z4x commited on
Commit
be95487
·
1 Parent(s): 420dd3f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 871.69 +/- 15.24
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f39178258f7fd72b0bf5d7ade93dd2ab3664597efdd58a137d45abbebce94c2e
3
+ size 125189
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff61d6eb0d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff61d6eb160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff61d6eb1f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff61d6eb280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff61d6eb310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff61d6eb3a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff61d6eb430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff61d6eb4c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff61d6eb550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff61d6eb5e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff61d6eb670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff61d6eb700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7ff61d6e3750>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
26
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
27
+ "optimizer_kwargs": {
28
+ "alpha": 0.99,
29
+ "eps": 1e-05,
30
+ "weight_decay": 0
31
+ }
32
+ },
33
+ "observation_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
36
+ "dtype": "float32",
37
+ "_shape": [
38
+ 28
39
+ ],
40
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
41
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
42
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
43
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "_np_random": null
45
+ },
46
+ "action_space": {
47
+ ":type:": "<class 'gym.spaces.box.Box'>",
48
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
49
+ "dtype": "float32",
50
+ "_shape": [
51
+ 8
52
+ ],
53
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
54
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
55
+ "bounded_below": "[ True True True True True True True True]",
56
+ "bounded_above": "[ True True True True True True True True]",
57
+ "_np_random": null
58
+ },
59
+ "n_envs": 4,
60
+ "num_timesteps": 100000,
61
+ "_total_timesteps": 100000,
62
+ "_num_timesteps_at_start": 0,
63
+ "seed": null,
64
+ "action_noise": null,
65
+ "start_time": 1676056875282296177,
66
+ "learning_rate": 0.0007,
67
+ "tensorboard_log": null,
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
71
+ },
72
+ "_last_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMKKRr8BWt8/uPXcv5URhL4p0es+XCg7P7D9wz9xVsQ+sQOqPqOBBMBU/PG+ZoV9vzl7I74ZJAO+I545v5X04j3/34c/RbCbvstUij+r0Es+pa8jPyJjAr8yCSi/NbDBPqfhJ8DnKWM+oSuOPv5j7j5k8LZA+G1lvv6dIj81XAC/cjOePfknAj7i+0O/8zKQP0U+mb/sGjq8K9cmwCfiPL2iCqS/AiNOvETTFT9OWUQ9D+E6vxg2Frx0OdM+PxJIPbSDgr+cZXC8wFEBwErwW72n4SfAlT+QwOF7ZsCAdAnA87SpvYSccj1dUBc/qm77v62vBEDX51I9FW2pPzN1lj6LZEU+ZjElwKjrmz4bcy7AJaxlPVnddT+IITm/vRCtvXCQrb+Mzkg/PSYoPy7HoD765CU/OdUguzlspL7jHEq/p+EnwOcpYz6hK44+/mPuPvH3I78XVg3AMEbiv2etBb/w2Jw+Jn3NPS0KVj+PMEE/dTnqPWFdwj7hIbW96c/svLBpdz5qyiA+pR44v3VMfj1ssGk+JXcpPkKn1j4q70M+yP0lPxT1pjx+PVq/eVO0vXIvwz7nKWM+oSuOPv5j7j6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
75
+ },
76
+ "_last_episode_starts": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
79
+ },
80
+ "_last_original_obs": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD0D+q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArhLePQAAAADzx9i/AAAAAEJ+8r0AAAAAguQAQAAAAADhtxk8AAAAAJDF+T8AAAAAJ93WPQAAAAAEf+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA80WINgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ244b0AAAAAWu3yvwAAAAA7qCs9AAAAAKuXAEAAAAAAjRyxPQAAAAAYdf8/AAAAAPuFaD0AAAAA9in1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODwnzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDv8ZA8AAAAANOF7L8AAAAAbIGwPQAAAAASMwFAAAAAAFF6wT0AAAAA6qX2PwAAAABXytg9AAAAAEp7+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVtVu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtfWxvQAAAAAr6/a/AAAAAEWuPL0AAAAA69r+PwAAAABj+gC+AAAAAMmT4z8AAAAA3Ox2PQAAAAC4Guu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
83
+ },
84
+ "_episode_num": 0,
85
+ "use_sde": false,
86
+ "sde_sample_freq": -1,
87
+ "_current_progress_remaining": 0.0,
88
+ "ep_info_buffer": {
89
+ ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIOzcX1rZaqMAWyUTegDjAF0lEdAjCdmnO0LMXV9lChoBkdAhMHHXmNipmgHTegDaAhHQIwnaxC6Ymd1fZQoaAZHQIU4jedkJ8hoB03oA2gIR0CMJ3BMSK3vdX2UKGgGR0CDf7Wwu/UOaAdN6ANoCEdAjCd1qesgdXV9lChoBkdAc+aaZQYUFmgHTSwCaAhHQIxTB2W6bvx1fZQoaAZHQHsal/+bVjJoB03oA2gIR0CMb3I3BHkMdX2UKGgGR0B6lheE7GNraAdN6ANoCEdAjG9zZxrBTHV9lChoBkdAeIvMbWEsa2gHTegDaAhHQIxvdlK9PDZ1fZQoaAZHQIBxbeVLSNRoB03oA2gIR0CMlqa2F36idX2UKGgGR0B4NVbB42S/aAdN6ANoCEdAjMNBgNPP9nV9lChoBkdAf/DIatLcsWgHTegDaAhHQIzDQmois4l1fZQoaAZHQHlZKmO2iL5oB03oA2gIR0CMw0UHpr1vdX2UKGgGR0CBYCZHd43WaAdN6ANoCEdAjObXS0BwM3V9lChoBkdAhijYBvJiiWgHTegDaAhHQI0DbTH80k51fZQoaAZHQISHwVh1DBxoB03oA2gIR0CNA25PuXu3dX2UKGgGR0CE0hP2wmmcaAdN6ANoCEdAjQNxdQfp2XV9lChoBkdAgt+2tuDSPWgHTegDaAhHQI01cVBUrCp1fZQoaAZHQIMdEv7FbV1oB03oA2gIR0CNVzG0/nnudX2UKGgGR0CDFuRbr1M/aAdN6ANoCEdAjVczXJ5miHV9lChoBkdAggynBciW3WgHTegDaAhHQI1XNgfEGaB1fZQoaAZHQIEAC2SdOItoB03oA2gIR0CNesXY150KdX2UKGgGR0CDDaL/CIk7aAdN6ANoCEdAjZspnYg7o3V9lChoBkdAgbfJ+c6Nl2gHTegDaAhHQI2bLYbsF+x1fZQoaAZHQIGFD9jwx35oB03oA2gIR0CNmzKvFFUidX2UKGgGR0CEhB7P6be/aAdN6ANoCEdAjc6PRZ2ZA3V9lChoBkdAhhzyeAd4mmgHTegDaAhHQI3rPKSxJNF1fZQoaAZHQIOr7ApKBd5oB03oA2gIR0CN6z3JPqLTdX2UKGgGR0CGLsFzMibEaAdN6ANoCEdAjetAdn0033V9lChoBkdAhJrfoA4n4WgHTegDaAhHQI4N+5SWJJp1fZQoaAZHQIOe/gm7aqVoB03oA2gIR0COONSApazNdX2UKGgGR0CF/XQ2uPmxaAdN6ANoCEdAjjjYbsF+u3V9lChoBkdAhlOxyfcvd2gHTegDaAhHQI443X5FgD11fZQoaAZHQIObaGnGbTdoB03oA2gIR0COddJ04iosdX2UKGgGR0CElwlPacqfaAdN6ANoCEdAjpKxiw0O3HV9lChoBkdAg3xOSGJvYWgHTegDaAhHQI6Ss47zTWp1fZQoaAZHQILbOZb6guhoB03oA2gIR0COkrawljVhdX2UKGgGR0B/XOEGqxTsaAdN6ANoCEdAjrYUknkT6HV9lChoBkdAg5NLCWNWEWgHTegDaAhHQI7lp4QjD9B1fZQoaAZHQIDVM4rBj4JoB03oA2gIR0CO5auoxYaHdX2UKGgGR0CAaws7uDzzaAdN6ANoCEdAjuWxm9QGfXV9lChoBkdAg4nlG5MDfWgHTegDaAhHQI8PmIj4YaZ1fZQoaAZHQIFuTr1M/QloB03oA2gIR0CPK8oaUA1fdX2UKGgGR0CG/Oqz7di2aAdN6ANoCEdAjyvLmQr+YXV9lChoBkdAhqFC9Zid8WgHTegDaAhHQI8rzo8p1A91fZQoaAZHQIJMReTmnwZoB03oA2gIR0CPVLghr30xdX2UKGgGR0CH5p5pJwsHaAdN6ANoCEdAj38D/2kBS3V9lChoBkdAgxAfMOf/WGgHTegDaAhHQI9/BVZLZjB1fZQoaAZHQH/vZid8RcxoB03oA2gIR0CPfwiC8OCodX2UKGgGR0CHcTD1oQFtaAdN6ANoCEdAj6HsabWmQHV9lChoBkdAiCnBqsU7CGgHTegDaAhHQI++VPci4ax1fZQoaAZHQIg+PduYQatoB03oA2gIR0CPvlYJ3PiUdX2UKGgGR0CHROtpVS4waAdN6ANoCEdAj75Yx1xKhHV9lChoBkdAhs7eIVM232gHTegDaAhHQI/xVSIgvDh1fZQoaAZHQIgriyIHkcVoB03oA2gIR0CQCM0iQkondX2UKGgGR0CJKXVsDW9UaAdN6ANoCEdAkAjNg8bJfnV9lChoBkdAfqsBBAv+O2gHTegDaAhHQJAIztQbdad1fZQoaAZHQIf+4+2VmjFoB03oA2gIR0CQGqT850bMdX2UKGgGR0CItYgXdj5LaAdN6ANoCEdAkCqHPVurInV9lChoBkdAhsvt8NQTEmgHTegDaAhHQJAqiSB9Tgl1fZQoaAZHQH0FoTbnHNpoB03oA2gIR0CQKou4wyqNdX2UKGgGR0CIh6kXUH6eaAdN