 0.6507,
1332
+ "step": 567
1333
+ },
1334
+ {
1335
+ "epoch": 2.054054054054054,
1336
+ "grad_norm": 1.9536502652307774,
1337
+ "learning_rate": 1.911456911535719e-05,
1338
+ "loss": 0.6713,
1339
+ "step": 570
1340
+ },
1341
+ {
1342
+ "epoch": 2.064864864864865,
1343
+ "grad_norm": 1.6734389443783486,
1344
+ "learning_rate": 1.9016316444361443e-05,
1345
+ "loss": 0.6513,
1346
+ "step": 573
1347
+ },
1348
+ {
1349
+ "epoch": 2.075675675675676,
1350
+ "grad_norm": 2.0889794055853446,
1351
+ "learning_rate": 1.8917877792204238e-05,
1352
+ "loss": 0.6391,
1353
+ "step": 576
1354
+ },
1355
+ {
1356
+ "epoch": 2.0864864864864865,
1357
+ "grad_norm": 1.952453907013592,
1358
+ "learning_rate": 1.881925771722533e-05,
1359
+ "loss": 0.6278,
1360
+ "step": 579
1361
+ },
1362
+ {
1363
+ "epoch": 2.097297297297297,
1364
+ "grad_norm": 1.9394182987242035,
1365
+ "learning_rate": 1.872046078616549e-05,
1366
+ "loss": 0.6268,
1367
+ "step": 582
1368
+ },
1369
+ {
1370
+ "epoch": 2.108108108108108,
1371
+ "grad_norm": 1.7760412655871423,
1372
+ "learning_rate": 1.862149157395506e-05,
1373
+ "loss": 0.6217,
1374
+ "step": 585
1375
+ },
1376
+ {
1377
+ "epoch": 2.118918918918919,
1378
+ "grad_norm": 1.697555380465673,
1379
+ "learning_rate": 1.852235466350212e-05,
1380
+ "loss": 0.6496,
1381
+ "step": 588
1382
+ },
1383
+ {
1384
+ "epoch": 2.1297297297297297,
1385
+ "grad_norm": 1.9579376565670537,
1386
+ "learning_rate": 1.8423054645480228e-05,
1387
+ "loss": 0.6388,
1388
+ "step": 591
1389
+ },
1390
+ {
1391
+ "epoch": 2.1405405405405404,
1392
+ "grad_norm": 2.1761144428281565,
1393
+ "learning_rate": 1.8323596118115882e-05,
1394
+ "loss": 0.6293,
1395
+ "step": 594
1396
+ },
1397
+ {
1398
+ "epoch": 2.1513513513513516,
1399
+ "grad_norm": 1.7805116699629946,
1400
+ "learning_rate": 1.8223983686975576e-05,
1401
+ "loss": 0.6321,
1402
+ "step": 597
1403
+ },
1404
+ {
1405
+ "epoch": 2.1621621621621623,
1406
+ "grad_norm": 2.0913504208478773,
1407
+ "learning_rate": 1.8124221964752535e-05,
1408
+ "loss": 0.6312,
1409
+ "step": 600
1410
+ },
1411
+ {
1412
+ "epoch": 2.172972972972973,
1413
+ "grad_norm": 1.7500638235123256,
1414
+ "learning_rate": 1.80243155710531e-05,
1415
+ "loss": 0.6217,
1416
+ "step": 603
1417
+ },
1418
+ {
1419
+ "epoch": 2.1837837837837837,
1420
+ "grad_norm": 1.8271358171780696,
1421
+ "learning_rate": 1.7924269132182855e-05,
1422
+ "loss": 0.6711,
1423
+ "step": 606
1424
+ },
1425
+ {
1426
+ "epoch": 2.1945945945945944,
1427
+ "grad_norm": 1.9546793256337727,
1428
+ "learning_rate": 1.782408728093235e-05,
1429
+ "loss": 0.6392,
1430
+ "step": 609
1431
+ },
1432
+ {
1433
+ "epoch": 2.2054054054054055,
1434
+ "grad_norm": 1.7882856434212824,
1435
+ "learning_rate": 1.7723774656362602e-05,
1436
+ "loss": 0.6395,
1437
+ "step": 612
1438
+ },
1439
+ {
1440
