yyq90 commited on
Commit
ffb2d5e
1 Parent(s): dab2167
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 250.73 +/- 28.16
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f21b8f7e3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21b8f7e430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21b8f7e4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21b8f7e550>", "_build": "<function ActorCriticPolicy._build at 0x7f21b8f7e5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f21b8f7e670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f21b8f7e700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21b8f7e790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f21b8f7e820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21b8f7e8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21b8f7e940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21b8f7e9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f21b8f798d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678132451547936063, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNLHj41kko/ux+tPQNLvL4T4PY9YhaevAAAAAAAAAAAluiCPkppeD+P1iA/hf0dv9S2jT74heI9AAAAAAAAAAC6fCM+D1hXPs4vG75baXe+x4m1u33xvroAAAAAAAAAAJoUrDzhtJO631AntCI6ri3x44u6PUOOMwAAgD8AAIA/vYJ4vnNjCT/K2oA+0YWdvrudcrzrTtE9AAAAAAAAAABmZpQ6hbmpu1ilWTzShIg84ZIHPZCQaL0AAIA/AACAP1NAP76A6LA+kmeqPs10j771Se27ixF1vAAAAAAAAAAAM4VkvL2ntj9m76y+Y9cOPoNXIzxKGZe7AAAAAAAAAABNyGs+OpOxPjC3o7ydBLi+z+LdPXqZZjsAAAAAAAAAAFq98732Hsc+3nWuPfcSlb5A2n29aHJtOwAAAAAAAAAAMwe8u+UYOz8qQx09PS7Nvj6TBzrRSpU9AAAAAAAAAACaCSK9e56zuprLvroa+bW1U0E5uWb/2TkAAIA/AACAP2aG5Lu2cKM+HmkcvdbHbb6aUBw7nOeDvAAAAAAAAAAAQJDVPY86HroVaxU4hGAcM2oS8zrVdyq3AACAPwAAgD/z7D4+Aba0vIhX6j2LMHy8bXQivoGIRb0AAIA/AACAP2bLk71IX4i6CaqZtd5kc7Aab1S6lNmrNAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIm+jzUQbdcECUhpRSlIwBbJRNRgGMAXSUR0CTRYR/EwWWdX2UKGgGaAloD0MIr84xIPsXb0CUhpRSlGgVTQABaBZHQJNGh54W1tx1fZQoaAZoCWgPQwjVljrIq9NxQJSGlFKUaBVNBAFoFkdAk0gXj2i+L3V9lChoBmgJaA9DCHSy1Hr/ZHFAlIaUUpRoFUv5aBZHQJNJijk+5e91fZQoaAZoCWgPQwhbP/1njVRyQJSGlFKUaBVNJwFoFkdAk0ncEA5q/XV9lChoBmgJaA9DCN2yQ/yDS3FAlIaUUpRoFU0MAWgWR0CTSeevZAY6dX2UKGgGaAloD0MI6e+l8CAkckCUhpRSlGgVTREBaBZHQJNJ/w1BMSN1fZQoaAZoCWgPQwjjx5i7lgVmQJSGlFKUaBVNmgNoFkdAk0ofbXYlIHV9lChoBmgJaA9DCMR8eQH2VXFAlIaUUpRoFU0eAWgWR0CTSwLh73PBdX2UKGgGaAloD0MIrOC3IcZDOkCUhpRSlGgVS9RoFkdAk0tMDSw4bXV9lChoBmgJaA9DCEPKT6p9WWxAlIaUUpRoFUvyaBZHQJNM65sj3VV1fZQoaAZoCWgPQwgT1PAtrFVWQJSGlFKUaBVN6ANoFkdAk02yv5gw5HV9lChoBmgJaA9DCOy+Y3isxHFAlIaUUpRoFU0gAWgWR0CTTcxiXpnpdX2UKGgGaAloD0MItFcfDz1DckCUhpRSlGgVS+poFkdAk07Gv8qFy3V9lChoBmgJaA9DCBJKXwg5xXFAlIaUUpRoFU0LAWgWR0CTTxGJN0vHdX2UKGgGaAloD0MIisxc4HKicECUhpRSlGgVTUQBaBZHQJNPSZVn27F1fZQoaAZoCWgPQwgK8x5n2hByQJSGlFKUaBVNTgFoFkdAk1HHZPEbYXV9lChoBmgJaA9DCLgDdcqjLnNAlIaUUpRoFU0pAWgWR0CTUs4uK4x2dX2UKGgGaAloD0MIi+B/K1mfcECUhpRSlGgVS/RoFkdAk1Tb8ejmCHV9lChoBmgJaA9DCI1+NJwyy21AlIaUUpRoFUv4aBZHQJNVJsoDxLF1fZQoaAZoCWgPQwhUqkTZW1NwQJSGlFKUaBVNAAFoFkdAk1XAFX7tRnV9lChoBmgJaA9DCATj4NLxb3BAlIaUUpRoFU0zAWgWR0CTVd4B3iaRdX2UKGgGaAloD0MIEhJpG38NbUCUhpRSlGgVS/9oFkdAk1bfduYQa3V9lChoBmgJaA9DCFBWDFeHm3FAlIaUUpRoFU0WAWgWR0CTVwWOZLIxdX2UKGgGaAloD0MIBJFFmrhAckCUhpRSlGgVTQsBaBZHQJNXufFrEcd1fZQoaAZoCWgPQwiKdap8z8hwQJSGlFKUaBVNPAFoFkdAk1gkpI+W4XV9lChoBmgJaA9DCAGnd/F+KGxAlIaUUpRoFU0EAWgWR0CTWPAS39aVdX2UKGgGaAloD0MIrtSzIJTAbUCUhpRSlGgVTQgBaBZHQJNZ6KdhAnl1fZQoaAZoCWgPQwhszOuIg2dyQJSGlFKUaBVL/2gWR0CTWuozvZyudX2UKGgGaAloD0MIoMa9+c1WckCUhpRSlGgVTTMBaBZHQJNbowEhaDB1fZQoaAZoCWgPQwjTTWIQ2GtyQJSGlFKUaBVNPQFoFkdAk11Lsa86FXV9lChoBmgJaA9DCCsU6X7OP3JAlIaUUpRoFU0zAWgWR0CTXXD15B1LdX2UKGgGaAloD0MIm6+Sj90+b0CUhpRSlGgVTRoBaBZHQJNeqvV3EAJ1fZQoaAZoCWgPQwj+t5IdG5FBQJSGlFKUaBVLwWgWR0CTXvZrYXfqdX2UKGgGaAloD0MI1PNuLOg7ckCUhpRSlGgVTTsBaBZHQJNgVW0Z3s51fZQoaAZoCWgPQwh7aYoA5z9wQJSGlFKUaBVNHQFoFkdAk