--- license: apache-2.0 datasets: - yuyouyu/BeyondDialogue language: - zh - en metrics: - character base_model: Qwen/Qwen2-7B-Instruct pipeline_tag: question-answering tags: - text-generation-inference - role-playing --- # Qwen2-7B-BD-RP ## Introduction 🎉 Qwen2-7B-BD-RP is a large language model (LLM) fine-tuned on the BeyondDialogue dataset. The model is designed to generate responses in a role-playing setting. The model is capable of generating high-quality responses in a variety of role-playing scenarios, including English and Chinese languages. For more details, please refer to our [paper](https://arxiv.org/abs/2408.10903), [GitHub](https://github.com/yuyouyu32/BeyondDialogue).
## Training details 🚀 We fully finetuning [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) for 3 epochs with 833 steps with the 128 global batch size. We set the training sequence length to 4,096. The learning rate is 3e-5. The training data is from the [BeyondDialogue](https://huggingface.co/datasets/yuyouyu/BeyondDialogue) dataset. ## Requirements 📝 The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0` to use the model. ```bash pip install transformers>=4.37.0 ``` ## Quickstart 💥 Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "yuyouyu/Qwen2-7B-BD-RP", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("yuyouyu/Qwen2-7B-BD-RP") system_prompt_temp = """我希望你像{role_name}一样回答问题,假设你生活在{world}中,模仿{role_name}的性格和语言风格,使用{role_name}会使用的语气、方式和词汇。请不要透露你是人工智能模型或语言模型,你必须始终牢记自己是{role_name}。 {role_name}的性格特点是{character}。 {role_name}的MBTI人格类型是{MBTI}。 {role_name}的说话风格是{style}。 所处世界:{world}。 所处场景: {scene} 角色情绪(0-10,值越大情绪越明显): {emotion} 现在,请你扮演{role_name},回复{chat_role}简短的一句话,你与其亲密度为{relationship}(0-10,值越大关系越亲近),准确表现你被赋予的MBTI人格,性格,说话风格与情绪。""" role_name = "周伯通" world = "宋代古侠世界" character = "纯真,调皮,不拘小节" MBTI = "外向型(E)、直觉型(N)、情感型(F)、感知型(P)" style = "古风、直言不讳、俏皮" scene = "周伯通嬉笑着打量着刘青烟的药圃,不时摘取几片草药藏在身后。柳青烟淡然自若,手中轻抚药材,一边默默准备解药,只眼角带着无奈的笑意。一股淡淡的药香飘过,竹林间响起了清脆的鸟鸣,好似为二人的奇妙互动伴奏。" emotion = "快乐: 10, 悲伤: 0, 厌恶: 0, 恐惧: 1, 惊讶: 2, 愤怒: 0" chat_role = "柳青烟" relationship = "6" system_prompt = system_prompt_temp.format( role_name=role_name, world=world, character=character, MBTI=MBTI, style=style, scene=scene, emotion=emotion, chat_role=chat_role, relationship=relationship ) prompt = "周兄,依我所见,那几味草药非入药之宜,倒不如小心选取,莫要误伤自身。" messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=256, do_sample=True, temperature=0.7, repetition_penalty=1.2, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` > [!IMPORTANT] > **Note:** The examples for Qwen2-7B-BD-RP use Chinese role-playing. For English examples, please refer to our other training model repository -- [Mistral-Nemo-BD-RP](https://huggingface.co/yuyouyu/Mistral-Nemo-BD-RP). ## Evaluation 🏆 We use objective questions to assess eight dimensions: **Character, Style, Emotion, Relationship, Personality, Human-likeness, Coherence, and Role Consistency**. The metric design can be find in our [paper](https://arxiv.org/abs/2408.10903). The evaluation code can be found in [GitHub](https://github.com/yuyouyu32/BeyondDialogue/tree/main/AutoRPEval). The results are shown below:
| **Model** | **Character ↑** | **Style ↑** | **Emotion ↓** | **Relationship ↓** | **Personality ↑** | **Avg. ↑** | **Human-likeness ↑** | **Role Choice ↑** | **Coherence ↑** | |---------------|---------------|---------------|---------------|------------------|-----------------|----------------|----------------------|-------------------|-----------------| | **General Baselines(Proprietary)** | | GPT-4o | 74.32 ± 1.15 | **81.67 ± 1.51** | 16.31 ± 0.48 | **12.13 ± 0.66** | 66.58 ± 4.41 | 78.83 ± 1.64 | **67.33 ± 3.95** | **87.33 ± 3.86** | **99.67 ± 0.33**| | GPT-3.5-Turbo | 72.26 ± 1.27 | 73.66 ± 1.73 | 17.79 ± 0.56 | 14.17 ± 0.73 | 66.92 ± 4.85 | 76.18 ± 1.83 | 33.33 ± 4.43 | 83.00 ± 4.68 | 97.33 ± 1.17 | | Moonshot-v1-8k | 74.06 ± 1.19 | 80.64 ± 1.51 | 16.17 ± 0.47 | 13.42 ± 0.70 | 67.00 ± 4.87 | 78.42 ± 1.75 | 44.00 ± 4.33 | 86.67 ± 3.75 | 99.33 ± 0.46 | | Yi-Large-Turbo | 75.13 ± 1.22 | 79.18 ± 1.58 | 16.44 ± 0.49 | 13.48 ± 0.67 | **68.25 ± 4.61**| 78.53 ± 1.72 | 47.00 ± 4.60 | 84.33 ± 3.67 | 92.67 ± 2.39 | | Deepseek-Chat | **75.46 ± 1.14** | 81.49 ± 1.51 | **15.92 ± 0.46** | 12.42 ± 0.63 | 67.92 ± 4.57 | **79.30 ± 1.66**| 52.33 ± 4.95 | 83.00 ± 4.68 | 96.67 ± 1.00 | | Baichuan4 | 71.82 ± 1.25 | 76.92 ± 1.52 | 17.57 ± 0.52 | 12.30 ± 0.62 | 67.08 ± 4.75 | 77.19 ± 1.73 | 45.33 ± 4.31 | 82.33 ± 4.49 | 99.33 ± 0.46 | | Hunyuan | 73.77 ± 1.18 | 78.75 ± 1.56 | 17.24 ± 0.48 | 13.22 ± 0.68 | 67.00 ± 4.39 | 77.81 ± 1.66 | 53.00 ± 4.29 | 84.33 ± 4.52 | 98.33 ± 0.84 | | **Role-play Expertise Baselines** | | Index-1.9B-Character | 73.33 ± 1.32 | 76.48 ± 1.50 | 17.99 ± 0.53 | 13.58 ± 0.71 | 66.33 ± 4.57 | 76.92 ± 1.73 | 21.67 ± 3.96 | 78.67 ± 5.14 | 69.67 ± 3.85 | | CharacterGLM-6B | 73.36 ± 1.28 | 76.08 ± 1.55 | 18.58 ± 0.55 | 14.27 ± 0.79 | 67.33 ± 4.34 | 76.79 ± 1.70 | 16.00 ± 2.38 | 81.00 ± 4.40 | 25.67 ± 3.48 | | Baichuan-NPC-Turbo | **75.19 ± 1.23** | **79.15 ± 1.38** | **17.24 ± 0.51** | **13.10 ± 0.69** | 65.33 ± 4.84 | **77.87 ± 1.73**| **56.00 ± 4.66** | **86.33 ± 4.90** | **99.00 ± 0.56**| | **General Baselines(Open-source)** | | Yi-1.5-9B-Chat | 75.31 ± 1.20 | 76.78 ± 1.49 | 16.67 ± 0.52 | 12.75 ± 0.66 | 67.42 ± 4.63 | 78.02 ± 1.70| 38.67 ± 4.39 | 84.00 ± 4.61 | 92.67 ± 1.79 | | GLM-4-9b-chat | 74.26 ± 1.19 | 78.40 ± 1.55 | 17.18 ± 0.50 | 14.48 ± 0.74 | 67.17 ± 4.93 | 77.63 ± 1.78 | 47.67 ± 4.25 | 83.33 ± 4.51 | 99.33 ± 0.46| | Mistral-Nemo-Instruct-2407 | 74.12 ± 1.17 | 77.04 ± 1.48 | 17.00 ± 0.43 | 13.50 ± 0.67 | 67.00 ± 4.30 | 77.53 ± 1.61 | 53.67 ± 4.66 | 82.67 ± 4.77 | 74.33 ± 3.77 | | Qwen2-7B-Instruct | 75.39 ± 1.13 | 77.68 ± 1.65 | 17.64 ± 0.56 | 13.43 ± 0.7 | 67.75 ± 4.44| 77.95 ± 1.70 | 48.00 ± 4.66 | 83.33 ± 4.48 | 99.00 ± 0.56 | | **Qwen2-7B-BD-RP** | **78.67 ± 1.12***| **82.52 ± 1.33***| **15.68 ± 0.5*** | **11.22 ± 0.72***| **69.67 ± 4.27**| **80.79 ± 1.59***| **64.33 ± 3.80*** | **87.33 ± 3.74** | **99.00 ± 0.56**|
## Citation 📖 **Please cite our work if you found the resources in this repository useful:** ```bibtex @article{yu2024beyond, title = {BEYOND DIALOGUE: A Profile-Dialogue Alignment Framework Towards General Role-Playing Language Model}, author = {Yu, Yeyong and Yu, Runsheng and Wei, Haojie and Zhang, Zhanqiu and Qian, Quan}, year = {2024}, journal = {arXiv preprint arXiv:2408.10903}, } ``` ## Acknowledgements 🥰 We would like to express our sincere gratitude to **Tencent LightSpeed Studios** for their invaluable support in this project. Their contributions and encouragement have been instrumental in the successful completion of our work.