+ "epoch": 2.2162162162162162,
1441
+ "grad_norm": 1.7898241991442447,
1442
+ "learning_rate": 1.762333590359028e-05,
1443
+ "loss": 0.6521,
1444
+ "step": 615
1445
+ },
1446
+ {
1447
+ "epoch": 2.227027027027027,
1448
+ "grad_norm": 1.6654897277159277,
1449
+ "learning_rate": 1.752277567357258e-05,
1450
+ "loss": 0.646,
1451
+ "step": 618
1452
+ },
1453
+ {
1454
+ "epoch": 2.237837837837838,
1455
+ "grad_norm": 1.8175887991140565,
1456
+ "learning_rate": 1.7422098622891873e-05,
1457
+ "loss": 0.613,
1458
+ "step": 621
1459
+ },
1460
+ {
1461
+ "epoch": 2.2486486486486488,
1462
+ "grad_norm": 2.208881509880086,
1463
+ "learning_rate": 1.7321309413540087e-05,
1464
+ "loss": 0.6375,
1465
+ "step": 624
1466
+ },
1467
+ {
1468
+ "epoch": 2.2594594594594595,
1469
+ "grad_norm": 1.8520498287505407,
1470
+ "learning_rate": 1.722041271270281e-05,
1471
+ "loss": 0.6613,
1472
+ "step": 627
1473
+ },
1474
+ {
1475
+ "epoch": 2.27027027027027,
1476
+ "grad_norm": 2.0512133133202988,
1477
+ "learning_rate": 1.7119413192543165e-05,
1478
+ "loss": 0.6292,
1479
+ "step": 630
1480
+ },
1481
+ {
1482
+ "epoch": 2.281081081081081,
1483
+ "grad_norm": 1.773677981324912,
1484
+ "learning_rate": 1.701831552998548e-05,
1485
+ "loss": 0.6399,
1486
+ "step": 633
1487
+ },
1488
+ {
1489
+ "epoch": 2.291891891891892,
1490
+ "grad_norm": 1.8469844530131443,
1491
+ "learning_rate": 1.6917124406498697e-05,
1492
+ "loss": 0.6622,
1493
+ "step": 636
1494
+ },
1495
+ {
1496
+ "epoch": 2.3027027027027027,
1497
+ "grad_norm": 2.0663988043195265,
1498
+ "learning_rate": 1.68158445078796e-05,
1499
+ "loss": 0.6428,
1500
+ "step": 639
1501
+ },
1502
+ {
1503
+ "epoch": 2.3135135135135134,
1504
+ "grad_norm": 1.7259116146942584,
1505
+ "learning_rate": 1.671448052403583e-05,
1506
+ "loss": 0.6528,
1507
+ "step": 642
1508
+ },
1509
+ {
1510
+ "epoch": 2.3243243243243246,
1511
+ "grad_norm": 1.9046842309367298,
1512
+ "learning_rate": 1.6613037148768702e-05,
1513
+ "loss": 0.6619,
1514
+ "step": 645
1515
+ },
1516
+ {
1517
+ "epoch": 2.3351351351351353,
1518
+ "grad_norm": 1.8564656298207483,
1519
+ "learning_rate": 1.6511519079555887e-05,
1520
+ "loss": 0.6665,
1521
+ "step": 648
1522
+ },
1523
+ {
1524
+ "epoch": 2.345945945945946,
1525
+ "grad_norm": 1.8614483941828683,
1526
+ "learning_rate": 1.640993101733383e-05,
1527
+ "loss": 0.6494,
1528
+ "step": 651
1529
+ },
1530
+ {
1531
+ "epoch": 2.3567567567567567,
1532
+ "grad_norm": 1.8411704889596792,
1533
+ "learning_rate": 1.6308277666280133e-05,
1534
+ "loss": 0.6286,
1535
+ "step": 654
1536
+ },
1537
+ {
1538
+ "epoch": 2.3675675675675674,
1539
+ "grad_norm": 1.810238547613111,
1540
+ "learning_rate": 1.6206563733595666e-05,
1541
+ "loss": 0.6544,
1542
+ "step": 657
1543
+ },
1544
+ {
1545
+ "epoch": 2.3783783783783785,
1546
+ "grad_norm": 1.803680767305892,
1547