6ANoCEdAkEOtM0xdp3V9lChoBkdAhzELKV6eG2gHTegDaAhHQJBRnVOKwZB1fZQoaAZHQIdrOt6ol2NoB03oA2gIR0CQUZ3wTdtVdX2UKGgGR0CGdJFJg9eQaAdN6ANoCEdAkFGfPX05EXV9lChoBkdAhdbc63iJf2gHTegDaAhHQJBi2GgzxgB1fZQoaAZHQIXihHoX9BNoB03oA2gIR0CQds3kPtladX2UKGgGR0CGw1qO938oaAdN6ANoCEdAkHbP863iJnV9lChoBkdAhcchUBGQS2gHTegDaAhHQJB20rsjVx11fZQoaAZHQIWL7rJKaodoB03oA2gIR0CQi/ay8jA0dX2UKGgGR0CGYo/fO2RaaAdN6ANoCEdAkJoTHbRF7XV9lChoBkdAhKvLBKtga2gHTegDaAhHQJCaE9GI9DB1fZQoaAZHQIOZcXvYvnNoB03oA2gIR0CQmharWAf/dX2UKGgGR0CGq1DIikftaAdN6ANoCEdAkK2zO1OTJXV9lChoBkdAhbQGRmseXGgHTegDaAhHQJDDkbS7Xg91fZQoaAZHQIWhMVN5+phoB03oA2gIR0CQw5IxxkupdX2UKGgGR0CFcI2zfJmvaAdN6ANoCEdAkMOTe0ojOnV9lChoBkdAf6tqi48U22gHTR0DaAhHQJDOmuq3mV91fZQoaAZHQIAEo95hScdoB01ZA2gIR0CQ3j50bLlndX2UKGgGR0CDWYcyWRigaAdN6ANoCEdAkOLMD0UXYXV9lChoBkdAh8U4rz5GjWgHTegDaAhHQJDizOjZcs11fZQoaAZHQIQyH889wFVoB01JA2gIR0CQ6RiOvMbFdX2UKGgGR0CDPcdOIqLCaAdN6ANoCEdAkQfp3s5XEXV9lChoBkdAh4/M23rleWgHTegDaAhHQJEMX+hoM8Z1fZQoaAZHQIWRcFW4mTloB03oA2gIR0CRDGBtUGVzdX2UKGgGR0CFqT0UXYUWaAdN6ANoCEdAkRKFqN6w+3V9lChoBkdAgVyBgNPP9mgHTd4CaAhHQJEjMX531SR1fZQoaAZHQIYZpoPCl8BoB03oA2gIR0CRJxHjp9qldX2UKGgGR0CGYDm6oVEeaAdN6ANoCEdAkSwufRNRFnV9lChoBkdAiAdRSxZ+yGgHTegDaAhHQJE1khcJMQF1fZQoaAZHQISayDZlFttoB03oA2gIR0CRTDGH58BudX2UKGgGR0CBxTW07bL2aAdN6ANoCEdAkU//L5h0AHV9lChoBkdAiMjin5zo2WgHTegDaAhHQJFUbzFuNxV1fZQoaAZHQIkevdVNpM9oB03oA2gIR0CRWmqxkd3jdX2UKGgGR0CG4IHBUJfIaAdN6ANoCEdAkWtg13t8eHV9lChoBkdAhzzoWHk92WgHTegDaAhHQJFxK9SMtK91fZQoaAZHQIXbo6bONYNoB03oA2gIR0CReBqxTsIFdX2UKGgGR0CISSNHYpUhaAdN6ANoCEdAkYIpLh73PHV9lChoBkdAiQ5FzMibD2gHTegDaAhHQJGUDu5SWJJ1fZQoaAZHQIcsXZbpu/FoB03oA2gIR0CRl+kPMB6sdX2UKGgGR0CJGnMYdhiLaAdN6ANoCEdAkZyLl/6O53VlLg=="
91
+ },
92
+ "ep_success_buffer": {
93
+ ":type:": "<class 'collections.deque'>",
94
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
95
+ },
96
+ "_n_updates": 15000,
97
+ "n_steps": 5,
98
+ "gamma": 0.99,
99
+ "gae_lambda": 1.0,
100
+ "ent_coef": 0.0,
101
+ "vf_coef": 0.5,
102
+ "max_grad_norm": 0.5,
103
+ "normalize_advantage": false
104
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f42445642daa35d56c187632d13c1a5ac246fe5c1932c82cc94cceef19b4a071
3
+ size 54206
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4d1e23a01d6e545f589cfc143833c250c89a1208ae5d8eff2edd2a91a18fa9e
3
+ size 54974
