zamal commited on
Commit
da3bbe8
·
verified ·
1 Parent(s): db548fe

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .editorconfig +42 -0
  2. .flake8 +40 -0
  3. .gitattributes +11 -35
  4. .github/workflows/lint.yml +56 -0
  5. .gitignore +415 -0
  6. .pre-commit-config.yaml +75 -0
  7. .pylintrc +629 -0
  8. LICENSE-CODE +21 -0
  9. LICENSE-MODEL +91 -0
  10. Makefile +99 -0
  11. README.md +227 -3
  12. cli_chat.py +224 -0
  13. deepseek_vl/__init__.py +31 -0
  14. deepseek_vl/models/__init__.py +28 -0
  15. deepseek_vl/models/clip_encoder.py +242 -0
  16. deepseek_vl/models/image_processing_vlm.py +208 -0
  17. deepseek_vl/models/modeling_vlm.py +170 -0
  18. deepseek_vl/models/processing_vlm.py +390 -0
  19. deepseek_vl/models/projector.py +100 -0
  20. deepseek_vl/models/sam.py +593 -0
  21. deepseek_vl/models/siglip_vit.py +681 -0
  22. deepseek_vl/serve/app_deepseek.py +514 -0
  23. deepseek_vl/serve/app_modules/gradio_utils.py +94 -0
  24. deepseek_vl/serve/app_modules/overwrites.py +81 -0
  25. deepseek_vl/serve/app_modules/presets.py +96 -0
  26. deepseek_vl/serve/app_modules/utils.py +228 -0
  27. deepseek_vl/serve/assets/Kelpy-Codos.js +100 -0
  28. deepseek_vl/serve/assets/avatar.png +0 -0
  29. deepseek_vl/serve/assets/custom.css +355 -0
  30. deepseek_vl/serve/assets/custom.js +22 -0
  31. deepseek_vl/serve/assets/favicon.ico +0 -0
  32. deepseek_vl/serve/examples/app.png +0 -0
  33. deepseek_vl/serve/examples/chart.png +0 -0
  34. deepseek_vl/serve/examples/mirror.png +0 -0
  35. deepseek_vl/serve/examples/pipeline.png +0 -0
  36. deepseek_vl/serve/examples/puzzle.png +0 -0
  37. deepseek_vl/serve/examples/rap.jpeg +0 -0
  38. deepseek_vl/serve/inference.py +170 -0
  39. deepseek_vl/utils/__init__.py +18 -0
  40. deepseek_vl/utils/conversation.py +348 -0
  41. deepseek_vl/utils/io.py +89 -0
  42. images/badge.svg +1 -0
  43. images/dog_a.png +0 -0
  44. images/dog_b.png +0 -0
  45. images/dog_c.png +0 -0
  46. images/dog_d.png +0 -0
  47. images/gradio_demo.png +0 -0
  48. images/logo.png +0 -0
  49. images/logo.svg +22 -0
  50. images/monday.jpg +0 -0
.editorconfig ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://editorconfig.org/
2
+
3
+ root = true
4
+
5
+ [*]
6
+ charset = utf-8
7
+ end_of_line = lf
8
+ indent_style = space
9
+ indent_size = 4
10
+ trim_trailing_whitespace = true
11
+ insert_final_newline = true
12
+
13
+ [*.py]
14
+ indent_size = 4
15
+ src_paths=evaluation
16
+
17
+ [*.{yaml,yml,json}]
18
+ indent_size = 2
19
+
20
+ [*.md]
21
+ indent_size = 2
22
+ x-soft-wrap-text = true
23
+
24
+ [*.rst]
25
+ indent_size = 4
26
+ x-soft-wrap-text = true
27
+
28
+ [*.{bib,tex}]
29
+ indent_size = 2
30
+
31
+ [Makefile]
32
+ indent_style = tab
33
+
34
+ [*.sh]
35
+ indent_style = tab
36
+
37
+ [*.bat]
38
+ end_of_line = crlf
39
+ indent_style = tab
40
+
41
+ [*.{cpp,h,cu,cuh}]
42
+ indent_size = 2
.flake8 ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [flake8]
2
+ max-line-length = 120
3
+ max-doc-length = 100
4
+ select = B,C,E,F,W,Y,SIM
5
+ ignore =
6
+ # E203: whitespace before ':'
7
+ # W503: line break before binary operator
8
+ # W504: line break after binary operator
9
+ # format by black
10
+ E203,W503,W504,
11
+ # E501: line too long
12
+ # W505: doc line too long
13
+ # too long docstring due to long example blocks
14
+ E501,W505,
15
+ per-file-ignores =
16
+ # F401: module imported but unused
17
+ # intentionally unused imports
18
+ __init__.py: F401
19
+ # F401: module imported but unused
20
+ # F403: unable to detect undefined names
21
+ # F405: member mey be undefined, or defined from star imports
22
+ # members populated from optree
23
+ # E301: expected 1 blank line
24
+ # E302: expected 2 blank lines
25
+ # E305: expected 2 blank lines after class or function definition
26
+ # E701: multiple statements on one line (colon)
27
+ # E704: multiple statements on one line (def)
28
+ # format by black
29
+ *.pyi: E301,E302,E305,E701,E704
30
+ exclude =
31
+ .git,
32
+ .vscode,
33
+ venv,
34
+ third-party,
35
+ __pycache__,
36
+ docs/source/conf.py,
37
+ build,
38
+ dist,
39
+ examples,
40
+ tests
.gitattributes CHANGED
@@ -1,35 +1,11 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ * text eol=lf
2
+ *.ipynb linguist-detectable=false
3
+
4
+ *.png binary
5
+ *.jpg binary
6
+ *.jpeg binary
7
+ *.gif binary
8
+ *.pdf binary
9
+ images/sample.jpg filter=lfs diff=lfs merge=lfs -text
10
+ images/training_pipelines.jpg filter=lfs diff=lfs merge=lfs -text
11
+ quantized_files/model.safetensors filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.github/workflows/lint.yml ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Lint
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+ pull_request:
8
+ # Allow to trigger the workflow manually
9
+ workflow_dispatch:
10
+
11
+ permissions:
12
+ contents: read
13
+
14
+ concurrency:
15
+ group: "${{ github.workflow }}-${{ github.ref }}"
16
+ cancel-in-progress: ${{ github.event_name == 'pull_request' }}
17
+
18
+ env:
19
+ CUDA_VERSION: "11.7"
20
+
21
+ jobs:
22
+ lint:
23
+ runs-on: ubuntu-latest
24
+ timeout-minutes: 30
25
+ steps:
26
+ - name: Checkout
27
+ uses: actions/checkout@v4
28
+ with:
29
+ submodules: "recursive"
30
+ fetch-depth: 1
31
+
32
+ - name: Set up Python 3.9
33
+ uses: actions/setup-python@v5
34
+ with:
35
+ python-version: "3.9"
36
+ update-environment: true
37
+
38
+ - name: Upgrade pip
39
+ run: |
40
+ python -m pip install --upgrade pip setuptools wheel
41
+
42
+ - name: Install DeepSeek-VL
43
+ env:
44
+ USE_FP16: "OFF"
45
+ TORCH_CUDA_ARCH_LIST: "Auto"
46
+ run: |
47
+ python -m pip install torch numpy pybind11
48
+ python -m pip install -vvv --no-build-isolation --editable '.[lint]'
49
+
50
+ - name: black
51
+ run: |
52
+ make black-format
53
+
54
+ - name: addlicense
55
+ run: |
56
+ make addlicense
.gitignore ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##### Python.gitignore #####
2
+ # Byte-compiled / optimized / DLL files
3
+ __pycache__/
4
+ *.py[cod]
5
+ *$py.class
6
+
7
+ # C extensions
8
+ *.so
9
+
10
+ # Distribution / packaging
11
+ .Python
12
+ build/
13
+ develop-eggs/
14
+ dist/
15
+ downloads/
16
+ eggs/
17
+ .eggs/
18
+ lib/
19
+ lib64/
20
+ parts/
21
+ sdist/
22
+ var/
23
+ wheels/
24
+ wheelhouse/
25
+ share/python-wheels/
26
+ *.egg-info/
27
+ .installed.cfg
28
+ *.egg
29
+ MANIFEST
30
+ *.whl
31
+
32
+ # PyInstaller
33
+ # Usually these files are written by a python script from a template
34
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
35
+ *.manifest
36
+ *.spec
37
+
38
+ # Installer logs
39
+ pip-log.txt
40
+ pip-delete-this-directory.txt
41
+
42
+ # Unit test / coverage reports
43
+ htmlcov/
44
+ .tox/
45
+ .nox/
46
+ .coverage
47
+ .coverage.*
48
+ .cache
49
+ nosetests.xml
50
+ coverage.xml
51
+ *.cover
52
+ *.py,cover
53
+ .hypothesis/
54
+ .pytest_cache/
55
+ cover/
56
+
57
+ # Translations
58
+ *.mo
59
+ *.pot
60
+
61
+ # Django stuff:
62
+ *.log
63
+ local_settings.py
64
+ db.sqlite3
65
+ db.sqlite3-journal
66
+
67
+ # Flask stuff:
68
+ instance/
69
+ .webassets-cache
70
+
71
+ # Scrapy stuff:
72
+ .scrapy
73
+
74
+ # Sphinx documentation
75
+ docs/_build/
76
+ docs/source/_build/
77
+ _autosummary/
78
+
79
+ # PyBuilder
80
+ .pybuilder/
81
+ target/
82
+
83
+ # Jupyter Notebook
84
+ .ipynb_checkpoints
85
+
86
+ # IPython
87
+ profile_default/
88
+ ipython_config.py
89
+
90
+ # pyenv
91
+ # For a library or package, you might want to ignore these files since the code is
92
+ # intended to run in multiple environments; otherwise, check them in:
93
+ .python-version
94
+
95
+ # pipenv
96
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
97
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
98
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
99
+ # install all needed dependencies.
100
+ #Pipfile.lock
101
+
102
+ # poetry
103
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
104
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
105
+ # commonly ignored for libraries.
106
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
107
+ #poetry.lock
108
+
109
+ # pdm
110
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
111
+ #pdm.lock
112
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
113
+ # in version control.
114
+ # https://pdm.fming.dev/#use-with-ide
115
+ .pdm.toml
116
+
117
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
118
+ __pypackages__/
119
+
120
+ # Celery stuff
121
+ celerybeat-schedule
122
+ celerybeat.pid
123
+
124
+ # SageMath parsed files
125
+ *.sage.py
126
+
127
+ # Environments
128
+ .env
129
+ .venv
130
+ env/
131
+ venv/
132
+ ENV/
133
+ env.bak/
134
+ venv.bak/
135
+
136
+ # Spyder project settings
137
+ .spyderproject
138
+ .spyproject
139
+
140
+ # Rope project settings
141
+ .ropeproject
142
+
143
+ # mkdocs documentation
144
+ /site
145
+
146
+ # ruff
147
+ .ruff_cache/
148
+
149
+ # mypy
150
+ .mypy_cache/
151
+ .dmypy.json
152
+ dmypy.json
153
+
154
+ # Pyre type checker
155
+ .pyre/
156
+
157
+ # pytype static type analyzer
158
+ .pytype/
159
+
160
+ # Cython debug symbols
161
+ cython_debug/
162
+
163
+ # PyCharm
164
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
165
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
166
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
167
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
168
+ .idea/
169
+
170
+
171
+ ##### macOS.gitignore #####
172
+ # General
173
+ .DS_Store
174
+ .AppleDouble
175
+ .LSOverride
176
+
177
+ # Icon must end with two \r
178
+ Icon
179
+
180
+ # Thumbnails
181
+ ._*
182
+
183
+ # Files that might appear in the root of a volume
184
+ .DocumentRevisions-V100
185
+ .fseventsd
186
+ .Spotlight-V100
187
+ .TemporaryItems
188
+ .Trashes
189
+ .VolumeIcon.icns
190
+ .com.apple.timemachine.donotpresent
191
+
192
+ # Directories potentially created on remote AFP share
193
+ .AppleDB
194
+ .AppleDesktop
195
+ Network Trash Folder
196
+ Temporary Items
197
+ .apdisk
198
+
199
+
200
+ ##### Linux.gitignore #####
201
+ *~
202
+
203
+ # Temporary files which can be created if a process still has a handle open of a deleted file
204
+ .fuse_hidden*
205
+
206
+ # KDE directory preferences
207
+ .directory
208
+
209
+ # Linux trash folder which might appear on any partition or disk
210
+ .Trash-*
211
+
212
+ # .nfs files are created when an open file is removed but is still being accessed
213
+ .nfs*
214
+
215
+
216
+ ##### Windows.gitignore #####
217
+ # Windows thumbnail cache files
218
+ Thumbs.db
219
+ Thumbs.db:encryptable
220
+ ehthumbs.db
221
+ ehthumbs_vista.db
222
+
223
+ # Dump file
224
+ *.stackdump
225
+
226
+ # Folder config file
227
+ [Dd]esktop.ini
228
+
229
+ # Recycle Bin used on file shares
230
+ $RECYCLE.BIN/
231
+
232
+ # Windows Installer files
233
+ *.cab
234
+ *.msi
235
+ *.msix
236
+ *.msm
237
+ *.msp
238
+
239
+ # Windows shortcuts
240
+ *.lnk
241
+
242
+
243
+ ##### Archives.gitignore #####
244
+ # It's better to unpack these files and commit the raw source because
245
+ # git has its own built in compression methods.