+ "learning_rate": 1.610479392928663e-05,
1548
+ "loss": 0.6449,
1549
+ "step": 660
1550
+ },
1551
+ {
1552
+ "epoch": 2.389189189189189,
1553
+ "grad_norm": 1.7701921715064215,
1554
+ "learning_rate": 1.600297296594643e-05,
1555
+ "loss": 0.6604,
1556
+ "step": 663
1557
+ },
1558
+ {
1559
+ "epoch": 2.4,
1560
+ "grad_norm": 1.6556840871349028,
1561
+ "learning_rate": 1.5901105558537472e-05,
1562
+ "loss": 0.6775,
1563
+ "step": 666
1564
+ },
1565
+ {
1566
+ "epoch": 2.410810810810811,
1567
+ "grad_norm": 1.734110836750224,
1568
+ "learning_rate": 1.579919642417281e-05,
1569
+ "loss": 0.6482,
1570
+ "step": 669
1571
+ },
1572
+ {
1573
+ "epoch": 2.4216216216216218,
1574
+ "grad_norm": 2.000655482106033,
1575
+ "learning_rate": 1.569725028189772e-05,
1576
+ "loss": 0.648,
1577
+ "step": 672
1578
+ },
1579
+ {
1580
+ "epoch": 2.4324324324324325,
1581
+ "grad_norm": 1.7669642313010707,
1582
+ "learning_rate": 1.5595271852471204e-05,
1583
+ "loss": 0.6548,
1584
+ "step": 675
1585
+ },
1586
+ {
1587
+ "epoch": 2.443243243243243,
1588
+ "grad_norm": 1.7114555298061667,
1589
+ "learning_rate": 1.5493265858147335e-05,
1590
+ "loss": 0.6291,
1591
+ "step": 678
1592
+ },
1593
+ {
1594
+ "epoch": 2.454054054054054,
1595
+ "grad_norm": 1.982145197600375,
1596
+ "learning_rate": 1.5391237022456636e-05,
1597
+ "loss": 0.6648,
1598
+ "step": 681
1599
+ },
1600
+ {
1601
+ "epoch": 2.464864864864865,
1602
+ "grad_norm": 2.057868578472174,
1603
+ "learning_rate": 1.5289190069987332e-05,
1604
+ "loss": 0.652,
1605
+ "step": 684
1606
+ },
1607
+ {
1608
+ "epoch": 2.4756756756756757,
1609
+ "grad_norm": 1.6966492734095149,
1610
+ "learning_rate": 1.5187129726166565e-05,
1611
+ "loss": 0.6524,
1612
+ "step": 687
1613
+ },
1614
+ {
1615
+ "epoch": 2.4864864864864864,
1616
+ "grad_norm": 1.7126379411947121,
1617
+ "learning_rate": 1.5085060717041585e-05,
1618
+ "loss": 0.6691,
1619
+ "step": 690
1620
+ },
1621
+ {
1622
+ "epoch": 2.4972972972972975,
1623
+ "grad_norm": 2.027436021235288,
1624
+ "learning_rate": 1.4982987769060898e-05,
1625
+ "loss": 0.6551,
1626
+ "step": 693
1627
+ },
1628
+ {
1629
+ "epoch": 2.5081081081081082,
1630
+ "grad_norm": 1.856345058930321,
1631
+ "learning_rate": 1.4880915608855402e-05,
1632
+ "loss": 0.6596,
1633
+ "step": 696
1634
+ },
1635
+ {
1636
+ "epoch": 2.518918918918919,
1637
+ "grad_norm": 1.8317958549352111,
1638
+ "learning_rate": 1.477884896301953e-05,
1639
+ "loss": 0.6283,
1640
+ "step": 699
1641
+ },
1642
+ {
1643
+ "epoch": 2.5297297297297296,
1644
+ "grad_norm": 1.7233177960794333,
1645
+ "learning_rate": 1.467679255789234e-05,
1646
+ "loss": 0.659,
1647
+ "step": 702
1648
+ },
1649
+ {
1650
+ "epoch": 2.5405405405405403,
1651
+ "grad_norm": 1.70587685226235,
1652
+ "learning_rate": 1.4574751119338703e-05,
1653
+ "loss": 0.6375,
1654
+ "step": 705
1655
