File size: 2,655 Bytes
5ff8166 3a6393f 5ff8166 3a6393f 03af57a 3a6393f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
language:
- en
---
# STRONG Model Card
## Model Information
### Description
STRONG is a finetuned LED-based model that can produce a Structure Controllable summarization of long legal opinions obtained from CanLII.
You can also find the fine-tuned model without structure information [here](https://huggingface.co/yznlp/STRONG-LED-NoStructure).
### Usage
Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
The input is composed of two parts:
1. Summary Structure Prompt: Concatenate a series of IRC structure labels using " | " as a separator. (labels include Non_IRC, Issue, Reason, Conclusion).
2. After the special token " ==> ", enter the text of the legal opinion.
#### Running the model on a CPU
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
model = AutoModelForCausalLM.from_pretrained("yznlp/STRONG-LED")
input_text = "Non_IRC | Issue | Conclusion ==> {Legal Case Content}"
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids, max_length=256, num_beams=4, length_penalty=2.0)
print(tokenizer.decode(outputs[0]))
```
#### Running the model on a single / multi GPU
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
model = AutoModelForCausalLM.from_pretrained("yznlp/STRONG-LED", device_map="auto")
input_text = "Non_IRC | Issue | Conclusion ==> {Legal Case Content}"
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids, max_length=256, num_beams=4, length_penalty=2.0)
print(tokenizer.decode(outputs[0]))
```
### Paper Citation
If you find our model useful, please cite
```
@inproceedings{zhong-litman-2023-strong,
title = "{STRONG} {--} Structure Controllable Legal Opinion Summary Generation",
author = "Zhong, Yang and
Litman, Diane",
editor = "Park, Jong C. and
Arase, Yuki and
Hu, Baotian and
Lu, Wei and
Wijaya, Derry and
Purwarianti, Ayu and
Krisnadhi, Adila Alfa",
booktitle = "Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)",
month = nov,
year = "2023",
address = "Nusa Dua, Bali",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-ijcnlp.37",
pages = "431--448",
}
```
|