246
+ *.7z
247
+ *.jar
248
+ *.rar
249
+ *.zip
250
+ *.gz
251
+ *.gzip
252
+ *.tgz
253
+ *.bzip
254
+ *.bzip2
255
+ *.bz2
256
+ *.xz
257
+ *.lzma
258
+ *.cab
259
+ *.xar
260
+
261
+ # Packing-only formats
262
+ *.iso
263
+ *.tar
264
+
265
+ # Package management formats
266
+ *.dmg
267
+ *.xpi
268
+ *.gem
269
+ *.egg
270
+ *.deb
271
+ *.rpm
272
+ *.msi
273
+ *.msm
274
+ *.msp
275
+ *.txz
276
+
277
+
278
+ ##### Xcode.gitignore #####
279
+ # Xcode
280
+ #
281
+ # gitignore contributors: remember to update Global/Xcode.gitignore, Objective-C.gitignore & Swift.gitignore
282
+
283
+ ## User settings
284
+ xcuserdata/
285
+
286
+ ## Compatibility with Xcode 8 and earlier (ignoring not required starting Xcode 9)
287
+ *.xcscmblueprint
288
+ *.xccheckout
289
+
290
+ ## Compatibility with Xcode 3 and earlier (ignoring not required starting Xcode 4)
291
+ build/
292
+ DerivedData/
293
+ *.moved-aside
294
+ *.pbxuser
295
+ !default.pbxuser
296
+ *.mode1v3
297
+ !default.mode1v3
298
+ *.mode2v3
299
+ !default.mode2v3
300
+ *.perspectivev3
301
+ !default.perspectivev3
302
+
303
+ ## Gcc Patch
304
+ /*.gcno
305
+
306
+
307
+ ##### JetBrains.gitignore #####
308
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
309
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
310
+
311
+ # User settings
312
+ .idea/*
313
+
314
+ # User-specific stuff
315
+ .idea/**/workspace.xml
316
+ .idea/**/tasks.xml
317
+ .idea/**/usage.statistics.xml
318
+ .idea/**/dictionaries
319
+ .idea/**/shelf
320
+
321
+ # Generated files
322
+ .idea/**/contentModel.xml
323
+
324
+ # Sensitive or high-churn files
325
+ .idea/**/dataSources/
326
+ .idea/**/dataSources.ids
327
+ .idea/**/dataSources.local.xml
328
+ .idea/**/sqlDataSources.xml
329
+ .idea/**/dynamic.xml
330
+ .idea/**/uiDesigner.xml
331
+ .idea/**/dbnavigator.xml
332
+
333
+ # Gradle
334
+ .idea/**/gradle.xml
335
+ .idea/**/libraries
336
+
337
+ # Gradle and Maven with auto-import
338
+ # When using Gradle or Maven with auto-import, you should exclude module files,
339
+ # since they will be recreated, and may cause churn. Uncomment if using
340
+ # auto-import.
341
+ # .idea/artifacts
342
+ # .idea/compiler.xml
343
+ # .idea/jarRepositories.xml
344
+ # .idea/modules.xml
345
+ # .idea/*.iml
346
+ # .idea/modules
347
+ # *.iml
348
+ # *.ipr
349
+
350
+ # CMake
351
+ cmake-build-*/
352
+
353
+ # Mongo Explorer plugin
354
+ .idea/**/mongoSettings.xml
355
+
356
+ # File-based project format
357
+ *.iws
358
+
359
+ # IntelliJ
360
+ out/
361
+
362
+ # mpeltonen/sbt-idea plugin
363
+ .idea_modules/
364
+
365
+ # JIRA plugin
366
+ atlassian-ide-plugin.xml
367
+
368
+ # Cursive Clojure plugin
369
+ .idea/replstate.xml
370
+
371
+ # Crashlytics plugin (for Android Studio and IntelliJ)
372
+ com_crashlytics_export_strings.xml
373
+ crashlytics.properties
374
+ crashlytics-build.properties
375
+ fabric.properties
376
+
377
+ # Editor-based Rest Client
378
+ .idea/httpRequests
379
+
380
+ # Android studio 3.1+ serialized cache file
381
+ .idea/caches/build_file_checksums.ser
382
+
383
+
384
+ ##### VisualStudioCode.gitignore #####
385
+ .vscode/*
386
+ # !.vscode/settings.json
387
+ # !.vscode/tasks.json
388
+ # !.vscode/launch.json
389
+ !.vscode/extensions.json
390
+ *.code-workspace
391
+
392
+ # Local History for Visual Studio Code
393
+ .history/
394
+
395
+
396
+ ##### Vim.gitignore #####
397
+ # Swap
398
+ .*.s[a-v][a-z]
399
+ !*.svg # comment out if you don't need vector files
400
+ .*.sw[a-p]
401
+ .s[a-rt-v][a-z]
402
+ .ss[a-gi-z]
403
+ .sw[a-p]
404
+
405
+ # Session
406
+ Session.vim
407
+ Sessionx.vim
408
+
409
+ # Temporary
410
+ .netrwhist
411
+ *~
412
+ # Auto-generated tag files
413
+ tags
414
+ # Persistent undo
415
+ [._]*.un~
.pre-commit-config.yaml ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # See https://pre-commit.com for more information
2
+ # See https://pre-commit.com/hooks.html for more hooks
3
+ ci:
4
+ skip: [pylint]
5
+ autofix_prs: true
6
+ autofix_commit_msg: "fix: [pre-commit.ci] auto fixes [...]"
7
+ autoupdate_commit_msg: "chore(pre-commit): [pre-commit.ci] autoupdate"
8
+ autoupdate_schedule: monthly
9
+ default_stages: [commit, push, manual]
10
+ repos:
11
+ - repo: https://github.com/pre-commit/pre-commit-hooks
12
+ rev: v4.5.0
13
+ hooks:
14
+ - id: check-symlinks
15
+ - id: destroyed-symlinks
16
+ - id: trailing-whitespace
17
+ - id: end-of-file-fixer
18
+ - id: check-yaml
19
+ - id: check-toml
20
+ - id: check-ast
21
+ - id: check-added-large-files
22
+ - id: check-merge-conflict
23
+ - id: check-executables-have-shebangs
24
+ - id: check-shebang-scripts-are-executable
25
+ - id: detect-private-key
26
+ - id: debug-statements
27
+ - id: double-quote-string-fixer
28
+ - repo: https://github.com/astral-sh/ruff-pre-commit
29
+ rev: v0.1.5
30
+ hooks:
31
+ - id: ruff
32
+ args: [--fix, --exit-non-zero-on-fix]
33
+ - repo: https://github.com/PyCQA/isort
34
+ rev: 5.12.0
35
+ hooks:
36
+ - id: isort
37
+ - repo: https://github.com/psf/black
38
+ rev: 23.11.0
39
+ hooks:
40
+ - id: black-jupyter
41
+ - repo: https://github.com/asottile/pyupgrade
42
+ rev: v3.15.0
43
+ hooks:
44
+ - id: pyupgrade
45
+ args: [--py38-plus] # sync with requires-python
46
+ exclude: |
47
+ (?x)(
48
+ ^images/
49
+ )
50
+ - repo: https://github.com/pycqa/flake8
51
+ rev: 6.1.0
52
+ hooks:
53
+ - id: flake8
54
+ additional_dependencies:
55
+ - flake8-bugbear
56
+ - flake8-comprehensions
57
+ - flake8-docstrings
58
+ - flake8-pyi
59
+ - flake8-simplify
60
+ exclude: |
61
+ (?x)(
62
+ ^images/
63
+ )
64
+ - repo: local
65
+ hooks:
66
+ - id: pylint
67
+ name: pylint
68
+ entry: pylint
69
+ language: system
70
+ types: [python]
71
+ require_serial: true
72
+ exclude: |
73
+ (?x)(
74
+ ^images/
75
+ )
.pylintrc ADDED
@@ -0,0 +1,629 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [MAIN]
2
+
3
+ # Analyse import fallback blocks. This can be used to support both Python 2 and
4
+ # 3 compatible code, which means that the block might have code that exists
5
+ # only in one or another interpreter, leading to false positives when analysed.
6
+ analyse-fallback-blocks=no
7
+
8
+ # Load and enable all available extensions. Use --list-extensions to see a list
9
+ # all available extensions.
10
+ #enable-all-extensions=
11
+
12
+ # In error mode, messages with a category besides ERROR or FATAL are
13
+ # suppressed, and no reports are done by default. Error mode is compatible with
14
+ # disabling specific errors.
15
+ #errors-only=
16
+
17
+ # Always return a 0 (non-error) status code, even if lint errors are found.
18
+ # This is primarily useful in continuous integration scripts.
19
+ #exit-zero=
20
+
21
+ # A comma-separated list of package or module names from where C extensions may
22
+ # be loaded. Extensions are loading into the active Python interpreter and may
23
+ # run arbitrary code.
24
+ extension-pkg-allow-list=
25
+
26
+ # A comma-separated list of package or module names from where C extensions may
27
+ # be loaded. Extensions are loading into the active Python interpreter and may
28
+ # run arbitrary code. (This is an alternative name to extension-pkg-allow-list
29
+ # for backward compatibility.)
30
+ extension-pkg-whitelist=
31
+
32
+ # Return non-zero exit code if any of these messages/categories are detected,
33
+ # even if score is above --fail-under value. Syntax same as enable. Messages
34
+ # specified are enabled, while categories only check already-enabled messages.
35
+ fail-on=
36
+
37
+ # Specify a score threshold under which the program will exit with error.
38
+ fail-under=10
39
+
40
+ # Interpret the stdin as a python script, whose filename needs to be passed as
41
+ # the module_or_package argument.
42
+ #from-stdin=
43
+
44
+ # Files or directories to be skipped. They should be base names, not paths.
45
+ ignore=CVS,.vscode,.history
46
+
47
+ # Add files or directories matching the regular expressions patterns to the
48
+ # ignore-list. The regex matches against paths and can be in Posix or Windows
49
+ # format. Because '\' represents the directory delimiter on Windows systems, it
50
+ # can't be used as an escape character.
51
+ ignore-paths=^images/$
52
+
53
+ # Files or directories matching the regular expression patterns are skipped.
54
+ # The regex matches against base names, not paths. The default value ignores
55
+ # Emacs file locks
56
+ ignore-patterns=^\.#
57
+
58
+ # List of module names for which member attributes should not be checked
59
+ # (useful for modules/projects where namespaces are manipulated during runtime
60
+ # and thus existing member attributes cannot be deduced by static analysis). It
61
+ # supports qualified module names, as well as Unix pattern matching.
62
+ ignored-modules=
63
+
64
+ # Python code to execute, usually for sys.path manipulation such as
65
+ # pygtk.require().
66
+ #init-hook=
67
+
68
+ # Use multiple processes to speed up Pylint. Specifying 0 will auto-detect the
69
+ # number of processors available to use, and will cap the count on Windows to
70
+ # avoid hangs.
71
+ jobs=0
72
+
73
+ # Control the amount of potential inferred values when inferring a single
74
+ # object. This can help the performance when dealing with large functions or
75
+ # complex, nested conditions.
76
+ limit-inference-results=100
77
+
78
+ # List of plugins (as comma separated values of python module names) to load,
79
+ # usually to register additional checkers.
80
+ load-plugins=
81
+
82
+ # Pickle collected data for later comparisons.
83
+ persistent=yes
84
+
85
+ # Minimum Python version to use for version dependent checks. Will default to
86
+ # the version used to run pylint.
87
+ py-version=3.8 # the lowest version we support (sync with requires-python in pyproject.toml)
88
+
89
+ # Discover python modules and packages in the file system subtree.
90
+ recursive=no
91
+
92
+ # When enabled, pylint would attempt to guess common misconfiguration and emit
93
+ # user-friendly hints instead of false-positive error messages.
94
+ suggestion-mode=yes
95
+
96
+ # Allow loading of arbitrary C extensions. Extensions are imported into the
97
+ # active Python interpreter and may run arbitrary code.
98
+ unsafe-load-any-extension=no
99
+
100
+ # In verbose mode, extra non-checker-related info will be displayed.
101
+ #verbose=
102
+
103
+
104
+ [BASIC]
105
+
106
+ # Naming style matching correct argument names.
107
+ argument-naming-style=snake_case
108
+
109
+ # Regular expression matching correct argument names. Overrides argument-
110
+ # naming-style. If left empty, argument names will be checked with the set
111
+ # naming style.
112
+ #argument-rgx=
113
+
114
+ # Naming style matching correct attribute names.