+ },
1656
+ {
1657
+ "epoch": 2.5513513513513515,
1658
+ "grad_norm": 1.8655585555708385,
1659
+ "learning_rate": 1.4472729372530432e-05,
1660
+ "loss": 0.6242,
1661
+ "step": 708
1662
+ },
1663
+ {
1664
+ "epoch": 2.562162162162162,
1665
+ "grad_norm": 1.8001992070479,
1666
+ "learning_rate": 1.4370732041727495e-05,
1667
+ "loss": 0.643,
1668
+ "step": 711
1669
+ },
1670
+ {
1671
+ "epoch": 2.572972972972973,
1672
+ "grad_norm": 1.848601528720487,
1673
+ "learning_rate": 1.426876385005922e-05,
1674
+ "loss": 0.653,
1675
+ "step": 714
1676
+ },
1677
+ {
1678
+ "epoch": 2.583783783783784,
1679
+ "grad_norm": 1.7058353790178475,
1680
+ "learning_rate": 1.4166829519305628e-05,
1681
+ "loss": 0.6189,
1682
+ "step": 717
1683
+ },
1684
+ {
1685
+ "epoch": 2.5945945945945947,
1686
+ "grad_norm": 1.7284279167710883,
1687
+ "learning_rate": 1.406493376967876e-05,
1688
+ "loss": 0.6447,
1689
+ "step": 720
1690
+ },
1691
+ {
1692
+ "epoch": 2.6054054054054054,
1693
+ "grad_norm": 1.9360862264128509,
1694
+ "learning_rate": 1.396308131960409e-05,
1695
+ "loss": 0.6396,
1696
+ "step": 723
1697
+ },
1698
+ {
1699
+ "epoch": 2.616216216216216,
1700
+ "grad_norm": 1.6785593995242742,
1701
+ "learning_rate": 1.386127688550206e-05,
1702
+ "loss": 0.6305,
1703
+ "step": 726
1704
+ },
1705
+ {
1706
+ "epoch": 2.627027027027027,
1707
+ "grad_norm": 1.7901370985866867,
1708
+ "learning_rate": 1.3759525181569663e-05,
1709
+ "loss": 0.6379,
1710
+ "step": 729
1711
+ },
1712
+ {
1713
+ "epoch": 2.637837837837838,
1714
+ "grad_norm": 1.7497083646634908,
1715
+ "learning_rate": 1.3657830919562151e-05,
1716
+ "loss": 0.6252,
1717
+ "step": 732
1718
+ },
1719
+ {
1720
+ "epoch": 2.6486486486486487,
1721
+ "grad_norm": 1.8186530224800674,
1722
+ "learning_rate": 1.3556198808574828e-05,
1723
+ "loss": 0.6751,
1724
+ "step": 735
1725
+ },
1726
+ {
1727
+ "epoch": 2.6594594594594594,
1728
+ "grad_norm": 1.7289128215137377,
1729
+ "learning_rate": 1.3454633554825029e-05,
1730
+ "loss": 0.6467,
1731
+ "step": 738
1732
+ },
1733
+ {
1734
+ "epoch": 2.6702702702702705,
1735
+ "grad_norm": 1.7639526554500256,
1736
+ "learning_rate": 1.335313986143416e-05,
1737
+ "loss": 0.6166,
1738
+ "step": 741
1739
+ },
1740
+ {
1741
+ "epoch": 2.6810810810810812,
1742
+ "grad_norm": 1.7186641679091503,
1743
+ "learning_rate": 1.3251722428209933e-05,
1744
+ "loss": 0.6845,
1745
+ "step": 744
1746
+ },
1747
+ {
1748
+ "epoch": 2.691891891891892,
1749
+ "grad_norm": 1.6965540327042066,
1750
+ "learning_rate": 1.3150385951428714e-05,
1751
+ "loss": 0.6487,
1752
+ "step": 747
1753
+ },
1754
+ {
1755
+ "epoch": 2.7027027027027026,
1756
+ "grad_norm": 1.8567952974204969,
1757
+ "learning_rate": 1.3049135123618073e-05,
1758
+ "loss": 0.6457,
1759
+ "step": 750
1760
+ },
1761
+ {
1762
+ "epoch": 2.7135135135135133,
1763
