File size: 3,224 Bytes
35199db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a288dbb
35199db
 
5ba534e
35199db
 
 
 
5ba534e
aec7071
 
 
 
35199db
 
 
 
 
10021fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35199db
 
 
 
 
 
 
aec7071
 
 
 
 
 
 
 
 
 
35199db
 
 
 
 
 
 
 
 
 
10021fb
35199db
aec7071
35199db
 
5ba534e
aec7071
 
35199db
 
aec7071
 
 
35199db
 
a288dbb
35199db
 
a288dbb
35199db
c0f39aa
35199db
 
 
 
 
 
a288dbb
aec7071
a288dbb
35199db
 
c0f39aa
35199db
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import time
import os, sys

from pathlib import Path

from concrete.ml.deployment import FHEModelClient

import requests


def to_json(python_object):
    if isinstance(python_object, bytes):
        return {"__class__": "bytes", "__value__": list(python_object)}
    raise TypeError(repr(python_object) + " is not JSON serializable")


def from_json(python_object):
    if "__class__" in python_object:
        return bytes(python_object["__value__"])


API_URL = "https://h0cvbig1fkmf57eb.eu-west-1.aws.endpoints.huggingface.cloud"
headers = {
    "Authorization": "Bearer " + os.environ.get("HF_TOKEN"),
    "Content-Type": "application/json",
}


def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)

    if "error" in response:
        assert False, f"Got an error: {response=}"

    return response.json()


path_to_model = Path("compiled_model")

# Decision-tree in FHE
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
import numpy

features, classes = fetch_openml(data_id=44, as_frame=False, cache=True, return_X_y=True)
classes = classes.astype(numpy.int64)

_, X_test, _, Y_test = train_test_split(
    features,
    classes,
    test_size=0.15,
    random_state=42,
)

# Recover parameters for client side
fhemodel_client = FHEModelClient(path_to_model)

# Generate the keys
fhemodel_client.generate_private_and_evaluation_keys()
evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()

# Save the key in the database
payload = {
    "inputs": "fake",
    "evaluation_keys": to_json(evaluation_keys),
    "method": "save_key",
}

uid = query(payload)["uid"]
print(f"Storing the key in the database under {uid=}")

# Test the handler
nb_good = 0
nb_samples = len(X_test)
verbose = False
time_start = time.time()
duration = 0

for i in range(nb_samples):

    # Quantize the input and encrypt it
    encrypted_inputs = fhemodel_client.quantize_encrypt_serialize(X_test[i].reshape(1, -1))

    # Prepare the payload
    payload = {
        "inputs": "fake",
        "encrypted_inputs": to_json(encrypted_inputs),
        "method": "inference",
        "uid": uid,
    }

    if verbose or True:
        print(f"Size of the payload: {sys.getsizeof(payload) / 1024} kilobytes")

    # Run the inference on HF servers
    duration -= time.time()
    duration_inference = -time.time()
    encrypted_prediction = query(payload)
    duration += time.time()
    duration_inference += time.time()

    encrypted_prediction = from_json(encrypted_prediction)

    # Decrypt the result and dequantize
    prediction_proba = fhemodel_client.deserialize_decrypt_dequantize(encrypted_prediction)[0]
    prediction = np.argmax(prediction_proba)

    if verbose or True:
        print(
            f"for {i}-th input, {prediction=} with expected {Y_test[i]} in {duration_inference:.3f} seconds"
        )

    # Measure accuracy
    nb_good += Y_test[i] == prediction

print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")
print(f"Total time: {time.time() - time_start} seconds")
print(f"Duration in inferences: {duration} seconds")
print(f"Duration per inference: {duration / nb_samples} seconds")