115
+ attr-naming-style=snake_case
116
+
117
+ # Regular expression matching correct attribute names. Overrides attr-naming-
118
+ # style. If left empty, attribute names will be checked with the set naming
119
+ # style.
120
+ #attr-rgx=
121
+
122
+ # Bad variable names which should always be refused, separated by a comma.
123
+ bad-names=foo,
124
+ bar,
125
+ baz,
126
+ toto,
127
+ tutu,
128
+ tata
129
+
130
+ # Bad variable names regexes, separated by a comma. If names match any regex,
131
+ # they will always be refused
132
+ bad-names-rgxs=
133
+
134
+ # Naming style matching correct class attribute names.
135
+ class-attribute-naming-style=any
136
+
137
+ # Regular expression matching correct class attribute names. Overrides class-
138
+ # attribute-naming-style. If left empty, class attribute names will be checked
139
+ # with the set naming style.
140
+ #class-attribute-rgx=
141
+
142
+ # Naming style matching correct class constant names.
143
+ class-const-naming-style=UPPER_CASE
144
+
145
+ # Regular expression matching correct class constant names. Overrides class-
146
+ # const-naming-style. If left empty, class constant names will be checked with
147
+ # the set naming style.
148
+ #class-const-rgx=
149
+
150
+ # Naming style matching correct class names.
151
+ class-naming-style=PascalCase
152
+
153
+ # Regular expression matching correct class names. Overrides class-naming-
154
+ # style. If left empty, class names will be checked with the set naming style.
155
+ #class-rgx=
156
+
157
+ # Naming style matching correct constant names.
158
+ const-naming-style=UPPER_CASE
159
+
160
+ # Regular expression matching correct constant names. Overrides const-naming-
161
+ # style. If left empty, constant names will be checked with the set naming
162
+ # style.
163
+ #const-rgx=
164
+
165
+ # Minimum line length for functions/classes that require docstrings, shorter
166
+ # ones are exempt.
167
+ docstring-min-length=-1
168
+
169
+ # Naming style matching correct function names.
170
+ function-naming-style=snake_case
171
+
172
+ # Regular expression matching correct function names. Overrides function-
173
+ # naming-style. If left empty, function names will be checked with the set
174
+ # naming style.
175
+ #function-rgx=
176
+
177
+ # Good variable names which should always be accepted, separated by a comma.
178
+ good-names=i,
179
+ j,
180
+ k,
181
+ ex,
182
+ Run,
183
+ _,
184
+ op,
185
+ fn,
186
+ f,
187
+ g,
188
+ p,
189
+ u,
190
+ t,
191
+ lr,
192
+ mu,
193
+ nu,
194
+ x,
195
+ y
196
+
197
+ # Good variable names regexes, separated by a comma. If names match any regex,
198
+ # they will always be accepted
199
+ good-names-rgxs=
200
+
201
+ # Include a hint for the correct naming format with invalid-name.
202
+ include-naming-hint=no
203
+
204
+ # Naming style matching correct inline iteration names.
205
+ inlinevar-naming-style=any
206
+
207
+ # Regular expression matching correct inline iteration names. Overrides
208
+ # inlinevar-naming-style. If left empty, inline iteration names will be checked
209
+ # with the set naming style.
210
+ #inlinevar-rgx=
211
+
212
+ # Naming style matching correct method names.
213
+ method-naming-style=snake_case
214
+
215
+ # Regular expression matching correct method names. Overrides method-naming-
216
+ # style. If left empty, method names will be checked with the set naming style.
217
+ #method-rgx=
218
+
219
+ # Naming style matching correct module names.
220
+ module-naming-style=snake_case
221
+
222
+ # Regular expression matching correct module names. Overrides module-naming-
223
+ # style. If left empty, module names will be checked with the set naming style.
224
+ #module-rgx=
225
+
226
+ # Colon-delimited sets of names that determine each other's naming style when
227
+ # the name regexes allow several styles.
228
+ name-group=
229
+
230
+ # Regular expression which should only match function or class names that do
231
+ # not require a docstring.
232
+ no-docstring-rgx=^_
233
+
234
+ # List of decorators that produce properties, such as abc.abstractproperty. Add
235
+ # to this list to register other decorators that produce valid properties.
236
+ # These decorators are taken in consideration only for invalid-name.
237
+ property-classes=abc.abstractproperty
238
+
239
+ # Regular expression matching correct type variable names. If left empty, type
240
+ # variable names will be checked with the set naming style.
241
+ #typevar-rgx=
242
+
243
+ # Naming style matching correct variable names.
244
+ variable-naming-style=snake_case
245
+
246
+ # Regular expression matching correct variable names. Overrides variable-
247
+ # naming-style. If left empty, variable names will be checked with the set
248
+ # naming style.
249
+ #variable-rgx=
250
+
251
+
252
+ [CLASSES]
253
+
254
+ # Warn about protected attribute access inside special methods
255
+ check-protected-access-in-special-methods=no
256
+
257
+ # List of method names used to declare (i.e. assign) instance attributes.
258
+ defining-attr-methods=__init__,
259
+ __new__,
260
+ setUp,
261
+ __post_init__
262
+
263
+ # List of member names, which should be excluded from the protected access
264
+ # warning.
265
+ exclude-protected=_asdict,
266
+ _fields,
267
+ _replace,
268
+ _source,
269
+ _make
270
+
271
+ # List of valid names for the first argument in a class method.
272
+ valid-classmethod-first-arg=cls
273
+
274
+ # List of valid names for the first argument in a metaclass class method.
275
+ valid-metaclass-classmethod-first-arg=cls
276
+
277
+
278
+ [DESIGN]
279
+
280
+ # List of regular expressions of class ancestor names to ignore when counting
281
+ # public methods (see R0903)
282
+ exclude-too-few-public-methods=
283
+
284
+ # List of qualified class names to ignore when counting class parents (see
285
+ # R0901)
286
+ ignored-parents=
287
+
288
+ # Maximum number of arguments for function / method.
289
+ max-args=5
290
+
291
+ # Maximum number of attributes for a class (see R0902).
292
+ max-attributes=7
293
+
294
+ # Maximum number of boolean expressions in an if statement (see R0916).
295
+ max-bool-expr=5
296
+
297
+ # Maximum number of branch for function / method body.
298
+ max-branches=12
299
+
300
+ # Maximum number of locals for function / method body.
301
+ max-locals=15
302
+
303
+ # Maximum number of parents for a class (see R0901).
304
+ max-parents=7
305
+
306
+ # Maximum number of public methods for a class (see R0904).
307
+ max-public-methods=20
308
+
309
+ # Maximum number of return / yield for function / method body.
310
+ max-returns=6
311
+
312
+ # Maximum number of statements in function / method body.
313
+ max-statements=50
314
+
315
+ # Minimum number of public methods for a class (see R0903).
316
+ min-public-methods=2
317
+
318
+
319
+ [EXCEPTIONS]
320
+
321
+ # Exceptions that will emit a warning when caught.
322
+ overgeneral-exceptions=builtins.BaseException,
323
+ builtins.Exception
324
+
325
+
326
+ [FORMAT]
327
+
328
+ # Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
329
+ expected-line-ending-format=
330
+
331
+ # Regexp for a line that is allowed to be longer than the limit.
332
+ ignore-long-lines=^\s*(# )?<?https?://\S+>?$
333
+
334
+ # Number of spaces of indent required inside a hanging or continued line.
335
+ indent-after-paren=4
336
+
337
+ # String used as indentation unit. This is usually " " (4 spaces) or "\t" (1
338
+ # tab).
339
+ indent-string=' '
340
+
341
+ # Maximum number of characters on a single line.
342
+ max-line-length=120
343
+
344
+ # Maximum number of lines in a module.
345
+ max-module-lines=1000
346
+
347
+ # Allow the body of a class to be on the same line as the declaration if body
348
+ # contains single statement.
349
+ single-line-class-stmt=no
350
+
351
+ # Allow the body of an if to be on the same line as the test if there is no
352
+ # else.
353
+ single-line-if-stmt=no
354
+
355
+
356
+ [IMPORTS]
357
+
358
+ # List of modules that can be imported at any level, not just the top level
359
+ # one.
360
+ allow-any-import-level=
361
+
362
+ # Allow wildcard imports from modules that define __all__.
363
+ allow-wildcard-with-all=no
364
+
365
+ # Deprecated modules which should not be used, separated by a comma.
366
+ deprecated-modules=
367
+
368
+ # Output a graph (.gv or any supported image format) of external dependencies
369
+ # to the given file (report RP0402 must not be disabled).
370
+ ext-import-graph=
371
+
372
+ # Output a graph (.gv or any supported image format) of all (i.e. internal and
373
+ # external) dependencies to the given file (report RP0402 must not be
374
+ # disabled).
375
+ import-graph=
376
+
377
+ # Output a graph (.gv or any supported image format) of internal dependencies
378
+ # to the given file (report RP0402 must not be disabled).
379
+ int-import-graph=
380
+
381
+ # Force import order to recognize a module as part of the standard
382
+ # compatibility libraries.
383
+ known-standard-library=
384
+
385
+ # Force import order to recognize a module as part of a third party library.
386
+ known-third-party=enchant
387
+
388
+ # Couples of modules and preferred modules, separated by a comma.
389
+ preferred-modules=
390
+
391
+
392
+ [LOGGING]
393
+
394
+ # The type of string formatting that logging methods do. `old` means using %
395
+ # formatting, `new` is for `{}` formatting.
396
+ logging-format-style=old
397
+
398
+ # Logging modules to check that the string format arguments are in logging
399
+ # function parameter format.
400
+ logging-modules=logging
401
+
402
+
403
+ [MESSAGES CONTROL]
404
+
405
+ # Only show warnings with the listed confidence levels. Leave empty to show
406
+ # all. Valid levels: HIGH, CONTROL_FLOW, INFERENCE, INFERENCE_FAILURE,
407
+ # UNDEFINED.
408
+ confidence=HIGH,
409
+ CONTROL_FLOW,
410
+ INFERENCE,
411
+ INFERENCE_FAILURE,
412
+ UNDEFINED
413
+
414
+ # Disable the message, report, category or checker with the given id(s). You
415
+ # can either give multiple identifiers separated by comma (,) or put this
416
+ # option multiple times (only on the command line, not in the configuration
417
+ # file where it should appear only once). You can also use "--disable=all" to
418
+ # disable everything first and then re-enable specific checks. For example, if
419
+ # you want to run only the similarities checker, you can use "--disable=all
420
+ # --enable=similarities". If you want to run only the classes checker, but have
421
+ # no Warning level messages displayed, use "--disable=all --enable=classes
422
+ # --disable=W".
423
+ disable=duplicate-code,
424
+ consider-using-from-import
425
+
426
+ # Enable the message, report, category or checker with the given id(s). You can
427
+ # either give multiple identifier separated by comma (,) or put this option
428
+ # multiple time (only on the command line, not in the configuration file where
429
+ # it should appear only once). See also the "--disable" option for examples.
430
+ enable=c-extension-no-member
431
+
432
+
433
+ [METHOD_ARGS]
434
+
435
+ # List of qualified names (i.e., library.method) which require a timeout
436
+ # parameter e.g. 'requests.api.get,requests.api.post'
437
+ timeout-methods=requests.api.delete,requests.api.get,requests.api.head,requests.api.options,requests.api.patch,requests.api.post,requests.api.put,requests.api.request
438
+
439
+
440
+ [MISCELLANEOUS]
441
+
442
+ # List of note tags to take in consideration, separated by a comma.
443
+ notes=FIXME,
444
+ XXX,
445
+ TODO
446
+
447
+ # Regular expression of note tags to take in consideration.
448
+ notes-rgx=
449
+
450
+
451
+ [REFACTORING]
452
+
453
+ # Maximum number of nested blocks for function / method body
454
+ max-nested-blocks=5
455
+
456
+ # Complete name of functions that never returns. When checking for
457
+ # inconsistent-return-statements if a never returning function is called then
458
+ # it will be considered as an explicit return statement and no message will be
459
+ # printed.
460
+ never-returning-functions=sys.exit,argparse.parse_error
461
+
462
+
463
+ [REPORTS]
464
+
465
+ # Python expression which should return a score less than or equal to 10. You
466
+ # have access to the variables 'fatal', 'error', 'warning', 'refactor',
467
+ # 'convention', and 'info' which contain the number of messages in each
468
+ # category, as well as 'statement' which is the total number of statements
469
+ # analyzed. This score is used by the global evaluation report (RP0004).
470
+ evaluation=max(0, 0 if fatal else 10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10))
471
+
472
+ # Template used to display messages. This is a python new-style format string
473
+ # used to format the message information. See doc for all details.
474
+ msg-template=
475
+
476
+ # Set the output format. Available formats are text, parseable, colorized, json
477
+ # and msvs (visual studio). You can also give a reporter class, e.g.
478
+ # mypackage.mymodule.MyReporterClass.
479
+ #output-format=
480
+
481
+ # Tells whether to display a full report or only the messages.
482
+ reports=no
483
+
484
+ # Activate the evaluation score.