+ "grad_norm": 1.6295081249921362,
1764
+ "learning_rate": 1.2947974633339499e-05,
1765
+ "loss": 0.6445,
1766
+ "step": 753
1767
+ },
1768
+ {
1769
+ "epoch": 2.7243243243243245,
1770
+ "grad_norm": 1.7231568913626358,
1771
+ "learning_rate": 1.2846909164971244e-05,
1772
+ "loss": 0.6434,
1773
+ "step": 756
1774
+ },
1775
+ {
1776
+ "epoch": 2.735135135135135,
1777
+ "grad_norm": 1.8455193518645283,
1778
+ "learning_rate": 1.2745943398491462e-05,
1779
+ "loss": 0.65,
1780
+ "step": 759
1781
+ },
1782
+ {
1783
+ "epoch": 2.745945945945946,
1784
+ "grad_norm": 1.827106966674069,
1785
+ "learning_rate": 1.2645082009261468e-05,
1786
+ "loss": 0.6628,
1787
+ "step": 762
1788
+ },
1789
+ {
1790
+ "epoch": 2.756756756756757,
1791
+ "grad_norm": 1.7633688689382077,
1792
+ "learning_rate": 1.254432966780924e-05,
1793
+ "loss": 0.6491,
1794
+ "step": 765
1795
+ },
1796
+ {
1797
+ "epoch": 2.7675675675675677,
1798
+ "grad_norm": 1.7284101689900349,
1799
+ "learning_rate": 1.2443691039613128e-05,
1800
+ "loss": 0.6258,
1801
+ "step": 768
1802
+ },
1803
+ {
1804
+ "epoch": 2.7783783783783784,
1805
+ "grad_norm": 1.87274147264611,
1806
+ "learning_rate": 1.2343170784885859e-05,
1807
+ "loss": 0.6476,
1808
+ "step": 771
1809
+ },
1810
+ {
1811
+ "epoch": 2.789189189189189,
1812
+ "grad_norm": 1.6928834129022787,
1813
+ "learning_rate": 1.2242773558358701e-05,
1814
+ "loss": 0.638,
1815
+ "step": 774
1816
+ },
1817
+ {
1818
+ "epoch": 2.8,
1819
+ "grad_norm": 1.7838050014292766,
1820
+ "learning_rate": 1.2142504009065914e-05,
1821
+ "loss": 0.6402,
1822
+ "step": 777
1823
+ },
1824
+ {
1825
+ "epoch": 2.810810810810811,
1826
+ "grad_norm": 1.7473000738048472,
1827
+ "learning_rate": 1.2042366780129507e-05,
1828
+ "loss": 0.615,
1829
+ "step": 780
1830
+ },
1831
+ {
1832
+ "epoch": 2.8216216216216217,
1833
+ "grad_norm": 1.8638020286903605,
1834
+ "learning_rate": 1.1942366508544195e-05,
1835
+ "loss": 0.6425,
1836
+ "step": 783
1837
+ },
1838
+ {
1839
+ "epoch": 2.8324324324324324,
1840
+ "grad_norm": 1.874577580434278,
1841
+ "learning_rate": 1.1842507824962694e-05,
1842
+ "loss": 0.6504,
1843
+ "step": 786
1844
+ },
1845
+ {
1846
+ "epoch": 2.8432432432432435,
1847
+ "grad_norm": 1.755404683062205,
1848
+ "learning_rate": 1.1742795353481291e-05,
1849
+ "loss": 0.6541,
1850
+ "step": 789
1851
+ },
1852
+ {
1853
+ "epoch": 2.854054054054054,
1854
+ "grad_norm": 1.8072551565675472,
1855
+ "learning_rate": 1.1643233711425716e-05,
1856
+ "loss": 0.6683,
1857
+ "step": 792
1858
+ },
1859
+ {
1860
+ "epoch": 2.864864864864865,
1861
+ "grad_norm": 1.6667276846485022,
1862
+ "learning_rate": 1.1543827509137329e-05,
1863
+ "loss": 0.6486,
1864
+ "step": 795
1865
+ },
1866
+ {
1867
+ "epoch": 2.8756756756756756,
1868
+ "grad_norm": 1.688942735670296,
1869
+ "learning_rate": 1.144458134975964e-05,
1870
