File size: 3,546 Bytes
51524f7 b859b28 51524f7 b859b28 d8e632e b859b28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: mit
pipeline_tag: tabular-classification
---
<h1 align="center"> 🌲 MetaTree 🌲 </h1>
<p align="center"> <b>Learning a Decision Tree Algorithm with Transformers</b> (<a href="https://arxiv.org/abs/2402.03774">Zhuang et al. 2024</a>).
</p>
<p align="center"> MetaTree is a transformer-based decision tree algorithm. It learns from classical decision tree algorithms (greedy algorithm CART, optimal algorithm GOSDT), for better generalization capabilities.
</p>
## Quickstart -- use MetaTree to generate decision tree models
Model is avaliable at https://huggingface.co/yzhuang/MetaTree
1. Install `metatreelib`:
```bash
pip install metatreelib
# Alternatively,
# clone then pip install -e .
# pip install git+https://github.com/EvanZhuang/MetaTree
```
2. Use MetaTree on your datasets to generate a decision tree model
```python
from metatree.model_metatree import LlamaForMetaTree as MetaTree
from metatree.decision_tree_class import DecisionTree, DecisionTreeForest
from metatree.run_train import preprocess_dimension_patch
from transformers import AutoConfig
import imodels # pip install imodels
# Initialize Model
model_name_or_path = "yzhuang/MetaTree"
config = AutoConfig.from_pretrained(model_name_or_path)
model = MetaTree.from_pretrained(
model_name_or_path,
config=config,
)
decision_tree_forest = DecisionTreeForest()
# Load Datasets
X, y, feature_names = imodels.get_clean_dataset('fico', data_source='imodels')
print("Dataset Shapes X={}, y={}, Num of Classes={}".format(X.shape, y.shape, len(set(y))))
train_idx, test_idx = sklearn.model_selection.train_test_split(range(X.shape[0]), test_size=0.3, random_state=seed)
# Dimension Subsampling
feature_idx = np.random.choice(X.shape[1], 10, replace=False)
X = X[:, feature_idx]
test_X, test_y = X[test_idx], y[test_idx]
# Sample Train and Test Data
subset_idx = random.sample(train_idx, 256)
train_X, train_y = X[subset_idx], y[subset_idx]
input_x = torch.tensor(train_X, dtype=torch.float32)
input_y = torch.nn.functional.one_hot(torch.tensor(train_y)).float()
batch = {"input_x": input_x, "input_y": input_y, "input_y_clean": input_y}
batch = preprocess_dimension_patch(batch, n_feature=10, n_class=10)
model.depth = 2
outputs = model.generate_decision_tree(batch['input_x'], batch['input_y'], depth=model.depth)
decision_tree_forest.add_tree(DecisionTree(auto_dims=outputs.metatree_dimensions, auto_thresholds=outputs.tentative_splits, input_x=batch['input_x'], input_y=batch['input_y'], depth=model.depth))
print("Decision Tree Features: ", [x.argmax(dim=-1) for x in outputs.metatree_dimensions])
print("Decision Tree Threasholds: ", outputs.tentative_splits)
```
3. Inference with the decision tree model
```python
tree_pred = decision_tree_forest.predict(torch.tensor(test_X, dtype=torch.float32))
accuracy = accuracy_score(test_y, tree_pred.argmax(dim=-1).squeeze(0))
print("MetaTree Test Accuracy: ", accuracy)
```
## Example Usage
We show a complete example of using MetaTree at [notebook](examples/example_usage.ipynb)
## Questions?
If you have any questions related to the code or the paper, feel free to reach out to us at y5zhuang@ucsd.edu.
## Citation
If you find our paper and code useful, please cite us:
```r
@misc{zhuang2024learning,
title={Learning a Decision Tree Algorithm with Transformers},
author={Yufan Zhuang and Liyuan Liu and Chandan Singh and Jingbo Shang and Jianfeng Gao},
year={2024},
eprint={2402.03774},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
``` |