multilingual_sentiment_newspaper_headlines
This model is a fine-tuned version of bert-base-multilingual-cased on a dataset of 30k newspaper headlines in German, Polish, English, Dutch and Spanish. The dataset contains 6k headlines in each of the five languages. The newspapers used are as follows:
- Polish: Fakt, Rzeczpospolita, Gazeta Wyborcza
- English: The Times, The Guardian, The Sun
- Dutch: De Telegraaf, NRC, Volkskrant
- Spanish: El Mundo, El Pais, ABC
- German: Suddeutsche Zeitung, De Welt, Bild
It achieves the following results on the evaluation set:
- Train Loss: 0.2886
- Train Sparse Categorical Accuracy: 0.8688
- Validation Loss: 1.0107
- Validation Sparse Categorical Accuracy: 0.6434
- Epoch: 4
import torch
from transformers import AutoTokenizer, TextClassificationPipeline,TFAutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("z-dickson/multilingual_sentiment_newspaper_headlines")
m1 = TFAutoModelForSequenceClassification.from_pretrained("z-dickson/multilingual_sentiment_newspaper_headlines", from_tf=True)
sentiment_classifier = TextClassificationPipeline(tokenizer=tokenizer, model=m1)
sentiment_classifier('Brazylia: Bolsonaro wci±ż nie uznał porażki. Jego zwolennicy blokuj± autostrady')
[{'label': 'negative, 0', 'score': 0.9989686012268066}]
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
---|---|---|---|---|
0.8008 | 0.6130 | 0.7099 | 0.6558 | 0 |
0.6148 | 0.6973 | 0.7559 | 0.6200 | 1 |
0.4626 | 0.7690 | 0.8233 | 0.6368 | 2 |
0.3632 | 0.8229 | 0.9609 | 0.6454 | 3 |
0.2886 | 0.8688 | 1.0107 | 0.6434 | 4 |
Framework versions
- Transformers 4.26.0
- TensorFlow 2.9.2
- Tokenizers 0.13.2
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.