File size: 1,608 Bytes
b3e5294 26d5448 8cf859c 71e42a4 8cf859c 71e42a4 26d5448 71e42a4 b3e5294 71e42a4 b3e5294 26d5448 b3e5294 26d5448 71e42a4 26d5448 b3e5294 71e42a4 b3e5294 71e42a4 b3e5294 71e42a4 b3e5294 71e42a4 b3e5294 71e42a4 b3e5294 71e42a4 b3e5294 71e42a4 b3e5294 71e42a4 b3e5294 71e42a4 26d5448 71e42a4 b3e5294 71e42a4 b3e5294 71e42a4 26d5448 b3e5294 71e42a4 b3e5294 71e42a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
base_model: zainulhakim/240615-wav2vec2-ASR-Arabs
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: 240624-wav2vec2-ASR-Arab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 240624-wav2vec2-ASR-Arab
This model is a fine-tuned version of [zainulhakim/240615-wav2vec2-ASR-Arabs](https://huggingface.co/zainulhakim/240615-wav2vec2-ASR-Arabs) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4394
- Wer: 0.9293
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 5
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 6.25 | 100 | 2.5463 | 1.0 |
| No log | 12.5 | 200 | 1.4375 | 1.0 |
| No log | 18.75 | 300 | 1.4394 | 0.9293 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|