485
+ score=yes
486
+
487
+
488
+ [SIMILARITIES]
489
+
490
+ # Comments are removed from the similarity computation
491
+ ignore-comments=yes
492
+
493
+ # Docstrings are removed from the similarity computation
494
+ ignore-docstrings=yes
495
+
496
+ # Imports are removed from the similarity computation
497
+ ignore-imports=yes
498
+
499
+ # Signatures are removed from the similarity computation
500
+ ignore-signatures=yes
501
+
502
+ # Minimum lines number of a similarity.
503
+ min-similarity-lines=4
504
+
505
+
506
+ [SPELLING]
507
+
508
+ # Limits count of emitted suggestions for spelling mistakes.
509
+ max-spelling-suggestions=4
510
+
511
+ # Spelling dictionary name. Available dictionaries: en_AU (hunspell), en_CA
512
+ # (hunspell), en_GB (hunspell), en_US (hunspell), en_ZA (hunspell).
513
+ spelling-dict=
514
+
515
+ # List of comma separated words that should be considered directives if they
516
+ # appear at the beginning of a comment and should not be checked.
517
+ spelling-ignore-comment-directives=fmt: on,fmt: off,noqa:,noqa,nosec,isort:skip,mypy:
518
+
519
+ # List of comma separated words that should not be checked.
520
+ spelling-ignore-words=
521
+
522
+ # A path to a file that contains the private dictionary; one word per line.
523
+ spelling-private-dict-file=docs/source/spelling_wordlist.txt
524
+
525
+ # Tells whether to store unknown words to the private dictionary (see the
526
+ # --spelling-private-dict-file option) instead of raising a message.
527
+ spelling-store-unknown-words=no
528
+
529
+
530
+ [STRING]
531
+
532
+ # This flag controls whether inconsistent-quotes generates a warning when the
533
+ # character used as a quote delimiter is used inconsistently within a module.
534
+ check-quote-consistency=no
535
+
536
+ # This flag controls whether the implicit-str-concat should generate a warning
537
+ # on implicit string concatenation in sequences defined over several lines.
538
+ check-str-concat-over-line-jumps=no
539
+
540
+
541
+ [TYPECHECK]
542
+
543
+ # List of decorators that produce context managers, such as
544
+ # contextlib.contextmanager. Add to this list to register other decorators that
545
+ # produce valid context managers.
546
+ contextmanager-decorators=contextlib.contextmanager
547
+
548
+ # List of members which are set dynamically and missed by pylint inference
549
+ # system, and so shouldn't trigger E1101 when accessed. Python regular
550
+ # expressions are accepted.
551
+ generated-members=numpy.*,
552
+ torch.*
553
+
554
+ # Tells whether missing members accessed in mixin class should be ignored. A
555
+ # class is considered mixin if its name matches the mixin-class-rgx option.
556
+ ignore-mixin-members=yes
557
+
558
+ # Tells whether to warn about missing members when the owner of the attribute
559
+ # is inferred to be None.
560
+ ignore-none=yes
561
+
562
+ # This flag controls whether pylint should warn about no-member and similar
563
+ # checks whenever an opaque object is returned when inferring. The inference
564
+ # can return multiple potential results while evaluating a Python object, but
565
+ # some branches might not be evaluated, which results in partial inference. In
566
+ # that case, it might be useful to still emit no-member and other checks for
567
+ # the rest of the inferred objects.
568
+ ignore-on-opaque-inference=yes
569
+
570
+ # List of symbolic message names to ignore for Mixin members.
571
+ ignored-checks-for-mixins=no-member,
572
+ not-async-context-manager,
573
+ not-context-manager,
574
+ attribute-defined-outside-init
575
+
576
+ # List of class names for which member attributes should not be checked (useful
577
+ # for classes with dynamically set attributes). This supports the use of
578
+ # qualified names.
579
+ ignored-classes=optparse.Values,thread._local,_thread._local,argparse.Namespace
580
+
581
+ # Show a hint with possible names when a member name was not found. The aspect
582
+ # of finding the hint is based on edit distance.
583
+ missing-member-hint=yes
584
+
585
+ # The minimum edit distance a name should have in order to be considered a
586
+ # similar match for a missing member name.
587
+ missing-member-hint-distance=1
588
+
589
+ # The total number of similar names that should be taken in consideration when
590
+ # showing a hint for a missing member.
591
+ missing-member-max-choices=1
592
+
593
+ # Regex pattern to define which classes are considered mixins.
594
+ mixin-class-rgx=.*[Mm]ixin
595
+
596
+ # List of decorators that change the signature of a decorated function.
597
+ signature-mutators=
598
+
599
+
600
+ [VARIABLES]
601
+
602
+ # List of additional names supposed to be defined in builtins. Remember that
603
+ # you should avoid defining new builtins when possible.
604
+ additional-builtins=
605
+
606
+ # Tells whether unused global variables should be treated as a violation.
607
+ allow-global-unused-variables=yes
608
+
609
+ # List of names allowed to shadow builtins
610
+ allowed-redefined-builtins=
611
+
612
+ # List of strings which can identify a callback function by name. A callback
613
+ # name must start or end with one of those strings.
614
+ callbacks=cb_,
615
+ _cb
616
+
617
+ # A regular expression matching the name of dummy variables (i.e. expected to
618
+ # not be used).
619
+ dummy-variables-rgx=_+$|(_[a-zA-Z0-9_]*[a-zA-Z0-9]+?$)|dummy|^ignored_|^unused_
620
+
621
+ # Argument names that match this expression will be ignored.
622
+ ignored-argument-names=_.*|^ignored_|^unused_
623
+
624
+ # Tells whether we should check for unused import in __init__ files.
625
+ init-import=no
626
+
627
+ # List of qualified module names which can have objects that can redefine
628
+ # builtins.
629
+ redefining-builtins-modules=six.moves,past.builtins,future.builtins,builtins,io
LICENSE-CODE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 DeepSeek
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
LICENSE-MODEL ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DEEPSEEK LICENSE AGREEMENT
2
+
3
+ Version 1.0, 23 October 2023
4
+
5
+ Copyright (c) 2023 DeepSeek
6
+
7
+ Section I: PREAMBLE
8
+
9
+ Large generative models are being widely adopted and used, and have the potential to transform the way individuals conceive and benefit from AI or ML technologies.
10
+
11
+ Notwithstanding the current and potential benefits that these artifacts can bring to society at large, there are also concerns about potential misuses of them, either due to their technical limitations or ethical considerations.
12
+
13
+ In short, this license strives for both the open and responsible downstream use of the accompanying model. When it comes to the open character, we took inspiration from open source permissive licenses regarding the grant of IP rights. Referring to the downstream responsible use, we added use-based restrictions not permitting the use of the model in very specific scenarios, in order for the licensor to be able to enforce the license in case potential misuses of the Model may occur. At the same time, we strive to promote open and responsible research on generative models for content generation.
14
+
15
+ Even though downstream derivative versions of the model could be released under different licensing terms, the latter will always have to include - at minimum - the same use-based restrictions as the ones in the original license (this license). We believe in the intersection between open and responsible AI development; thus, this agreement aims to strike a balance between both in order to enable responsible open-science in the field of AI.
16
+
17
+ This License governs the use of the model (and its derivatives) and is informed by the model card associated with the model.
18
+
19
+ NOW THEREFORE, You and DeepSeek agree as follows:
20
+
21
+ 1. Definitions
22
+ "License" means the terms and conditions for use, reproduction, and Distribution as defined in this document.
23
+ "Data" means a collection of information and/or content extracted from the dataset used with the Model, including to train, pretrain, or otherwise evaluate the Model. The Data is not licensed under this License.
24
+ "Output" means the results of operating a Model as embodied in informational content resulting therefrom.
25
+ "Model" means any accompanying machine-learning based assemblies (including checkpoints), consisting of learnt weights, parameters (including optimizer states), corresponding to the model architecture as embodied in the Complementary Material, that have been trained or tuned, in whole or in part on the Data, using the Complementary Material.
26
+ "Derivatives of the Model" means all modifications to the Model, works based on the Model, or any other model which is created or initialized by transfer of patterns of the weights, parameters, activations or output of the Model, to the other model, in order to cause the other model to perform similarly to the Model, including - but not limited to - distillation methods entailing the use of intermediate data representations or methods based on the generation of synthetic data by the Model for training the other model.
27
+ "Complementary Material" means the accompanying source code and scripts used to define, run, load, benchmark or evaluate the Model, and used to prepare data for training or evaluation, if any. This includes any accompanying documentation, tutorials, examples, etc, if any.
28
+ "Distribution" means any transmission, reproduction, publication or other sharing of the Model or Derivatives of the Model to a third party, including providing the Model as a hosted service made available by electronic or other remote means - e.g. API-based or web access.
29
+ "DeepSeek" (or "we") means Beijing DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd., Hangzhou DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd. and/or any of their affiliates.
30
+ "You" (or "Your") means an individual or Legal Entity exercising permissions granted by this License and/or making use of the Model for whichever purpose and in any field of use, including usage of the Model in an end-use application - e.g. chatbot, translator, etc.
31
+ "Third Parties" means individuals or legal entities that are not under common control with DeepSeek or You.
32
+
33
+ Section II: INTELLECTUAL PROPERTY RIGHTS
34
+
35
+ Both copyright and patent grants apply to the Model, Derivatives of the Model and Complementary Material. The Model and Derivatives of the Model are subject to additional terms as described in Section III.
36
+
37
+ 2. Grant of Copyright License. Subject to the terms and conditions of this License, DeepSeek hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare, publicly display, publicly perform, sublicense, and distribute the Complementary Material, the Model, and Derivatives of the Model.
38
+
39
+ 3. Grant of Patent License. Subject to the terms and conditions of this License and where and as applicable, DeepSeek hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this paragraph) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Model and the Complementary Material, where such license applies only to those patent claims licensable by DeepSeek that are necessarily infringed by its contribution(s). If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Model and/or Complementary Material constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for the Model and/or works shall terminate as of the date such litigation is asserted or filed.
40
+
41
+
42
+ Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
43
+
44
+ 4. Distribution and Redistribution. You may host for Third Party remote access purposes (e.g. software-as-a-service), reproduce and distribute copies of the Model or Derivatives of the Model thereof in any medium, with or without modifications, provided that You meet the following conditions:
45
+ a. Use-based restrictions as referenced in paragraph 5 MUST be included as an enforceable provision by You in any type of legal agreement (e.g. a license) governing the use and/or distribution of the Model or Derivatives of the Model, and You shall give notice to subsequent users You Distribute to, that the Model or Derivatives of the Model are subject to paragraph 5. This provision does not apply to the use of Complementary Material.
46
+ b. You must give any Third Party recipients of the Model or Derivatives of the Model a copy of this License;
47
+ c. You must cause any modified files to carry prominent notices stating that You changed the files;
48
+ d. You must retain all copyright, patent, trademark, and attribution notices excluding those notices that do not pertain to any part of the Model, Derivatives of the Model.
49
+ e. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions - respecting paragraph 4.a. – for use, reproduction, or Distribution of Your modifications, or for any such Derivatives of the Model as a whole, provided Your use, reproduction, and Distribution of the Model otherwise complies with the conditions stated in this License.
50
+
51
+ 5. Use-based restrictions. The restrictions set forth in Attachment A are considered Use-based restrictions. Therefore You cannot use the Model and the Derivatives of the Model for the specified restricted uses. You may use the Model subject to this License, including only for lawful purposes and in accordance with the License. Use may include creating any content with, finetuning, updating, running, training, evaluating and/or reparametrizing the Model. You shall require all of Your users who use the Model or a Derivative of the Model to comply with the terms of this paragraph (paragraph 5).
52
+
53
+ 6. The Output You Generate. Except as set forth herein, DeepSeek claims no rights in the Output You generate using the Model. You are accountable for the Output you generate and its subsequent uses. No use of the output can contravene any provision as stated in the License.
54
+
55
+ Section IV: OTHER PROVISIONS
56
+
57
+ 7. Updates and Runtime Restrictions. To the maximum extent permitted by law, DeepSeek reserves the right to restrict (remotely or otherwise) usage of the Model in violation of this License.
58
+
59
+ 8. Trademarks and related. Nothing in this License permits You to make use of DeepSeek’ trademarks, trade names, logos or to otherwise suggest endorsement or misrepresent the relationship between the parties; and any rights not expressly granted herein are reserved by DeepSeek.
60
+
61
+ 9. Personal information, IP rights and related. This Model may contain personal information and works with IP rights. You commit to complying with applicable laws and regulations in the handling of personal information and the use of such works. Please note that DeepSeek's license granted to you to use the Model does not imply that you have obtained a legitimate basis for processing the related information or works. As an independent personal information processor and IP rights user, you need to ensure full compliance with relevant legal and regulatory requirements when handling personal information and works with IP rights that may be contained in the Model, and are willing to assume solely any risks and consequences that may arise from that.
62
+
63
+ 10. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, DeepSeek provides the Model and the Complementary Material on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Model, Derivatives of the Model, and the Complementary Material and assume any risks associated with Your exercise of permissions under this License.
