--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: multilingual_sentiment_newspaper_headlines results: [] --- # multilingual_sentiment_newspaper_headlines This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on a dataset of 30k newspaper headlines in German, Polish, English, Dutch and Spanish. The dataset contains 6k headlines in each of the five languages. The newspapers used are as follows: ['fakt', 'Rzeczpospolita', 'gazeta_wyborcza', 'UK_times', 'guardian', 'UK_sun', 'NRC', 'de_telegraaf', 'volkskrant', 'el_mundo', 'el_pais', 'ABC_spain', 'suddeutsche_zeitung', 'De_Welt', 'Bild'] It achieves the following results on the evaluation set: - Train Loss: 0.2886 - Train Sparse Categorical Accuracy: 0.8688 - Validation Loss: 1.0107 - Validation Sparse Categorical Accuracy: 0.6434 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations Newpaper headline classification ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.8008 | 0.6130 | 0.7099 | 0.6558 | 0 | | 0.6148 | 0.6973 | 0.7559 | 0.6200 | 1 | | 0.4626 | 0.7690 | 0.8233 | 0.6368 | 2 | | 0.3632 | 0.8229 | 0.9609 | 0.6454 | 3 | | 0.2886 | 0.8688 | 1.0107 | 0.6434 | 4 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Tokenizers 0.13.2