2CSY5T6znV9lChoBmgJaA9DCG/0MR+Q3XJAlIaUUpRoFU0bAWgWR0CTYKq+rU9ZdX2UKGgGaAloD0MIaY1BJ4T3ckCUhpRSlGgVTRIBaBZHQJNgtN0vGqB1fZQoaAZoCWgPQwiaQBGLmKNtQJSGlFKUaBVNFAFoFkdAk2DTTz/ZNHV9lChoBmgJaA9DCDF9ryG4lnBAlIaUUpRoFU0BAWgWR0CTYVi+L3sYdX2UKGgGaAloD0MIG4F4Xf8uckCUhpRSlGgVS/RoFkdAk2HGfwqiGnV9lChoBmgJaA9DCIfD0sAP+3FAlIaUUpRoFU0mAWgWR0CTYeGAkLQYdX2UKGgGaAloD0MI28LzUnH3cECUhpRSlGgVTQ8BaBZHQJNiARh+fAd1fZQoaAZoCWgPQwi+ofDZeqpxQJSGlFKUaBVNLgFoFkdAk3iEOVgQYnV9lChoBmgJaA9DCNUFvMxw6nBAlIaUUpRoFU0IAWgWR0CTeJw1R+BpdX2UKGgGaAloD0MIPx767hYucUCUhpRSlGgVTSEBaBZHQJN42CnP3SN1fZQoaAZoCWgPQwhxcr9DUaxwQJSGlFKUaBVNAQFoFkdAk3l5TIeYD3V9lChoBmgJaA9DCEcf8wGB93FAlIaUUpRoFU0TAWgWR0CTeg4h2W6cdX2UKGgGaAloD0MIKNU+Hc/FckCUhpRSlGgVS+5oFkdAk3pNfb9IgHV9lChoBmgJaA9DCJLn+j4c5EhAlIaUUpRoFUvEaBZHQJN6WRSxZ+x1fZQoaAZoCWgPQwjGNqlobHhxQJSGlFKUaBVNGAFoFkdAk3sw7xNIsnV9lChoBmgJaA9DCE0vMZYpY3BAlIaUUpRoFUvraBZHQJN8fW/ag291fZQoaAZoCWgPQwgRHm0cMZxxQJSGlFKUaBVNGgFoFkdAk30s0P6KtXV9lChoBmgJaA9DCIih1ckZEHJAlIaUUpRoFU0ZAWgWR0CTfU/Zdv87dX2UKGgGaAloD0MI5IV0eIgJcUCUhpRSlGgVTR4BaBZHQJN9WNyYG+t1fZQoaAZoCWgPQwgdOdIZWPhyQJSGlFKUaBVNBwFoFkdAk33GIj4YanV9lChoBmgJaA9DCEG7Q4pBzHFAlIaUUpRoFU03AWgWR0CTfe6gM+eOdX2UKGgGaAloD0MIbLJGPUTUcUCUhpRSlGgVTQYBaBZHQJN+BD/lyR11fZQoaAZoCWgPQwgeb/JbdP1vQJSGlFKUaBVL+GgWR0CTf+/ZuhsZdX2UKGgGaAloD0MI6bXZWElgcECUhpRSlGgVTQQBaBZHQJN/+hJyyUt1fZQoaAZoCWgPQwgZOKCla5xyQJSGlFKUaBVNAwFoFkdAk4AIXO4XoHV9lChoBmgJaA9DCNBFQ8YjvnFAlIaUUpRoFU1xAWgWR0CTgNawD/2kdX2UKGgGaAloD0MIxHk4gekvcUCUhpRSlGgVTQcBaBZHQJOA/Ah0Qsh1fZQoaAZoCWgPQwhjYB3HD50rQJSGlFKUaBVLv2gWR0CTgebyYoiLdX2UKGgGaAloD0MILSKKyZv1b0CUhpRSlGgVTRMBaBZHQJOCO7/XGwR1fZQoaAZoCWgPQwiaCYZzTRlxQJSGlFKUaBVNNgFoFkdAk4MDNQj2SXV9lChoBmgJaA9DCP3BwHNvi3BAlIaUUpRoFU0VAWgWR0CTgzxQzk6tdX2UKGgGaAloD0MI3JxKBsBRcECUhpRSlGgVTW0BaBZHQJOE/7Ikqtp1fZQoaAZoCWgPQwjf+Nozyy9tQJSGlFKUaBVNBgFoFkdAk4UEPczqKXV9lChoBmgJaA9DCEljtI7qNXJAlIaUUpRoFUv4aBZHQJOFDgQ6IWR1fZQoaAZoCWgPQwio4PCCiOdvQJSGlFKUaBVNAwFoFkdAk4WUiQkonnV9lChoBmgJaA9DCOJ2aFjMHXJAlIaUUpRoFU0jAWgWR0CThdDjzZpSdX2UKGgGaAloD0MIOx3IeuqWbkCUhpRSlGgVTSsBaBZHQJOF6619fC11fZQoaAZoCWgPQwjfap24nJdxQJSGlFKUaBVNIwFoFkdAk4aeenQ6ZHV9lChoBmgJaA9DCMbDew7srnFAlIaUUpRoFU0IAWgWR0CTiJNoJzDGdX2UKGgGaAloD0MIfNP02UEEcECUhpRSlGgVS/5oFkdAk4mG4ZuQ63V9lChoBmgJaA9DCDOID+w4uHBAlIaUUpRoFU0qAWgWR0CTiiF3IMjNdX2UKGgGaAloD0MIJqsi3GSeQ0CUhpRSlGgVS85oFkdAk4qzMJQcgnV9lChoBmgJaA9DCBo1XyWftnNAlIaUUpRoFU1QAWgWR0CTi7l1r6+GdX2UKGgGaAloD0MIWVAYlOnecECUhpRSlGgVTRUBaBZHQJOMQNVinYR1fZQoaAZoCWgPQwhYHqSnCOpyQJSGlFKUaBVNOAFoFkdAk4xXHeaa1HV9lChoBmgJaA9DCJOP3QVKyW9AlIaUUpRoFU0VAWgWR0CTjKTg2qDLdX2UKGgGaAloD0MIEcgljjwLbUCUhpRSlGgVTQEBaBZHQJONHggow251fZQoaAZoCWgPQwippE5Akz9xQJSGlFKUaBVNAQFoFkdAk4+NdE9dNXV9lChoBmgJaA9DCBvWVBbFpnFAlIaUUpRoFU0NAWgWR0CTkEH8jzI4dX2UKGgGaAloD0MINUbrqOrBbUCUhpRSlGgVTR8BaBZHQJORHArQPZt1fZQoaAZoCWgPQwiVLZJ24zZxQJSGlFKUaBVL8WgWR0CTkUcjZ+QVdX2UKGgGaAloD0MIodrgRDS4cECUhpRSlGgVTQcBaBZHQJORdmI0qH51fZQoaAZoCWgPQwhVMZV+wnZwQJSGlFKUaBVNDwFoFkdAk5Grg88s+XV9lChoBmgJaA9DCAAce/aclXBAlIaUUpRoFU0bAWgWR0CTkc1fVqetdX2UKGgGaAloD0MIQWK7e4AJbkCUhpRSlGgVTQ4BaBZHQJOVhfKISDh1fZQoaAZoCWgPQwi4WFGDaStwQJSGlFKUaBVNLAFoFkdAk5XuYc/+sHV9lChoBmgJaA9DCGu6nui6w3FAlIaUUpRoFUvxaBZHQJOWhHI6r/91fZQoaAZoCWgPQwi4j9yadGtuQJSGlFKUaBVL92gWR0CTl3BsANobdX2UKGgGaAloD0MIQL6ECg6Rb0CUhpRSlGgVTR0BaBZHQJOXcis4ku91fZQoaAZoCWgPQwjhz/BmjblyQJSGlFKUaBVNLAFoFkdAk5eiKFZgX3V9lChoBmgJaA9DCCfaVUg5anFAlIaUUpRoFU0lAWgWR0CTmXBMzuWsdX2UKGgGaAloD0MIud+hKNAXb0CUhpRSlGgVTRcBaBZHQJOZtggHNX51fZQoaAZoCWgPQwgg09o0Nu9uQJSGlFKUaBVL+WgWR0CTmnTOgQHzdX2UKGgGaAloD0MI1AypojiTcECUhpRSlGgVS/hoFkdAk5uCg00m+nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a760729d04a7ab61fe0a4af16e3d54f026732c42b1b53a3207144594729f4252
3
+ size 147396