64
+
65
+ 11. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall DeepSeek be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Model and the Complementary Material (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if DeepSeek has been advised of the possibility of such damages.
66
+
67
+ 12. Accepting Warranty or Additional Liability. While redistributing the Model, Derivatives of the Model and the Complementary Material thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of DeepSeek, and only if You agree to indemnify, defend, and hold DeepSeek harmless for any liability incurred by, or claims asserted against, DeepSeek by reason of your accepting any such warranty or additional liability.
68
+
69
+ 13. If any provision of this License is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein.
70
+
71
+ 14. Governing Law and Jurisdiction. This agreement will be governed and construed under PRC laws without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this agreement. The courts located in the domicile of Hangzhou DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd. shall have exclusive jurisdiction of any dispute arising out of this agreement.
72
+
73
+ END OF TERMS AND CONDITIONS
74
+
75
+ Attachment A
76
+
77
+ Use Restrictions
78
+
79
+ You agree not to use the Model or Derivatives of the Model:
80
+
81
+ - In any way that violates any applicable national or international law or regulation or infringes upon the lawful rights and interests of any third party;
82
+ - For military use in any way;
83
+ - For the purpose of exploiting, harming or attempting to exploit or harm minors in any way;
84
+ - To generate or disseminate verifiably false information and/or content with the purpose of harming others;
85
+ - To generate or disseminate inappropriate content subject to applicable regulatory requirements;
86
+ - To generate or disseminate personal identifiable information without due authorization or for unreasonable use;
87
+ - To defame, disparage or otherwise harass others;
88
+ - For fully automated decision making that adversely impacts an individual’s legal rights or otherwise creates or modifies a binding, enforceable obligation;
89
+ - For any use intended to or which has the effect of discriminating against or harming individuals or groups based on online or offline social behavior or known or predicted personal or personality characteristics;
90
+ - To exploit any of the vulnerabilities of a specific group of persons based on their age, social, physical or mental characteristics, in order to materially distort the behavior of a person pertaining to that group in a manner that causes or is likely to cause that person or another person physical or psychological harm;
91
+ - For any use intended to or which has the effect of discriminating against individuals or groups based on legally protected characteristics or categories.
Makefile ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print-% : ; @echo $* = $($*)
2
+ PROJECT_NAME = DeepSeek-VL
3
+ COPYRIGHT = "DeepSeek."
4
+ PROJECT_PATH = deepseek_vl
5
+ SHELL = /bin/bash
6
+ SOURCE_FOLDERS = deepseek_vl
7
+ PYTHON_FILES = $(shell find $(SOURCE_FOLDERS) -type f -name "*.py" -o -name "*.pyi") cli_chat.py inference.py
8
+ COMMIT_HASH = $(shell git log -1 --format=%h)
9
+ PATH := $(HOME)/go/bin:$(PATH)
10
+ PYTHON ?= $(shell command -v python3 || command -v python)
11
+ PYTESTOPTS ?=
12
+
13
+ .PHONY: default
14
+ default: install
15
+
16
+ # Tools Installation
17
+
18
+ check_pip_install = $(PYTHON) -m pip show $(1) &>/dev/null || (cd && $(PYTHON) -m pip install $(1) --upgrade)
19
+ check_pip_install_extra = $(PYTHON) -m pip show $(1) &>/dev/null || (cd && $(PYTHON) -m pip install $(2) --upgrade)
20
+
21
+ pylint-install:
22
+ $(call check_pip_install_extra,pylint,pylint[spelling])
23
+ $(call check_pip_install,pyenchant)
24
+
25
+ flake8-install:
26
+ $(call check_pip_install,flake8)
27
+ $(call check_pip_install,flake8-bugbear)
28
+ $(call check_pip_install,flake8-comprehensions)
29
+ $(call check_pip_install,flake8-docstrings)
30
+ $(call check_pip_install,flake8-pyi)
31
+ $(call check_pip_install,flake8-simplify)
32
+
33
+ py-format-install:
34
+ $(call check_pip_install,isort)
35
+ $(call check_pip_install_extra,black,black[jupyter])
36
+
37
+ ruff-install:
38
+ $(call check_pip_install,ruff)
39
+
40
+ mypy-install:
41
+ $(call check_pip_install,mypy)
42
+
43
+ pre-commit-install:
44
+ $(call check_pip_install,pre-commit)
45
+ $(PYTHON) -m pre_commit install --install-hooks
46
+
47
+ go-install:
48
+ # requires go >= 1.16
49
+ command -v go || (sudo apt-get install -y golang && sudo ln -sf /usr/lib/go/bin/go /usr/bin/go)
50
+
51
+ addlicense-install: go-install
52
+ command -v addlicense || go install github.com/google/addlicense@latest
53
+
54
+ addlicense: addlicense-install
55
+ addlicense -c $(COPYRIGHT) -ignore tests/coverage.xml -l mit -y 2023-$(shell date +"%Y") -check $(SOURCE_FOLDERS)
56
+
57
+ # Python linters
58
+
59
+ pylint: pylint-install
60
+ $(PYTHON) -m pylint $(PROJECT_PATH)
61
+
62
+ flake8: flake8-install
63
+ $(PYTHON) -m flake8 --count --show-source --statistics
64
+
65
+ py-format: py-format-install
66
+ $(PYTHON) -m isort --project $(PROJECT_PATH) --check $(PYTHON_FILES) && \
67
+ $(PYTHON) -m black --check $(PYTHON_FILES)
68
+
69
+ black-format: py-format-install
70
+ $(PYTHON) -m black --check $(PYTHON_FILES)
71
+
72
+ ruff: ruff-install
73
+ $(PYTHON) -m ruff check .
74
+
75
+ ruff-fix: ruff-install
76
+ $(PYTHON) -m ruff check . --fix --exit-non-zero-on-fix
77
+
78
+ mypy: mypy-install
79
+ $(PYTHON) -m mypy $(PROJECT_PATH) --install-types --non-interactive
80
+
81
+ pre-commit: pre-commit-install
82
+ $(PYTHON) -m pre_commit run --all-files
83
+
84
+ # Utility functions
85
+
86
+ lint: ruff flake8 py-format mypy pylint addlicense
87
+
88
+ format: py-format-install ruff-install addlicense-install
89
+ $(PYTHON) -m isort --project $(PROJECT_PATH) $(PYTHON_FILES)
90
+ $(PYTHON) -m black $(PYTHON_FILES)
91
+ addlicense -c $(COPYRIGHT) -ignore tests/coverage.xml -l mit -y 2023-$(shell date +"%Y") $(SOURCE_FOLDERS) cli_chat.py inference.py
92
+
93
+ clean-py:
94
+ find . -type f -name '*.py[co]' -delete
95
+ find . -depth -type d -name "__pycache__" -exec rm -r "{}" +
96
+ find . -depth -type d -name ".ruff_cache" -exec rm -r "{}" +
97
+ find . -depth -type d -name ".mypy_cache" -exec rm -r "{}" +
98
+
99
+ clean: clean-py
README.md CHANGED
@@ -1,3 +1,227 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- markdownlint-disable first-line-h1 -->
2
+ <!-- markdownlint-disable html -->
3
+ <!-- markdownlint-disable no-duplicate-header -->
4
+
5
+ <div align="center">
6
+ <img src="images/logo.svg" width="60%" alt="DeepSeek LLM" />
7
+ </div>
8
+ <hr>
9
+ <div align="center">
10
+
11
+ <a href="https://www.deepseek.com/" target="_blank">
12
+ <img alt="Homepage" src="images/badge.svg" />
13
+ </a>
14
+ <a href="https://huggingface.co/spaces/deepseek-ai/DeepSeek-VL-7B" target="_blank">
15
+ <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20VL-536af5?color=536af5&logoColor=white" />
16
+ </a>
17
+ <a href="https://huggingface.co/deepseek-ai" target="_blank">
18
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
19
+ </a>
20
+
21
+ </div>
22
+
23
+
24
+ <div align="center">
25
+
26
+ <a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
27
+ <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" />
28
+ </a>
29
+ <a href="images/qr.jpeg" target="_blank">
30
+ <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" />
31
+ </a>
32
+ <a href="https://twitter.com/deepseek_ai" target="_blank">
33
+ <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" />
34
+ </a>
35
+
36
+ </div>
37
+
38
+ <div align="center">
39
+
40
+ <a href="LICENSE-CODE">
41
+ <img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53">
42
+ </a>
43
+ <a href="LICENSE-MODEL">
44
+ <img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53">
45
+ </a>
46
+ </div>
47
+
48
+
49
+ <p align="center">
50
+ <a href="#3-model-downloads"><b>📥 Model Download</b></a> |
51
+ <a href="#4-quick-start"><b>⚡ Quick Start</b></a> |
52
+ <a href="#5-license"><b>📜 License</b></a> |
53
+ <a href="#6-citation"><b>📖 Citation</b></a> <br>
54
+ <a href="https://arxiv.org/abs/2403.05525"><b>📄 Paper Link</b></a> |
55
+ <a href="https://huggingface.co/papers/2403.05525"><b>🤗 Huggingface Paper Link</b></a> |
56
+ <a href="https://huggingface.co/spaces/deepseek-ai/DeepSeek-VL-7B"><b>👁️ Demo</b></a>
57
+ </p>
58
+
59
+
60
+ ## 1. Introduction
61
+
62
+ Introducing DeepSeek-VL, an open-source Vision-Language (VL) Model designed for real-world vision and language understanding applications. DeepSeek-VL possesses general multimodal understanding capabilities, capable of processing logical diagrams, web pages, formula recognition, scientific literature, natural images, and embodied intelligence in complex scenarios.
63
+
64
+ [DeepSeek-VL: Towards Real-World Vision-Language Understanding](https://arxiv.org/abs/2403.05525)
65
+
66
+ Haoyu Lu*, Wen Liu*, Bo Zhang**, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, Chong Ruan (*Equal Contribution, **Project Lead)
67
+
68
+ ![](https://github.com/deepseek-ai/DeepSeek-VL/blob/main/images/sample.jpg)
69
+
70
+ ## 2. Release
71
+
72
+ <details>
73
+ <summary>✅ <b>2024-03-14</b>: Demo for DeepSeek-VL-7B available on <a href="https://huggingface.co/spaces/deepseek-ai/DeepSeek-VL-7B">Hugging Face</a>.</summary>
74
+ <br>Check out the gradio demo of DeepSeek-VL-7B at <a href="https://huggingface.co/spaces/deepseek-ai/DeepSeek-VL-7B">https://huggingface.co/spaces/deepseek-ai/DeepSeek-VL-7B</a>. Experience its capabilities firsthand!
75
+ </details>
76
+
77
+
78
+ <details>
79
+ <summary>✅ <b>2024-03-13</b>: Support DeepSeek-VL gradio demo.
80
+
81
+ </details>
82
+
83
+ <details>
84
+ <summary>✅ <b>2024-03-11</b>: DeepSeek-VL family released, including <code>DeepSeek-VL-7B-base</code>, <code>DeepSeek-VL-7B-chat</code>, <code>DeepSeek-VL-1.3B-base</code>, and <code>DeepSeek-VL-1.3B-chat</code>.</summary>
85
+ <br>The release includes a diverse set of models tailored for various applications within the DeepSeek-VL family. The models come in two sizes: 7B and 1.3B parameters, each offering base and chat variants to cater to different needs and integration scenarios.
86
+
87
+ </details>
88
+
89
+ ## 3. Model Downloads
90
+
91
+ We release the DeepSeek-VL family, including 1.3B-base, 1.3B-chat, 7b-base and 7b-chat models, to the public.
92
+ To support a broader and more diverse range of research within both academic and commercial communities.
93
+ Please note that the use of this model is subject to the terms outlined in [License section](#5-license). Commercial usage is
94
+ permitted under these terms.
95
+
96
+ ### Huggingface
97
+
98
+ | Model | Sequence Length | Download |
99
+ |-----------------------|-----------------|-----------------------------------------------------------------------------|
100
+ | DeepSeek-VL-1.3B-base | 4096 | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/deepseek-vl-1.3b-base) |
101
+ | DeepSeek-VL-1.3B-chat | 4096 | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/deepseek-vl-1.3b-chat) |
102
+ | DeepSeek-VL-7B-base | 4096 | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/deepseek-vl-7b-base) |
103
+ | DeepSeek-VL-7B-chat | 4096 | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/deepseek-vl-7b-chat) |
104
+
105
+
106
+
107
+ ## 4. Quick Start
108
+
109
+ ### Installation
110
+
111
+ On the basis of `Python >= 3.8` environment, install the necessary dependencies by running the following command:
112
+
113
+ ```shell
114
+ pip install -e .