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff61d6eb0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff61d6eb160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff61d6eb1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff61d6eb280>", "_build": "<function ActorCriticPolicy._build at 0x7ff61d6eb310>", "forward": "<function ActorCriticPolicy.forward at 0x7ff61d6eb3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff61d6eb430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff61d6eb4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff61d6eb550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff61d6eb5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff61d6eb670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff61d6eb700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff61d6e3750>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676056875282296177, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMKKRr8BWt8/uPXcv5URhL4p0es+XCg7P7D9wz9xVsQ+sQOqPqOBBMBU/PG+ZoV9vzl7I74ZJAO+I545v5X04j3/34c/RbCbvstUij+r0Es+pa8jPyJjAr8yCSi/NbDBPqfhJ8DnKWM+oSuOPv5j7j5k8LZA+G1lvv6dIj81XAC/cjOePfknAj7i+0O/8zKQP0U+mb/sGjq8K9cmwCfiPL2iCqS/AiNOvETTFT9OWUQ9D+E6vxg2Frx0OdM+PxJIPbSDgr+cZXC8wFEBwErwW72n4SfAlT+QwOF7ZsCAdAnA87SpvYSccj1dUBc/qm77v62vBEDX51I9FW2pPzN1lj6LZEU+ZjElwKjrmz4bcy7AJaxlPVnddT+IITm/vRCtvXCQrb+Mzkg/PSYoPy7HoD765CU/OdUguzlspL7jHEq/p+EnwOcpYz6hK44+/mPuPvH3I78XVg3AMEbiv2etBb/w2Jw+Jn3NPS0KVj+PMEE/dTnqPWFdwj7hIbW96c/svLBpdz5qyiA+pR44v3VMfj1ssGk+JXcpPkKn1j4q70M+yP0lPxT1pjx+PVq/eVO0vXIvwz7nKWM+oSuOPv5j7j6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD0D+q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArhLePQAAAADzx9i/AAAAAEJ+8r0AAAAAguQAQAAAAADhtxk8AAAAAJDF+T8AAAAAJ93WPQAAAAAEf+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA80WINgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ244b0AAAAAWu3yvwAAAAA7qCs9AAAAAKuXAEAAAAAAjRyxPQAAAAAYdf8/AAAAAPuFaD0AAAAA9in1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODwnzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDv8ZA8AAAAANOF7L8AAAAAbIGwPQAAAAASMwFAAAAAAFF6wT0AAAAA6qX2PwAAAABXytg9AAAAAEp7+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVtVu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtfWxvQAAAAAr6/a/AAAAAEWuPL0AAAAA69r+PwAAAABj+gC+AAAAAMmT4z8AAAAA3Ox2PQAAAAC4Guu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIOzcX1rZaqMAWyUTegDjAF0lEdAjCdmnO0LMXV9lChoBkdAhMHHXmNipmgHTegDaAhHQIwnaxC6Ymd1fZQoaAZHQIU4jedkJ8hoB03oA2gIR0CMJ3BMSK3vdX2UKGgGR0CDf7Wwu/UOaAdN6ANoCEdAjCd1qesgdXV9lChoBkdAc+aaZQYUFmgHTSwCaAhHQIxTB2W6bvx1fZQoaAZHQHsal/+bVjJoB03oA2gIR0CMb3I3BHkMdX2UKGgGR0B6lheE7GNraAdN6ANoCEdAjG9zZxrBTHV9lChoBkdAeIvMbWEsa2gHTegDaAhHQIxvdlK9PDZ1fZQoaAZHQIBxbeVLSNRoB03oA2gIR0CMlqa2F36idX2UKGgGR0B4NVbB42S/aAdN6ANoCEdAjMNBgNPP9nV9lChoBkdAf/DIatLcsWgHTegDaAhHQIzDQmois4l1fZQoaAZHQHlZKmO2iL5oB03oA2gIR0CMw0UHpr1vdX2UKGgGR0CBYCZHd43WaAdN6ANoCEdAjObXS0BwM3V9lChoBkdAhijYBvJiiWgHTegDaAhHQI0DbTH80k51fZQoaAZHQISHwVh1DBxoB03oA2gIR0CNA25PuXu3dX2UKGgGR0CE0hP2wmmcaAdN6ANoCEdAjQNxdQfp2XV9lChoBkdAgt+2tuDSPWgHTegDaAhHQI01cVBUrCp1fZQoaAZHQIMdEv7FbV1oB03oA2gIR0CNVzG0/nnudX2UKGgGR0CDFuRbr1M/aAdN6ANoCEdAjVczXJ5miHV9lChoBkdAggynBciW3WgHTegDaAhHQI1XNgfEGaB1fZQoaAZHQIEAC2SdOItoB03oA2gIR0CNesXY150KdX2UKGgGR0CDDaL/CIk7aAdN6ANoCEdAjZspnYg7o3V9lChoBkdAgbfJ+c6Nl2gHTegDaAhHQI2bLYbsF+x1fZQoaAZHQIGFD9jwx35oB03oA2gIR0CNmzKvFFUidX2UKGgGR0CEhB7P6be/aAdN6ANoCEdAjc6PRZ2ZA3V9lChoBkdAhhzyeAd4mmgHTegDaAhHQI3rPKSxJNF1fZQoaAZHQIOr7ApKBd5oB03oA2gIR0CN6z3JPqLTdX2UKGgGR0CGLsFzMibEaAdN6ANoCEdAjetAdn0033V9lChoBkdAhJrfoA4n4WgHTegDaAhHQI4N+5SWJJp1fZQoaAZHQIOe/gm7aqVoB03oA2gIR0COONSApazNdX2UKGgGR0CF/XQ2uPmxaAdN6ANoCEdAjjjYbsF+u3V9lChoBkdAhlOxyfcvd2gHTegDaAhHQI443X5FgD11fZQoaAZHQIObaGnGbTdoB03oA2gIR0COddJ04iosdX2UKGgGR0CElwlPacqfaAdN6ANoCEdAjpKxiw0O3HV9lChoBkdAg3xOSGJvYWgHTegDaAhHQI6Ss47zTWp1fZQoaAZHQILbOZb6guhoB03oA2gIR0COkrawljVhdX2UKGgGR0B/XOEGqxTsaAdN6ANoCEdAjrYUknkT6HV9lChoBkdAg5NLCWNWEWgHTegDaAhHQI7lp4QjD9B1fZQoaAZHQIDVM4rBj4JoB03oA2gIR0CO5auoxYaHdX2UKGgGR0CAaws7uDzzaAdN6ANoCEdAjuWxm9QGfXV9lChoBkdAg4nlG5MDfWgHTegDaAhHQI8PmIj4YaZ1fZQoaAZHQIFuTr1M/QloB03oA2gIR0CPK8oaUA1fdX2UKGgGR0CG/Oqz7di2aAdN6ANoCEdAjyvLmQr+YXV9lChoBkdAhqFC9Zid8WgHTegDaAhHQI8rzo8p1A91fZQoaAZHQIJMReTmnwZoB03oA2gIR0CPVLghr30xdX2UKGgGR0CH5p5pJwsHaAdN6ANoCEdAj38D/2kBS3V9lChoBkdAgxAfMOf/WGgHTegDaAhHQI9/BVZLZjB1fZQoaAZHQH/vZid8RcxoB03oA2gIR0CPfwiC8OCodX2UKGgGR0CHcTD1oQFtaAdN6ANoCEdAj6HsabWmQHV9lChoBkdAiCnBqsU7CGgHTegDaAhHQI++VPci4ax1fZQoaAZHQIg+PduYQatoB03oA2gIR0CPvlYJ3PiUdX2UKGgGR0CHROtpVS4waAdN6ANoCEdAj75Yx1xKhHV9lChoBkdAhs7eIVM232gHTegDaAhHQI/xVSIgvDh1fZQoaAZHQIgriyIHkcVoB03oA2gIR0CQCM0iQkondX2UKGgGR0CJKXVsDW9UaAdN6ANoCEdAkAjNg8bJfnV9lChoBkdAfqsBBAv+O2gHTegDaAhHQJAIztQbdad1fZQoaAZHQIf+4+2VmjFoB03oA2gIR0CQGqT850bMdX2UKGgGR0CItYgXdj5LaAdN6ANoCEdAkCqHPVurInV9lChoBkdAhsvt8NQTEmgHTegDaAhHQJAqiSB9Tgl1fZQoaAZHQH0FoTbnHNpoB03oA2gIR0CQKou4wyqNdX2UKGgGR0CIh6kXUH6eaAdN6ANoCEdAkEOtM0xdp3V9lChoBkdAhzELKV6eG2gHTegDaAhHQJBRnVOKwZB1fZQoaAZHQIdrOt6ol2NoB03oA2gIR0CQUZ3wTdtVdX2UKGgGR0CGdJFJg9eQaAdN6ANoCEdAkFGfPX05EXV9lChoBkdAhdbc63iJf2gHTegDaAhHQJBi2GgzxgB1fZQoaAZHQIXihHoX9BNoB03oA2gIR0CQds3kPtladX2UKGgGR0CGw1qO938oaAdN6ANoCEdAkHbP863iJnV9lChoBkdAhcchUBGQS2gHTegDaAhHQJB20rsjVx11fZQoaAZHQIWL7rJKaodoB03oA2gIR0CQi/ay8jA0dX2UKGgGR0CGYo/fO2RaaAdN6ANoCEdAkJoTHbRF7XV9lChoBkdAhKvLBKtga2gHTegDaAhHQJCaE9GI9DB1fZQoaAZHQIOZcXvYvnNoB03oA2gIR0CQmharWAf/dX2UKGgGR0CGq1DIikftaAdN6ANoCEdAkK2zO1OTJXV9lChoBkdAhbQGRmseXGgHTegDaAhHQJDDkbS7Xg91fZQoaAZHQIWhMVN5+phoB03oA2gIR0CQw5IxxkupdX2UKGgGR0CFcI2zfJmvaAdN6ANoCEdAkMOTe0ojOnV9lChoBkdAf6tqi48U22gHTR0DaAhHQJDOmuq3mV91fZQoaAZHQIAEo95hScdoB01ZA2gIR0CQ3j50bLlndX2UKGgGR0CDWYcyWRigaAdN6ANoCEdAkOLMD0UXYXV9lChoBkdAh8U4rz5GjWgHTegDaAhHQJDizOjZcs11fZQoaAZHQIQyH889wFVoB01JA2gIR0CQ6RiOvMbFdX2UKGgGR0CDPcdOIqLCaAdN6ANoCEdAkQfp3s5XEXV9lChoBkdAh4/M23rleWgHTegDaAhHQJEMX+hoM8Z1fZQoaAZHQIWRcFW4mTloB03oA2gIR0CRDGBtUGVzdX2UKGgGR0CFqT0UXYUWaAdN6ANoCEdAkRKFqN6w+3V9lChoBkdAgVyBgNPP9mgHTd4CaAhHQJEjMX531SR1fZQoaAZHQIYZpoPCl8BoB03oA2gIR0CRJxHjp9qldX2UKGgGR0CGYDm6oVEeaAdN6ANoCEdAkSwufRNRFnV9lChoBkdAiAdRSxZ+yGgHTegDaAhHQJE1khcJMQF1fZQoaAZHQISayDZlFttoB03oA2gIR0CRTDGH58BudX2UKGgGR0CBxTW07bL2aAdN6ANoCEdAkU//L5h0AHV9lChoBkdAiMjin5zo2WgHTegDaAhHQJFUbzFuNxV1fZQoaAZHQIkevdVNpM9oB03oA2gIR0CRWmqxkd3jdX2UKGgGR0CG4IHBUJfIaAdN6ANoCEdAkWtg13t8eHV9lChoBkdAhzzoWHk92WgHTegDaAhHQJFxK9SMtK91fZQoaAZHQIXbo6bONYNoB03oA2gIR0CReBqxTsIFdX2UKGgGR0CISSNHYpUhaAdN6ANoCEdAkYIpLh73PHV9lChoBkdAiQ5FzMibD2gHTegDaAhHQJGUDu5SWJJ1fZQoaAZHQIcsXZbpu/FoB03oA2gIR0CRl+kPMB6sdX2UKGgGR0CJGnMYdhiLaAdN6ANoCEdAkZyLl/6O53VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (868 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 871.6872684309171, "std_reward": 15.240548849396763, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-10T19:27:42.719695"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff3ddbef894bf1fc094e19b789af76cd6c1c12be7c97e491a2da95c372650c3f
3
+ size 2136