+ "loss": 0.6652,
1871
+ "step": 798
1872
+ },
1873
+ {
1874
+ "epoch": 2.8864864864864863,
1875
+ "grad_norm": 1.753840610632178,
1876
+ "learning_rate": 1.1345499829025136e-05,
1877
+ "loss": 0.6634,
1878
+ "step": 801
1879
+ },
1880
+ {
1881
+ "epoch": 2.8972972972972975,
1882
+ "grad_norm": 1.9607814129942556,
1883
+ "learning_rate": 1.1246587535042492e-05,
1884
+ "loss": 0.6426,
1885
+ "step": 804
1886
+ },
1887
+ {
1888
+ "epoch": 2.908108108108108,
1889
+ "grad_norm": 1.813335779829059,
1890
+ "learning_rate": 1.1147849048084105e-05,
1891
+ "loss": 0.6315,
1892
+ "step": 807
1893
+ },
1894
+ {
1895
+ "epoch": 2.918918918918919,
1896
+ "grad_norm": 1.7402704693393687,
1897
+ "learning_rate": 1.1049288940373972e-05,
1898
+ "loss": 0.6228,
1899
+ "step": 810
1900
+ },
1901
+ {
1902
+ "epoch": 2.92972972972973,
1903
+ "grad_norm": 1.7680419333729458,
1904
+ "learning_rate": 1.0950911775876014e-05,
1905
+ "loss": 0.6,
1906
+ "step": 813
1907
+ },
1908
+ {
1909
+ "epoch": 2.9405405405405407,
1910
+ "grad_norm": 1.843223644664368,
1911
+ "learning_rate": 1.0852722110082693e-05,
1912
+ "loss": 0.6476,
1913
+ "step": 816
1914
+ },
1915
+ {
1916
+ "epoch": 2.9513513513513514,
1917
+ "grad_norm": 1.7069834663839671,
1918
+ "learning_rate": 1.0754724489804098e-05,
1919
+ "loss": 0.6593,
1920
+ "step": 819
1921
+ },
1922
+ {
1923
+ "epoch": 2.962162162162162,
1924
+ "grad_norm": 1.734691145206824,
1925
+ "learning_rate": 1.0656923452957354e-05,
1926
+ "loss": 0.6252,
1927
+ "step": 822
1928
+ },
1929
+ {
1930
+ "epoch": 2.972972972972973,
1931
+ "grad_norm": 1.6530132045637638,
1932
+ "learning_rate": 1.0559323528356542e-05,
1933
+ "loss": 0.6218,
1934
+ "step": 825
1935
+ },
1936
+ {
1937
+ "epoch": 2.983783783783784,
1938
+ "grad_norm": 1.7766789557037792,
1939
+ "learning_rate": 1.0461929235502952e-05,
1940
+ "loss": 0.6494,
1941
+ "step": 828
1942
+ },
1943
+ {
1944
+ "epoch": 2.9945945945945946,
1945
+ "grad_norm": 1.777411804411515,
1946
+ "learning_rate": 1.036474508437579e-05,
1947
+ "loss": 0.6409,
1948
+ "step": 831
1949
+ }
1950
+ ],
1951
+ "logging_steps": 3,
1952
+ "max_steps": 1385,
1953
+ "num_input_tokens_seen": 0,
1954
+ "num_train_epochs": 5,
1955
+ "save_steps": 833,
1956
+ "stateful_callbacks": {
1957
+ "TrainerControl": {
1958
+ "args": {
1959
+ "should_epoch_stop": false,
1960
+ "should_evaluate": false,
1961
+ "should_log": false,
1962
+ "should_save": true,
1963
+ "should_training_stop": false
1964
+ },
1965
+ "attributes": {}
1966
+ }
1967
+ },
1968
+ "total_flos": 151014030311424.0,
1969
+ "train_batch_size": 1,
1970
+ "trial_name": null,
1971
+ "trial_params": null
1972
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9032d21f71645c8c878ced111a5ac48ae0883a303c373d3216d895098f5ec20d
3
+ size 7096
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)