binoua commited on
Commit
eb807a4
1 Parent(s): d29187e

chore: adding an example from our template with a NeuralNetClassifier.

Browse files
Files changed (1) hide show
  1. play_with_endpoint.py +6 -7
play_with_endpoint.py CHANGED
@@ -20,8 +20,7 @@ def from_json(python_object):
20
  return bytes(python_object["__value__"])
21
 
22
 
23
- # TODO: put the right link `API_URL` for your entryp point
24
- API_URL = "https://XXXXXXX.us-east-1.aws.endpoints.huggingface.cloud"
25
  headers = {
26
  "Authorization": "Bearer " + os.environ.get("HF_TOKEN"),
27
  "Content-Type": "application/json",
@@ -39,12 +38,13 @@ def query(payload):
39
 
40
  path_to_model = Path("compiled_model")
41
 
42
- # BEGIN: replace this part with your privacy-preserving application
43
- from sklearn.datasets import make_classification
44
  from sklearn.model_selection import train_test_split
 
45
 
46
- x, y = make_classification(n_samples=1000, class_sep=2, n_features=30, random_state=42)
47
- _, X_test, _, Y_test = train_test_split(x, y, test_size=0.2, random_state=42)
 
48
 
49
  # Recover parameters for client side
50
  fhemodel_client = FHEModelClient(path_to_model)
@@ -112,4 +112,3 @@ for i in range(nb_samples):
112
  print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")
113
  print(f"Total time: {time.time() - time_start:.3f} seconds")
114
  print(f"Duration per inference: {duration / nb_samples:.3f} seconds")
115
- # END: replace this part with your privacy-preserving application
 
20
  return bytes(python_object["__value__"])
21
 
22
 
23
+ API_URL = "https://zkmlo9jbfzj9ep1j.eu-west-1.aws.endpoints.huggingface.cloud"
 
24
  headers = {
25
  "Authorization": "Bearer " + os.environ.get("HF_TOKEN"),
26
  "Content-Type": "application/json",
 
38
 
39
  path_to_model = Path("compiled_model")
40
 
41
+ # Iris and NeuralNetClassifier in FHE
 
42
  from sklearn.model_selection import train_test_split
43
+ from sklearn.datasets import load_iris
44
 
45
+ X, y = load_iris(return_X_y=True)
46
+ _, X_test, _, Y_test = train_test_split(X, y, test_size=0.25, random_state=42)
47
+ X_test = X_test.astype("float32")
48
 
49
  # Recover parameters for client side
50
  fhemodel_client = FHEModelClient(path_to_model)
 
112
  print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")
113
  print(f"Total time: {time.time() - time_start:.3f} seconds")
114
  print(f"Duration per inference: {duration / nb_samples:.3f} seconds")