115
+ ```
116
+
117
+ ### Simple Inference Example
118
+
119
+ ```python
120
+ import torch
121
+ from transformers import AutoModelForCausalLM
122
+
123
+ from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
124
+ from deepseek_vl.utils.io import load_pil_images
125
+
126
+
127
+ # specify the path to the model
128
+ model_path = "deepseek-ai/deepseek-vl-7b-chat"
129
+ vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
130
+ tokenizer = vl_chat_processor.tokenizer
131
+
132
+ vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
133
+ vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
134
+
135
+ ## single image conversation example
136
+ conversation = [
137
+ {
138
+ "role": "User",
139
+ "content": "<image_placeholder>Describe each stage of this image.",
140
+ "images": ["./images/training_pipelines.jpg"],
141
+ },
142
+ {"role": "Assistant", "content": ""},
143
+ ]
144
+
145
+ ## multiple images (or in-context learning) conversation example
146
+ # conversation = [
147
+ # {
148
+ # "role": "User",
149
+ # "content": "<image_placeholder>A dog wearing nothing in the foreground, "
150
+ # "<image_placeholder>a dog wearing a santa hat, "
151
+ # "<image_placeholder>a dog wearing a wizard outfit, and "
152
+ # "<image_placeholder>what's the dog wearing?",
153
+ # "images": [
154
+ # "images/dog_a.png",
155
+ # "images/dog_b.png",
156
+ # "images/dog_c.png",
157
+ # "images/dog_d.png",
158
+ # ],
159
+ # },
160
+ # {"role": "Assistant", "content": ""}
161
+ # ]
162
+
163
+ # load images and prepare for inputs
164
+ pil_images = load_pil_images(conversation)
165
+ prepare_inputs = vl_chat_processor(
166
+ conversations=conversation,
167
+ images=pil_images,
168
+ force_batchify=True
169
+ ).to(vl_gpt.device)
170
+
171
+ # run image encoder to get the image embeddings
172
+ inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
173
+
174
+ # run the model to get the response
175
+ outputs = vl_gpt.language_model.generate(
176
+ inputs_embeds=inputs_embeds,
177
+ attention_mask=prepare_inputs.attention_mask,
178
+ pad_token_id=tokenizer.eos_token_id,
179
+ bos_token_id=tokenizer.bos_token_id,
180
+ eos_token_id=tokenizer.eos_token_id,
181
+ max_new_tokens=512,
182
+ do_sample=False,
183
+ use_cache=True
184
+ )
185
+
186
+ answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
187
+ print(f"{prepare_inputs['sft_format'][0]}", answer)
188
+ ```
189
+
190
+ ### CLI Chat
191
+ ```bash
192
+ python cli_chat.py --model_path "deepseek-ai/deepseek-vl-7b-chat"
193
+
194
+ # or local path
195
+ python cli_chat.py --model_path "local model path"
196
+ ```
197
+
198
+ ### Gradio Demo
199
+ ```bash
200
+ pip install -e .[gradio]
201
+
202
+ python deepseek_vl/serve/app_deepseek.py
203
+ ```
204
+ ![](./images/gradio_demo.png)
205
+
206
+ Have Fun!
207
+
208
+ ## 5. License
209
+
210
+ This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-CODE). The use of DeepSeek-VL Base/Chat models is subject to [DeepSeek Model License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-MODEL). DeepSeek-VL series (including Base and Chat) supports commercial use.
211
+
212
+ ## 6. Citation
213
+
214
+ ```
215
+ @misc{lu2024deepseekvl,
216
+ title={DeepSeek-VL: Towards Real-World Vision-Language Understanding},
217
+ author={Haoyu Lu and Wen Liu and Bo Zhang and Bingxuan Wang and Kai Dong and Bo Liu and Jingxiang Sun and Tongzheng Ren and Zhuoshu Li and Hao Yang and Yaofeng Sun and Chengqi Deng and Hanwei Xu and Zhenda Xie and Chong Ruan},
218
+ year={2024},
219
+ eprint={2403.05525},
220
+ archivePrefix={arXiv},
221
+ primaryClass={cs.AI}
222
+ }
223
+ ```
224
+
225
+ ## 7. Contact
226
+
227
+ If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com).
cli_chat.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ # -*- coding: utf-8 -*-
21
+
22
+ import argparse
23
+ import os
24
+ import sys
25
+ from threading import Thread
26
+
27
+ import torch
28
+ from PIL import Image
29
+ from transformers import TextIteratorStreamer
30
+
31
+ from deepseek_vl.utils.io import load_pretrained_model
32
+
33
+
34
+ def load_image(image_file):
35
+ image = Image.open(image_file).convert("RGB")
36
+ return image
37
+
38
+
39
+ def get_help_message(image_token):
40
+ help_msg = (
41
+ f"\t\t DeepSeek-VL-Chat is a chatbot that can answer questions based on the given image. Enjoy it! \n"
42
+ f"Usage: \n"
43
+ f" 1. type `exit` to quit. \n"
44
+ f" 2. type `{image_token}` to indicate there is an image. You can enter multiple images, "
45
+ f"e.g '{image_token} is a dot, {image_token} is a cat, and what is it in {image_token}?'. "
46
+ f"When you type `{image_token}`, the chatbot will ask you to input image file path. \n"
47
+ f" 4. type `help` to get the help messages. \n"
48
+ f" 5. type `new` to start a new conversation. \n"
49
+ f" Here is an example, you can type: '<image_placeholder>Describe the image.'\n"
50
+ )
51
+
52
+ return help_msg
53
+
54
+
55
+ @torch.inference_mode()
56
+ def response(
57
+ args, conv, pil_images, tokenizer, vl_chat_processor, vl_gpt, generation_config
58
+ ):
59
+ prompt = conv.get_prompt()
60
+ prepare_inputs = vl_chat_processor.__call__(
61
+ prompt=prompt, images=pil_images, force_batchify=True
62
+ ).to(vl_gpt.device)
63
+
64
+ # run image encoder to get the image embeddings
65
+ inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
66
+
67
+ streamer = TextIteratorStreamer(
68
+ tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True
69
+ )
70
+ generation_config["inputs_embeds"] = inputs_embeds
71
+ generation_config["attention_mask"] = prepare_inputs.attention_mask
72
+ generation_config["streamer"] = streamer
73
+
74
+ thread = Thread(target=vl_gpt.language_model.generate, kwargs=generation_config)
75
+ thread.start()
76
+
77
+ yield from streamer
78
+
79
+
80
+ def get_user_input(hint: str):
81
+ user_input = ""
82
+ while user_input == "":
83
+ try:
84
+ user_input = input(f"{hint}")
85
+ except KeyboardInterrupt:
86
+ print()
87
+ continue
88
+ except EOFError:
89
+ user_input = "exit"
90
+
91
+ return user_input
92
+
93
+
94
+ def chat(args, tokenizer, vl_chat_processor, vl_gpt, generation_config):
95
+ image_token = vl_chat_processor.image_token
96
+ help_msg = get_help_message(image_token)
97
+
98
+ while True:
99
+ print(help_msg)
100
+
101
+ pil_images = []
102
+ conv = vl_chat_processor.new_chat_template()
103
+ roles = conv.roles
104
+
105
+ while True:
106
+ # get user input
107
+ user_input = get_user_input(
108
+ f"{roles[0]} [{image_token} indicates an image]: "
109
+ )
110
+
111
+ if user_input == "exit":
112
+ print("Chat program exited.")
113
+ sys.exit(0)
114
+
115
+ elif user_input == "help":
116
+ print(help_msg)
117
+
118
+ elif user_input == "new":
119
+ os.system("clear")
120
+ pil_images = []
121
+ conv = vl_chat_processor.new_chat_template()
122
+ torch.cuda.empty_cache()
123
+ print("New conversation started.")
124
+
125
+ else:
126
+ conv.append_message(conv.roles[0], user_input)
127
+ conv.append_message(conv.roles[1], None)
128
+
129
+ # check if the user input is an image token
130
+ num_images = user_input.count(image_token)
131
+ cur_img_idx = 0
132
+
133
+ while cur_img_idx < num_images:
134
+ try:
135
+ image_file = input(
136
+ f"({cur_img_idx + 1}/{num_images}) Input the image file path: "
137
+ )
138
+ image_file = (
139
+ image_file.strip()
140
+ ) # trim whitespaces around path, enables drop-in from for example Dolphin
141
+
142
+ except KeyboardInterrupt:
143
+ print()
144
+ continue
145
+
146
+ except EOFError:
147
+ image_file = None
148
+
149
+ if image_file and os.path.exists(image_file):
150
+ pil_image = load_image(image_file)
151
+ pil_images.append(pil_image)
152
+ cur_img_idx += 1
153
+
154
+ elif image_file == "exit":
155
+ print("Chat program exited.")
156
+ sys.exit(0)
157
+
158
+ else:
159
+ print(
160
+ f"File error, `{image_file}` does not exist. Please input the correct file path."
161
+ )
162
+
163
+ # get the answer by the model's prediction
164
+ answer = ""
165
+ answer_iter = response(
166
+ args,
167
+ conv,
168
+ pil_images,
169
+ tokenizer,
170
+ vl_chat_processor,
171
+ vl_gpt,
172
+ generation_config,
173
+ )
174
+ sys.stdout.write(f"{conv.roles[1]}: ")
175
+ for char in answer_iter:
176
+ answer += char
177
+ sys.stdout.write(char)
178
+ sys.stdout.flush()
179
+
180
+ sys.stdout.write("\n")
181
+ sys.stdout.flush()
182
+ conv.update_last_message(answer)
183
+ # conv.messages[-1][-1] = answer
184
+
185
+
186
+ def main(args):
187
+ # setup
188
+ tokenizer, vl_chat_processor, vl_gpt = load_pretrained_model(args.model_path)
189
+ generation_config = dict(
190
+ pad_token_id=vl_chat_processor.tokenizer.eos_token_id,
191
+ bos_token_id=vl_chat_processor.tokenizer.bos_token_id,
192
+ eos_token_id=vl_chat_processor.tokenizer.eos_token_id,
193
+ max_new_tokens=args.max_gen_len,
194
+ use_cache=True,
195
+ )
196
+ if args.temperature > 0:
197
+ generation_config.update(
198
+ {
199
+ "do_sample": True,
200
+ "top_p": args.top_p,
201
+ "temperature": args.temperature,
202
+ "repetition_penalty": args.repetition_penalty,
203
+ }
204
+ )
205
+ else:
206
+ generation_config.update({"do_sample": False})
207
+
208
+ chat(args, tokenizer, vl_chat_processor, vl_gpt, generation_config)
209
+
210
+
211
+ if __name__ == "__main__":
212
+ parser = argparse.ArgumentParser()
213
+ parser.add_argument(
214
+ "--model_path",
215
+ type=str,
216
+ default="deepseek-ai/deepseek-vl-7b-chat",
217
+ help="the huggingface model name or the local path of the downloaded huggingface model.",
218
+ )
219
+ parser.add_argument("--temperature", type=float, default=0.2)
220
+ parser.add_argument("--top_p", type=float, default=0.95)
221
+ parser.add_argument("--repetition_penalty", type=float, default=1.1)
222
+ parser.add_argument("--max_gen_len", type=int, default=512)
223
+ args = parser.parse_args()
224
+ main(args)
deepseek_vl/__init__.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+
21
+ # check if python version is above 3.10
22
+ import sys
23
+
24
+ if sys.version_info >= (3, 10):
25
+ print("Python version is above 3.10, patching the collections module.")
