from handler import EndpointHandler import numpy as np import shutil from pathlib import Path from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from concrete.ml.sklearn import LogisticRegression from concrete.ml.deployment import FHEModelClient, FHEModelDev # Fit a model. In the future, we should find an existing model on HF repository path_to_model = Path("compiled_model") do_training_and_compilation = True x, y = make_classification(n_samples=1000, class_sep=2, n_features=30, random_state=42) X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) if do_training_and_compilation: model_dev = LogisticRegression() model_dev.fit(X_train, y_train) # Compile into FHE model_dev.compile(X_train) # Saving the model shutil.rmtree(path_to_model, ignore_errors=True) fhemodel_dev = FHEModelDev(path_to_model, model_dev) fhemodel_dev.save(via_mlir=True) # Init the handler (compilation of the model is done on HF side) my_handler = EndpointHandler(path=".") # Recover parameters for client side fhemodel_client = FHEModelClient(path_to_model) # Generate the keys fhemodel_client.generate_private_and_evaluation_keys() evaluation_keys = fhemodel_client.get_serialized_evaluation_keys() # Test the handler nb_good = 0 nb_samples = len(X_test) verbose = False for i in range(nb_samples): # Quantize the input and encrypt it encrypted_inputs = fhemodel_client.quantize_encrypt_serialize([X_test[i]]) # Prepare the payload, including the evaluation keys which are needed server side payload = { "inputs": "fake", "encrypted_inputs": encrypted_inputs, "evaluation_keys": evaluation_keys, } # Run the inference on HF servers encrypted_prediction = my_handler(payload) encrypted_prediction = encrypted_prediction # Decrypt the result and dequantize prediction_proba = fhemodel_client.deserialize_decrypt_dequantize(encrypted_prediction)[0] prediction = np.argmax(prediction_proba) if verbose: print(f"for i-th input, {prediction=} with expected {y_test[i]}") # Measure accuracy nb_good += y_test[i] == prediction print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")