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f21b8f7e3a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21b8f7e430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21b8f7e4c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21b8f7e550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f21b8f7e5e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f21b8f7e670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f21b8f7e700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21b8f7e790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f21b8f7e820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21b8f7e8b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21b8f7e940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21b8f7e9d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f21b8f798d0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678132451547936063,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNLHj41kko/ux+tPQNLvL4T4PY9YhaevAAAAAAAAAAAluiCPkppeD+P1iA/hf0dv9S2jT74heI9AAAAAAAAAAC6fCM+D1hXPs4vG75baXe+x4m1u33xvroAAAAAAAAAAJoUrDzhtJO631AntCI6ri3x44u6PUOOMwAAgD8AAIA/vYJ4vnNjCT/K2oA+0YWdvrudcrzrTtE9AAAAAAAAAABmZpQ6hbmpu1ilWTzShIg84ZIHPZCQaL0AAIA/AACAP1NAP76A6LA+kmeqPs10j771Se27ixF1vAAAAAAAAAAAM4VkvL2ntj9m76y+Y9cOPoNXIzxKGZe7AAAAAAAAAABNyGs+OpOxPjC3o7ydBLi+z+LdPXqZZjsAAAAAAAAAAFq98732Hsc+3nWuPfcSlb5A2n29aHJtOwAAAAAAAAAAMwe8u+UYOz8qQx09PS7Nvj6TBzrRSpU9AAAAAAAAAACaCSK9e56zuprLvroa+bW1U0E5uWb/2TkAAIA/AACAP2aG5Lu2cKM+HmkcvdbHbb6aUBw7nOeDvAAAAAAAAAAAQJDVPY86HroVaxU4hGAcM2oS8zrVdyq3AACAPwAAgD/z7D4+Aba0vIhX6j2LMHy8bXQivoGIRb0AAIA/AACAP2bLk71IX4i6CaqZtd5kc7Aab1S6lNmrNAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIm+jzUQbdcECUhpRSlIwBbJRNRgGMAXSUR0CTRYR/EwWWdX2UKGgGaAloD0MIr84xIPsXb0CUhpRSlGgVTQABaBZHQJNGh54W1tx1fZQoaAZoCWgPQwjVljrIq9NxQJSGlFKUaBVNBAFoFkdAk0gXj2i+L3V9lChoBmgJaA9DCHSy1Hr/ZHFAlIaUUpRoFUv5aBZHQJNJijk+5e91fZQoaAZoCWgPQwhbP/1njVRyQJSGlFKUaBVNJwFoFkdAk0ncEA5q/XV9lChoBmgJaA9DCN2yQ/yDS3FAlIaUUpRoFU0MAWgWR0CTSeevZAY6dX2UKGgGaAloD0MI6e+l8CAkckCUhpRSlGgVTREBaBZHQJNJ/w1BMSN1fZQoaAZoCWgPQwjjx5i7lgVmQJSGlFKUaBVNmgNoFkdAk0ofbXYlIHV9lChoBmgJaA9DCMR8eQH2VXFAlIaUUpRoFU0eAWgWR0CTSwLh73PBdX2UKGgGaAloD0MIrOC3IcZDOkCUhpRSlGgVS9RoFkdAk0tMDSw4bXV9lChoBmgJaA9DCEPKT6p9WWxAlIaUUpRoFUvyaBZHQJNM65sj3VV1fZQoaAZoCWgPQwgT1PAtrFVWQJSGlFKUaBVN6ANoFkdAk02yv5gw5HV9lChoBmgJaA9DCOy+Y3isxHFAlIaUUpRoFU0gAWgWR0CTTcxiXpnpdX2UKGgGaAloD0MItFcfDz1DckCUhpRSlGgVS+poFkdAk07Gv8qFy3V9lChoBmgJaA9DCBJKXwg5xXFAlIaUUpRoFU0LAWgWR0CTTxGJN0vHdX2UKGgGaAloD0MIisxc4HKicECUhpRSlGgVTUQBaBZHQJNPSZVn27F1fZQoaAZoCWgPQwgK8x5n2hByQJSGlFKUaBVNTgFoFkdAk1HHZPEbYXV9lChoBmgJaA9DCLgDdcqjLnNAlIaUUpRoFU0pAWgWR0CTUs4uK4x2dX2UKGgGaAloD0MIi+B/K1mfcECUhpRSlGgVS/RoFkdAk1Tb8ejmCHV9lChoBmgJaA9DCI1+NJwyy21AlIaUUpRoFUv4aBZHQJNVJsoDxLF1fZQoaAZoCWgPQwhUqkTZW1NwQJSGlFKUaBVNAAFoFkdAk1XAFX7tRnV9lChoBmgJaA9DCATj4NLxb3BAlIaUUpRoFU0zAWgWR0CTVd4B3iaRdX2UKGgGaAloD0MIEhJpG38NbUCUhpRSlGgVS/9oFkdAk1bfduYQa3V9lChoBmgJaA9DCFBWDFeHm3FAlIaUUpRoFU0WAWgWR0CTVwWOZLIxdX2UKGgGaAloD0MIBJFFmrhAckCUhpRSlGgVTQsBaBZHQJNXufFrEcd1fZQoaAZoCWgPQwiKdap8z8hwQJSGlFKUaBVNPAFoFkdAk1gkpI+W4XV9lChoBmgJaA9DCAGnd/F+KGxAlIaUUpRoFU0EAWgWR0CTWPAS39aVdX2UKGgGaAloD0MIrtSzIJTAbUCUhpRSlGgVTQgBaBZHQJNZ6KdhAnl1fZQoaAZoCWgPQwhszOuIg2dyQJSGlFKUaBVL/2gWR0CTWuozvZyudX2UKGgGaAloD0MIoMa9+c1WckCUhpRSlGgVTTMBaBZHQJNbowEhaDB1fZQoaAZoCWgPQwjTTWIQ2GtyQJSGlFKUaBVNPQFoFkdAk11Lsa86FXV9lChoBmgJaA9DCCsU6X7OP3JAlIaUUpRoFU0zAWgWR0CTXXD15B1LdX2UKGgGaAloD0MIm6+Sj90+b0CUhpRSlGgVTRoBaBZHQJNeqvV3EAJ1fZQoaAZoCWgPQwj+t5IdG5FBQJSGlFKUaBVLwWgWR0CTXvZrYXfqdX2UKGgGaAloD0MI1PNuLOg7ckCUhpRSlGgVTTsBaBZHQJNgVW0Z3s51fZQoaAZoCWgPQwh7aYoA5z9wQJSGlFKUaBVNHQFoFkdAk2CSY5T6znV9lChoBmgJaA9DCG/0MR+Q3XJAlIaUUpRoFU0bAWgWR0CTYKq+rU9ZdX2UKGgGaAloD0MIaY1BJ4T3ckCUhpRSlGgVTRIBaBZHQJNgtN0vGqB1fZQoaAZoCWgPQwiaQBGLmKNtQJSGlFKUaBVNFAFoFkdAk2DTTz/ZNHV9lChoBmgJaA9DCDF9ryG4lnBAlIaUUpRoFU0BAWgWR0CTYVi+L3sYdX2UKGgGaAloD0MIG4F4Xf8uckCUhpRSlGgVS/RoFkdAk2HGfwqiGnV9lChoBmgJaA9DCIfD0sAP+3FAlIaUUpRoFU0mAWgWR0CTYeGAkLQYdX2UKGgGaAloD0MI28LzUnH3cECUhpRSlGgVTQ8BaBZHQJNiARh+fAd1fZQoaAZoCWgPQwi+ofDZeqpxQJSGlFKUaBVNLgFoFkdAk3iEOVgQYnV9lChoBmgJaA9DCNUFvMxw6nBAlIaUUpRoFU0IAWgWR0CTeJw1R+BpdX2UKGgGaAloD0MIPx767hYucUCUhpRSlGgVTSEBaBZHQJN42CnP3SN1fZQoaAZoCWgPQwhxcr9DUaxwQJSGlFKUaBVNAQFoFkdAk3l5TIeYD3V9lChoBmgJaA9DCEcf8wGB93FAlIaUUpRoFU0TAWgWR0CTeg4h2W6cdX2UKGgGaAloD0MIKNU+Hc/FckCUhpRSlGgVS+5oFkdAk3pNfb9IgHV9lChoBmgJaA9DCJLn+j4c5EhAlIaUUpRoFUvEaBZHQJN6WRSxZ+x1fZQoaAZoCWgPQwjGNqlobHhxQJSGlFKUaBVNGAFoFkdAk3sw7xNIsnV9lChoBmgJaA9DCE0vMZYpY3BAlIaUUpRoFUvraBZHQJN8fW/ag291fZQoaAZoCWgPQwgRHm0cMZxxQJSGlFKUaBVNGgFoFkdAk30s0P6KtXV9lChoBmgJaA9DCIih1ckZEHJAlIaUUpRoFU0ZAWgWR0CTfU/Zdv87dX2UKGgGaAloD0MI5IV0eIgJcUCUhpRSlGgVTR4BaBZHQJN9WNyYG+t1fZQoaAZoCWgPQwgdOdIZWPhyQJSGlFKUaBVNBwFoFkdAk33GIj4YanV9lChoBmgJaA9DCEG7Q4pBzHFAlIaUUpRoFU03AWgWR0CTfe6gM+eOdX2UKGgGaAloD0MIbLJGPUTUcUCUhpRSlGgVTQYBaBZHQJN+BD/lyR11fZQoaAZoCWgPQwgeb/JbdP1vQJSGlFKUaBVL+GgWR0CTf+/ZuhsZdX2UKGgGaAloD0MI6bXZWElgcECUhpRSlGgVTQQBaBZHQJN/+hJyyUt1fZQoaAZoCWgPQwgZOKCla5xyQJSGlFKUaBVNAwFoFkdAk4AIXO4XoHV9lChoBmgJaA9DCNBFQ8YjvnFAlIaUUpRoFU1xAWgWR0CTgNawD/2kdX2UKGgGaAloD0MIxHk4gekvcUCUhpRSlGgVTQcBaBZHQJOA/Ah0Qsh1fZQoaAZoCWgPQwhjYB3HD50rQJSGlFKUaBVLv2gWR0CTgebyYoiLdX2UKGgGaAloD0MILSKKyZv1b0CUhpRSlGgVTRMBaBZHQJOCO7/XGwR1fZQoaAZoCWgPQwiaCYZzTRlxQJSGlFKUaBVNNgFoFkdAk4MDNQj2SXV9lChoBmgJaA9DCP3BwHNvi3BAlIaUUpRoFU0VAWgWR0CTgzxQzk6tdX2UKGgGaAloD0MI3JxKBsBRcECUhpRSlGgVTW0BaBZHQJOE/7Ikqtp1fZQoaAZoCWgPQwjf+Nozyy9tQJSGlFKUaBVNBgFoFkdAk4UEPczqKXV9lChoBmgJaA9DCEljtI7qNXJAlIaUUpRoFUv4aBZHQJOFDgQ6IWR1fZQoaAZoCWgPQwio4PCCiOdvQJSGlFKUaBVNAwFoFkdAk4WUiQkonnV9lChoBmgJaA9DCOJ2aFjMHXJAlIaUUpRoFU0jAWgWR0CThdDjzZpSdX2UKGgGaAloD0MIOx3IeuqWbkCUhpRSlGgVTSsBaBZHQJOF6619fC11fZQoaAZoCWgPQwjfap24nJdxQJSGlFKUaBVNIwFoFkdAk4aeenQ6ZHV9lChoBmgJaA9DCMbDew