26
+ # Monkey patch collections
27
+ import collections
28
+ import collections.abc
29
+
30
+ for type_name in collections.abc.__all__:
31
+ setattr(collections, type_name, getattr(collections.abc, type_name))
deepseek_vl/models/__init__.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from .image_processing_vlm import VLMImageProcessor
21
+ from .modeling_vlm import MultiModalityCausalLM
22
+ from .processing_vlm import VLChatProcessor
23
+
24
+ __all__ = [
25
+ "VLMImageProcessor",
26
+ "VLChatProcessor",
27
+ "MultiModalityCausalLM",
28
+ ]
deepseek_vl/models/clip_encoder.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from typing import Dict, List, Literal, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn as nn
24
+ import torchvision.transforms
25
+ from einops import rearrange
26
+
27
+ from deepseek_vl.models.sam import create_sam_vit
28
+ from deepseek_vl.models.siglip_vit import create_siglip_vit
29
+
30
+
31
+ class CLIPVisionTower(nn.Module):
32
+ def __init__(
33
+ self,
34
+ model_name: str = "siglip_large_patch16_384",
35
+ image_size: Union[Tuple[int, int], int] = 336,
36
+ select_feature: str = "patch",
37
+ select_layer: int = -2,
38
+ select_layers: list = None,
39
+ ckpt_path: str = "",
40
+ pixel_mean: Optional[List[float]] = None,
41
+ pixel_std: Optional[List[float]] = None,
42
+ **kwargs,
43
+ ):
44
+ super().__init__()
45
+
46
+ self.model_name = model_name
47
+ self.select_feature = select_feature
48
+ self.select_layer = select_layer
49
+ self.select_layers = select_layers
50
+
51
+ vision_tower_params = {
52
+ "model_name": model_name,
53
+ "image_size": image_size,
54
+ "ckpt_path": ckpt_path,
55
+ "select_layer": select_layer,
56
+ }
57
+ vision_tower_params.update(kwargs)
58
+ self.vision_tower, self.forward_kwargs = self.build_vision_tower(
59
+ vision_tower_params
60
+ )
61
+
62
+ if pixel_mean is not None and pixel_std is not None:
63
+ image_norm = torchvision.transforms.Normalize(
64
+ mean=pixel_mean, std=pixel_std
65
+ )
66
+ else:
67
+ image_norm = None
68
+
69
+ self.image_norm = image_norm
70
+
71
+ def build_vision_tower(self, vision_tower_params):
72
+ if self.model_name.startswith("siglip"):
73
+ self.select_feature = "same"
74
+ vision_tower = create_siglip_vit(**vision_tower_params)
75
+ forward_kwargs = dict()
76
+
77
+ elif self.model_name.startswith("sam"):
78
+ vision_tower = create_sam_vit(**vision_tower_params)
79
+ forward_kwargs = dict()
80
+
81
+ else: # huggingface
82
+ from transformers import CLIPVisionModel
83
+
84
+ vision_tower = CLIPVisionModel.from_pretrained(**vision_tower_params)
85
+ forward_kwargs = dict(output_hidden_states=True)
86
+
87
+ return vision_tower, forward_kwargs
88
+
89
+ def feature_select(self, image_forward_outs):
90
+ if isinstance(image_forward_outs, torch.Tensor):
91
+ # the output has been the self.select_layer"s features
92
+ image_features = image_forward_outs
93
+ else:
94
+ image_features = image_forward_outs.hidden_states[self.select_layer]
95
+
96
+ if self.select_feature == "patch":
97
+ # if the output has cls_token
98
+ image_features = image_features[:, 1:]
99
+ elif self.select_feature == "cls_patch":
100
+ image_features = image_features
101
+ elif self.select_feature == "same":
102
+ image_features = image_features
103
+
104
+ else:
105
+ raise ValueError(f"Unexpected select feature: {self.select_feature}")
106
+ return image_features
107
+
108
+ def forward(self, images):
109
+ """
110
+
111
+ Args:
112
+ images (torch.Tensor): [b, 3, H, W]
113
+
114
+ Returns:
115
+ image_features (torch.Tensor): [b, n_patch, d]
116
+ """
117
+
118
+ if self.image_norm is not None:
119
+ images = self.image_norm(images)
120
+
121
+ image_forward_outs = self.vision_tower(images, **self.forward_kwargs)
122
+ image_features = self.feature_select(image_forward_outs)
123
+ return image_features
124
+
125
+
126
+ class HybridVisionTower(nn.Module):
127
+ def __init__(
128
+ self,
129
+ high_res_cfg: Dict,
130
+ low_res_cfg: Dict,
131
+ freeze_high: bool = False,
132
+ freeze_low: bool = False,
133
+ concat_type: Literal["feature", "sequence", "add", "tuple"] = "tuple",
134
+ **ignore_kwargs,
135
+ ):
136
+ super().__init__()
137
+
138
+ self.vision_tower_high = CLIPVisionTower(**high_res_cfg)
139
+ self.vision_tower_low = CLIPVisionTower(**low_res_cfg)
140
+ self.low_res_size = low_res_cfg["image_size"]
141
+ self.concat_type = concat_type
142
+
143
+ self.high_layer_norm = nn.LayerNorm(high_res_cfg.get("output_dim", 1024))
144
+ self.low_layer_norm = nn.LayerNorm(low_res_cfg.get("output_dim", 1024))
145
+
146
+ if freeze_high:
147
+ for p_name, p in self.vision_tower_high.named_parameters():
148
+ p.requires_grad = False
149
+ self.vision_tower_high = self.vision_tower_high.eval()
150
+ else:
151
+ # train donwsamples and neck
152
+ for p_name, p in self.vision_tower_high.named_parameters():
153
+ if "downsamples" in p_name or "neck" in p_name:
154
+ p.requires_grad = True
155
+ else:
156
+ p.requires_grad = False
157
+
158
+ if freeze_low:
159
+ for p in self.vision_tower_low.parameters():
160
+ p.requires_grad = False
161
+ self.vision_tower_low = self.vision_tower_low.eval()
162
+
163
+ self.resize = torchvision.transforms.Resize(self.low_res_size, antialias=True)
164
+
165
+ def forward(self, images: torch.Tensor):
166
+ """
167
+
168
+ Args:
169
+ images (torch.Tensor): [bs, 3, H, W]
170
+
171
+ Returns:
172
+ res (torch.Tensor): [bs, t, c]
173
+ """
174
+
175
+ # [bs, c, h, w]
176
+ high_images = images
177
+
178
+ # [bs, c, h_low, w_low]
179
+ low_images = self.resize(images)
180
+
181
+ # separately run two vision towers
182
+ # run high_res vision tower
183
+ high_res = self.vision_tower_high(high_images)
184
+ # [bs, c, h, w] -> [bs, h*w, c]
185
+ high_res = rearrange(high_res, "b c h w -> b (h w) c")
186
+ # run low_res vision tower
187
+ low_res = self.vision_tower_low(low_images)
188
+
189
+ if self.concat_type == "feature":
190
+ images_features = torch.cat([high_res, low_res], dim=-1)
191
+ elif self.concat_type == "sequence":
192
+ images_features = torch.cat([high_res, low_res], dim=1)
193
+ elif self.concat_type == "add":
194
+ images_features = high_res + low_res
195
+ elif self.concat_type == "tuple":
196
+ images_features = (high_res, low_res)
197
+
198
+ else:
199
+ raise ValueError(
200
+ "Currently only support `feature`, `sequence`, `add` and `tuple` concat type."
201
+ )
202
+
203
+ return images_features
204
+
205
+
206
+ if __name__ == "__main__":
207
+ image_size = 1024
208
+ x = torch.zeros(2, 3, image_size, image_size).bfloat16().cuda()
209
+
210
+ high_res_cfg = dict(
211
+ model_name="sam_b_downsample",
212
+ select_feature="same",
213
+ image_size=image_size,
214
+ pixel_mean=(0.48145466, 0.4578275, 0.40821073),
215
+ pixel_std=(0.26862954, 0.26130258, 0.27577711),
216
+ select_layer=-1,
217
+ ckpt_path="",
218
+ )
219
+
220
+ low_res_cfg = dict(
221
+ model_name="siglip_large_patch16_384",
222
+ select_feature="same",
223
+ image_size=384,
224
+ pixel_mean=(0.5, 0.5, 0.5),
225
+ pixel_std=(0.5, 0.5, 0.5),
226
+ select_layer=-1,
227
+ ckpt_path="",
228
+ )
229
+
230
+ net = (
231
+ HybridVisionTower(
232
+ high_res_cfg=high_res_cfg,
233
+ low_res_cfg=low_res_cfg,
234
+ freeze_high=True,
235
+ freeze_low=True,
236
+ concat_type="tuple",
237
+ )
238
+ .bfloat16()
239
+ .cuda()
240
+ )
241
+ high_x, low_x = net(x)
242
+ print(x.shape, high_x.shape, low_x.shape)
deepseek_vl/models/image_processing_vlm.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from typing import List, Tuple, Union
21
+
22
+ import numpy as np
23
+ import torch
24
+ import torchvision
25
+ import torchvision.transforms.functional
26
+ from PIL import Image
27
+ from transformers import AutoImageProcessor, PretrainedConfig
28
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
29
+ from transformers.image_utils import to_numpy_array
30
+ from transformers.utils import logging
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ ImageType = Union[np.ndarray, torch.Tensor, Image.Image]
35
+ IMAGENET_MEAN = (0.48145466, 0.4578275, 0.40821073)
36
+ IMAGENET_STD = (0.26862954, 0.26130258, 0.27577711)
37
+ IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
38
+ IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)
39
+
40
+
41
+ def expand2square(pil_img, background_color):
42
+ width, height = pil_img.size
43
+ if width == height:
44
+ return pil_img
45
+ elif width > height:
46
+ result = Image.new(pil_img.mode, (width, width), background_color)
47
+ result.paste(pil_img, (0, (width - height) // 2))
48
+ return result
49
+ else:
50
+ result = Image.new(pil_img.mode, (height, height), background_color)
51
+ result.paste(pil_img, ((height - width) // 2, 0))
52
+ return result
53
+
54
+
55
+ class VLMImageProcessorConfig(PretrainedConfig):
56
+ model_type = "deepseek_vlm"
57
+ image_size: int
58
+ min_size: int
59
+ image_mean: Union[Tuple[float, float, float], List[float]]
60
+ image_std: Union[Tuple[float, float, float], List[float]]
61
+ rescale_factor: float
62
+ do_normalize: bool
63
+
64
+ def __init__(
65
+ self,
66
+ image_size: int,
67
+ min_size: int = 14,
68
+ image_mean: Union[Tuple[float, float, float], List[float]] = (
69
+ 0.48145466,
70
+ 0.4578275,
71
+ 0.40821073,
72
+ ),
73
+ image_std: Union[Tuple[float, float, float], List[float]] = (
74
+ 0.26862954,
75
+ 0.26130258,
76
+ 0.27577711,
77
+ ),
78
+ rescale_factor: float = 1.0 / 255.0,
79
+ do_normalize: bool = True,
80
+ **kwargs,
81
+ ):
82
+ self.image_size = image_size
83
+ self.min_size = min_size
84
+ self.image_mean = image_mean
85
+ self.image_std = image_std
86
+ self.rescale_factor = rescale_factor
87
+ self.do_normalize = do_normalize
88
+
89
+ super().__init__(**kwargs)
90
+
91
+
92
+ class VLMImageProcessor(BaseImageProcessor):
93
+ model_input_names = ["pixel_values"]
94
+
95
+ def __init__(
96
+ self,
97
+ image_size: int,
98
+ min_size: int = 14,
99
+ image_mean: Union[Tuple[float, float, float], List[float]] = (
100
+ 0.48145466,
101
+ 0.4578275,
102
+ 0.40821073,
103
+ ),
104
+ image_std: Union[Tuple[float, float, float], List[float]] = (
105
+ 0.26862954,
106
+ 0.26130258,
107
+ 0.27577711,
108
+ ),
109
+ rescale_factor: float = 1.0 / 255.0,
110
+ do_normalize: bool = True,
111
+ **kwargs,
112
+ ):
113
+ super().__init__(**kwargs)
114
+
115
+ self.image_size = image_size
116
+ self.rescale_factor = rescale_factor
117
+ self.image_mean = image_mean
118
+ self.image_std = image_std
119
+ self.min_size = min_size
120
+ self.do_normalize = do_normalize
121
+
122
+ if image_mean is None:
123
+ self.background_color = (127, 127, 127)
124
+ else:
125
+ self.background_color = tuple([int(x * 255) for x in image_mean])
126
+
127
+ def resize(self, pil_img: Image) -> np.ndarray:
128
+ """
129
+
130
+ Args:
131
+ pil_img (PIL.Image): [H, W, 3] in PIL.Image in RGB
132
+
133
+ Returns:
134
+ x (np.ndarray): [3, self.image_size, self.image_size]
135
+ """
136
+
137
+ width, height = pil_img.size
138
+ max_size = max(width, height)
139
+
140
+ size = [
141
+ max(int(height / max_size * self.image_size), self.min_size),
142
+ max(int(width / max_size * self.image_size), self.min_size),
143
+ ]
144
+
145
+ if width <= 0 or height <= 0 or size[0] <= 0 or size[1] <= 0:
146
+ print(f"orig size = {pil_img.size}, new size = {size}")
147
+ raise ValueError("Invalid size!")
