Edit model card

multilingual_sentiment_newspaper_headlines

This model is a fine-tuned version of bert-base-multilingual-cased on a dataset of 30k newspaper headlines in German, Polish, English, Dutch and Spanish. The dataset contains 6k headlines in each of the five languages. The newspapers used are as follows:

  • Polish: Fakt, Rzeczpospolita, Gazeta Wyborcza
  • English: The Times, The Guardian, The Sun
  • Dutch: De Telegraaf, NRC, Volkskrant
  • Spanish: El Mundo, El Pais, ABC
  • German: Suddeutsche Zeitung, De Welt, Bild

It achieves the following results on the evaluation set:

  • Train Loss: 0.2886
  • Train Sparse Categorical Accuracy: 0.8688
  • Validation Loss: 1.0107
  • Validation Sparse Categorical Accuracy: 0.6434
  • Epoch: 4
import torch
from transformers import AutoTokenizer, TextClassificationPipeline,TFAutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("z-dickson/multilingual_sentiment_newspaper_headlines")
m1 = TFAutoModelForSequenceClassification.from_pretrained("z-dickson/multilingual_sentiment_newspaper_headlines", from_tf=True)
sentiment_classifier = TextClassificationPipeline(tokenizer=tokenizer, model=m1)

sentiment_classifier('Brazylia: Bolsonaro wci±ż nie uznał porażki. Jego zwolennicy blokuj± autostrady')
[{'label': 'negative, 0', 'score': 0.9989686012268066}]

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Sparse Categorical Accuracy Validation Loss Validation Sparse Categorical Accuracy Epoch
0.8008 0.6130 0.7099 0.6558 0
0.6148 0.6973 0.7559 0.6200 1
0.4626 0.7690 0.8233 0.6368 2
0.3632 0.8229 0.9609 0.6454 3
0.2886 0.8688 1.0107 0.6434 4

Framework versions

  • Transformers 4.26.0
  • TensorFlow 2.9.2
  • Tokenizers 0.13.2
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.