7srnFAlIaUUpRoFU0IAWgWR0CTiJNoJzDGdX2UKGgGaAloD0MIfNP02UEEcECUhpRSlGgVS/5oFkdAk4mG4ZuQ63V9lChoBmgJaA9DCDOID+w4uHBAlIaUUpRoFU0qAWgWR0CTiiF3IMjNdX2UKGgGaAloD0MIJqsi3GSeQ0CUhpRSlGgVS85oFkdAk4qzMJQcgnV9lChoBmgJaA9DCBo1XyWftnNAlIaUUpRoFU1QAWgWR0CTi7l1r6+GdX2UKGgGaAloD0MIWVAYlOnecECUhpRSlGgVTRUBaBZHQJOMQNVinYR1fZQoaAZoCWgPQwhYHqSnCOpyQJSGlFKUaBVNOAFoFkdAk4xXHeaa1HV9lChoBmgJaA9DCJOP3QVKyW9AlIaUUpRoFU0VAWgWR0CTjKTg2qDLdX2UKGgGaAloD0MIEcgljjwLbUCUhpRSlGgVTQEBaBZHQJONHggow251fZQoaAZoCWgPQwippE5Akz9xQJSGlFKUaBVNAQFoFkdAk4+NdE9dNXV9lChoBmgJaA9DCBvWVBbFpnFAlIaUUpRoFU0NAWgWR0CTkEH8jzI4dX2UKGgGaAloD0MINUbrqOrBbUCUhpRSlGgVTR8BaBZHQJORHArQPZt1fZQoaAZoCWgPQwiVLZJ24zZxQJSGlFKUaBVL8WgWR0CTkUcjZ+QVdX2UKGgGaAloD0MIodrgRDS4cECUhpRSlGgVTQcBaBZHQJORdmI0qH51fZQoaAZoCWgPQwhVMZV+wnZwQJSGlFKUaBVNDwFoFkdAk5Grg88s+XV9lChoBmgJaA9DCAAce/aclXBAlIaUUpRoFU0bAWgWR0CTkc1fVqetdX2UKGgGaAloD0MIQWK7e4AJbkCUhpRSlGgVTQ4BaBZHQJOVhfKISDh1fZQoaAZoCWgPQwi4WFGDaStwQJSGlFKUaBVNLAFoFkdAk5XuYc/+sHV9lChoBmgJaA9DCGu6nui6w3FAlIaUUpRoFUvxaBZHQJOWhHI6r/91fZQoaAZoCWgPQwi4j9yadGtuQJSGlFKUaBVL92gWR0CTl3BsANobdX2UKGgGaAloD0MIQL6ECg6Rb0CUhpRSlGgVTR0BaBZHQJOXcis4ku91fZQoaAZoCWgPQwjhz/BmjblyQJSGlFKUaBVNLAFoFkdAk5eiKFZgX3V9lChoBmgJaA9DCCfaVUg5anFAlIaUUpRoFU0lAWgWR0CTmXBMzuWsdX2UKGgGaAloD0MIud+hKNAXb0CUhpRSlGgVTRcBaBZHQJOZtggHNX51fZQoaAZoCWgPQwgg09o0Nu9uQJSGlFKUaBVL+WgWR0CTmnTOgQHzdX2UKGgGaAloD0MI1AypojiTcECUhpRSlGgVS/hoFkdAk5uCg00m+nVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:143b9081cf2b3030c22fdced9ff1b0d7ba28fbaf8739aea94d5fad8a6d56a5e2
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ffe03216f9181f8c28ae876509528b88a95797beb49657dc30176db96c94c4c
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (206 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 250.7308197506673, "std_reward": 28.164042615185974, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T20:22:27.521241"}