148
+
149
+ pil_img = torchvision.transforms.functional.resize(
150
+ pil_img,
151
+ size,
152
+ interpolation=torchvision.transforms.functional.InterpolationMode.BICUBIC,
153
+ antialias=True,
154
+ )
155
+
156
+ pil_img = expand2square(pil_img, self.background_color)
157
+ x = to_numpy_array(pil_img)
158
+
159
+ # [H, W, 3] -> [3, H, W]
160
+ x = np.transpose(x, (2, 0, 1))
161
+
162
+ return x
163
+
164
+ def preprocess(self, images, return_tensors: str = "pt", **kwargs) -> BatchFeature:
165
+ # resize and pad to [self.image_size, self.image_size]
166
+ # then convert from [H, W, 3] to [3, H, W]
167
+ images: List[np.ndarray] = [self.resize(image) for image in images]
168
+
169
+ # resacle from [0, 255] -> [0, 1]
170
+ images = [
171
+ self.rescale(
172
+ image=image,
173
+ scale=self.rescale_factor,
174
+ input_data_format="channels_first",
175
+ )
176
+ for image in images
177
+ ]
178
+
179
+ # normalize
180
+ if self.do_normalize:
181
+ images = [
182
+ self.normalize(
183
+ image=image,
184
+ mean=self.image_mean,
185
+ std=self.image_std,
186
+ input_data_format="channels_first",
187
+ )
188
+ for image in images
189
+ ]
190
+
191
+ data = {"pixel_values": images}
192
+ return BatchFeature(data=data, tensor_type=return_tensors)
193
+
194
+ @property
195
+ def default_shape(self):
196
+ return [3, self.image_size, self.image_size]
197
+
198
+
199
+ AutoImageProcessor.register(VLMImageProcessorConfig, VLMImageProcessor)
200
+
201
+
202
+ if __name__ == "__main__":
203
+ image_processor = VLMImageProcessor(
204
+ image_size=1024,
205
+ image_mean=IMAGENET_INCEPTION_MEAN,
206
+ image_std=IMAGENET_INCEPTION_STD,
207
+ do_normalize=True,
208
+ )
deepseek_vl/models/modeling_vlm.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ import torch
21
+ from attrdict import AttrDict
22
+ from einops import rearrange
23
+ from transformers import (
24
+ AutoConfig,
25
+ AutoModelForCausalLM,
26
+ LlamaConfig,
27
+ LlamaForCausalLM,
28
+ PreTrainedModel,
29
+ )
30
+ from transformers.configuration_utils import PretrainedConfig
31
+
32
+ from deepseek_vl.models.clip_encoder import CLIPVisionTower, HybridVisionTower
33
+ from deepseek_vl.models.projector import MlpProjector
34
+
35
+
36
+ def model_name_to_cls(cls_name):
37
+ if "MlpProjector" in cls_name:
38
+ cls = MlpProjector
39
+
40
+ elif "CLIPVisionTower" in cls_name:
41
+ cls = CLIPVisionTower
42
+
43
+ elif "HybridVisionTower" in cls_name:
44
+ cls = HybridVisionTower
45
+
46
+ else:
47
+ raise ValueError(f"class_name {cls_name} is invalid.")
48
+
49
+ return cls
50
+
51
+
52
+ class VisionConfig(PretrainedConfig):
53
+ model_type = "vision"
54
+ cls: str = ""
55
+ params: AttrDict = {}
56
+
57
+ def __init__(self, **kwargs):
58
+ super().__init__(**kwargs)
59
+
60
+ self.cls = kwargs.get("cls", "")
61
+ if not isinstance(self.cls, str):
62
+ self.cls = self.cls.__name__
63
+
64
+ self.params = AttrDict(kwargs.get("params", {}))
65
+
66
+
67
+ class AlignerConfig(PretrainedConfig):
68
+ model_type = "aligner"
69
+ cls: str = ""
70
+ params: AttrDict = {}
71
+
72
+ def __init__(self, **kwargs):
73
+ super().__init__(**kwargs)
74
+
75
+ self.cls = kwargs.get("cls", "")
76
+ if not isinstance(self.cls, str):
77
+ self.cls = self.cls.__name__
78
+
79
+ self.params = AttrDict(kwargs.get("params", {}))
80
+
81
+
82
+ class MultiModalityConfig(PretrainedConfig):
83
+ model_type = "multi_modality"
84
+ vision_config: VisionConfig
85
+ aligner_config: AlignerConfig
86
+ language_config: LlamaConfig
87
+
88
+ def __init__(self, **kwargs):
89
+ super().__init__(**kwargs)
90
+ vision_config = kwargs.get("vision_config", {})
91
+ self.vision_config = VisionConfig(**vision_config)
92
+
93
+ aligner_config = kwargs.get("aligner_config", {})
94
+ self.aligner_config = AlignerConfig(**aligner_config)
95
+
96
+ language_config = kwargs.get("language_config", {})
97
+ if isinstance(language_config, LlamaConfig):
98
+ self.language_config = language_config
99
+ else:
100
+ self.language_config = LlamaConfig(**language_config)
101
+
102
+
103
+ class MultiModalityPreTrainedModel(PreTrainedModel):
104
+ config_class = MultiModalityConfig
105
+ base_model_prefix = "multi_modality"
106
+ _no_split_modules = []
107
+ _skip_keys_device_placement = "past_key_values"
108
+
109
+
110
+ class MultiModalityCausalLM(MultiModalityPreTrainedModel):
111
+ def __init__(self, config: MultiModalityConfig):
112
+ super().__init__(config)
113
+
114
+ vision_config = config.vision_config
115
+ vision_cls = model_name_to_cls(vision_config.cls)
116
+ self.vision_model = vision_cls(**vision_config.params)
117
+
118
+ aligner_config = config.aligner_config
119
+ aligner_cls = model_name_to_cls(aligner_config.cls)
120
+ self.aligner = aligner_cls(aligner_config.params)
121
+
122
+ language_config = config.language_config
123
+ self.language_model = LlamaForCausalLM(language_config)
124
+
125
+ def prepare_inputs_embeds(
126
+ self,
127
+ input_ids: torch.LongTensor,
128
+ pixel_values: torch.FloatTensor,
129
+ images_seq_mask: torch.LongTensor,
130
+ images_emb_mask: torch.LongTensor,
131
+ **kwargs,
132
+ ):
133
+ """
134
+
135
+ Args:
136
+ input_ids (torch.LongTensor): [b, T]
137
+ pixel_values (torch.FloatTensor): [b, n_images, 3, h, w]
138
+ images_seq_mask (torch.BoolTensor): [b, T]
139
+ images_emb_mask (torch.BoolTensor): [b, n_images, n_image_tokens]
140
+
141
+ assert torch.sum(images_seq_mask) == torch.sum(images_emb_mask)
142
+
143
+ Returns:
144
+ input_embeds (torch.Tensor): [b, T, D]
145
+ """
146
+
147
+ bs, n = pixel_values.shape[0:2]
148
+ images = rearrange(pixel_values, "b n c h w -> (b n) c h w")
149
+ # [b x n, T2, D]
150
+ images_embeds = self.aligner(self.vision_model(images))
151
+
152
+ # [b x n, T2, D] -> [b, n x T2, D]
153
+ images_embeds = rearrange(images_embeds, "(b n) t d -> b (n t) d", b=bs, n=n)
154
+ # [b, n, T2] -> [b, n x T2]
155
+ images_emb_mask = rearrange(images_emb_mask, "b n t -> b (n t)")
156
+
157
+ # [b, T, D]
158
+ input_ids[input_ids < 0] = 0 # ignore the image embeddings
159
+ inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
160
+
161
+ # replace with the image embeddings
162
+ inputs_embeds[images_seq_mask] = images_embeds[images_emb_mask]
163
+
164
+ return inputs_embeds
165
+
166
+
167
+ AutoConfig.register("vision", VisionConfig)
168
+ AutoConfig.register("aligner", AlignerConfig)
169
+ AutoConfig.register("multi_modality", MultiModalityConfig)
170
+ AutoModelForCausalLM.register(MultiModalityConfig, MultiModalityCausalLM)
deepseek_vl/models/processing_vlm.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from dataclasses import dataclass
21
+ from typing import Dict, List
22
+
23
+ import torch
24
+ from PIL.Image import Image
25
+ from transformers import LlamaTokenizerFast
26
+ from transformers.processing_utils import ProcessorMixin
27
+
28
+ from deepseek_vl.models.image_processing_vlm import VLMImageProcessor
29
+ from deepseek_vl.utils.conversation import get_conv_template
30
+
31
+
32
+ class DictOutput(object):
33
+ def keys(self):
34
+ return self.__dict__.keys()
35
+
36
+ def __getitem__(self, item):
37
+ return self.__dict__[item]
38
+
39
+ def __setitem__(self, key, value):
40
+ self.__dict__[key] = value
41
+
42
+
43
+ @dataclass
44
+ class VLChatProcessorOutput(DictOutput):
45
+ sft_format: str
46
+ input_ids: torch.Tensor
47
+ pixel_values: torch.Tensor
48
+ num_image_tokens: torch.IntTensor
49
+
50
+ def __len__(self):
51
+ return len(self.input_ids)
52
+
53
+
54
+ @dataclass
55
+ class BatchedVLChatProcessorOutput(DictOutput):
56
+ sft_format: List[str]
57
+ input_ids: torch.Tensor
58
+ pixel_values: torch.Tensor
59
+ attention_mask: torch.Tensor
60
+ images_seq_mask: torch.BoolTensor
61
+ images_emb_mask: torch.BoolTensor
62
+
63
+ def to(self, device, dtype=torch.bfloat16):
64
+ self.input_ids = self.input_ids.to(device)
65
+ self.attention_mask = self.attention_mask.to(device)
66
+ self.images_seq_mask = self.images_seq_mask.to(device)
67
+ self.images_emb_mask = self.images_emb_mask.to(device)
68
+ self.pixel_values = self.pixel_values.to(device=device, dtype=dtype)
69
+ return self
70
+
71
+
72
+ class VLChatProcessor(ProcessorMixin):
73
+ image_processor_class = "AutoImageProcessor"
74
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
75
+
76
+ attributes = ["image_processor", "tokenizer"]
77
+
78
+ system_prompt = (
79
+ "You are a helpful language and vision assistant. "
80
+ "You are able to understand the visual content that the user provides, "
81
+ "and assist the user with a variety of tasks using natural language."
82
+ )
83
+
84
+ def __init__(
85
+ self,
86
+ image_processor: VLMImageProcessor,
87
+ tokenizer: LlamaTokenizerFast,
88
+ image_tag: str = "<image_placeholder>",
89
+ num_image_tokens: int = 576,
90
+ add_special_token: bool = False,
91
+ sft_format: str = "deepseek",
92
+ mask_prompt: bool = True,
93
+ ignore_id: int = -100,
94
+ **kwargs,
95
+ ):
96
+ self.image_processor = image_processor
97
+ self.tokenizer = tokenizer
98
+
99
+ image_id = self.tokenizer.vocab.get(image_tag)
100
+ if image_id is None:
101
+ special_tokens = [image_tag]
102
+ special_tokens_dict = {"additional_special_tokens": special_tokens}
103
+ self.tokenizer.add_special_tokens(special_tokens_dict)
104
+ print(f"Add image tag = {image_tag} to the tokenizer")
105
+
106
+ self.image_tag = image_tag
107
+ self.num_image_tokens = num_image_tokens
108
+ self.add_special_token = add_special_token
109
+ self.sft_format = sft_format
110
+ self.mask_prompt = mask_prompt
111
+ self.ignore_id = ignore_id
112
+
113
+ super().__init__(
114
+ image_processor,
115
+ tokenizer,
116
+ image_tag,
117
+ num_image_tokens,
118
+ add_special_token,
119
+ sft_format,
120
+ mask_prompt,
121
+ ignore_id,
122
+ **kwargs,
123
+ )
124
+
125
+ def new_chat_template(self):
126
+ conv = get_conv_template(self.sft_format)
127
+ conv.set_system_message(self.system_prompt)
128
+ return conv
129
+
130
+ def apply_sft_template_for_multi_turn_prompts(
131
+ self,
132
+ conversations: List[Dict[str, str]],
133
+ sft_format: str = "deepseek",
134
+ system_prompt: str = "",
135
+ ):
136
+ """
137
+ Applies the SFT template to conversation.
138
+
139
+ An example of conversation:
140
+ conversation = [
141
+ {
142
+ "role": "User",
143
+ "content": "<image_placeholder> is Figure 1.\n<image_placeholder> is Figure 2.\nWhich image is brighter?",
144
+ "images": [
145
+ "./multi-images/attribute_comparison_1.png",
146
+ "./multi-images/attribute_comparison_2.png"
147
+ ]
148
+ },
149
+ {
150
+ "role": "Assistant",
151
+ "content": ""
152
+ }
153
+ ]
154
+
155
+ Args:
156
+ conversations (List[Dict]): A conversation with a List of Dict[str, str] text.
157
+ sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
158
+ system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
159
+
160
+ Returns:
161
+ sft_prompt (str): The formatted text.
162
+ """
163
+
164
+ conv = get_conv_template(sft_format)
165
+ conv.set_system_message(system_prompt)
166
+ for message in conversations:
167
+ conv.append_message(message["role"], message["content"].strip())
168
+ sft_prompt = conv.get_prompt().strip()
169
+
170
+ return sft_prompt
171
+
172
+ @property
173
+ def image_token(self):
174
+ return self.image_tag
175
+
176
+ @property
177
+ def image_id(self):
178
+ image_id = self.tokenizer.vocab.get(self.image_tag)
179
+ return image_id
180
+
181
+ @property
182
+ def pad_id(self):
183
+ pad_id = self.tokenizer.pad_token_id
184
+ if pad_id is None:
185
+ pad_id = self.tokenizer.eos_token_id
186
+
187
+ return pad_id
188
+
189
+ def add_image_token(
190
+ self,
191
+ image_indices: List[int],
192
+ input_ids: torch.LongTensor,
193
+ ):
194
+ """
195
+
196
+ Args:
197
+ image_indices (List[int]): [index_0, index_1, ..., index_j]
198
+ input_ids (torch.LongTensor): [N]
199
+
200
+ Returns:
201
+ input_ids (torch.LongTensor): [N + image tokens]
202
+ num_image_tokens (torch.IntTensor): [n_images]
203
+ """
204
+
205
+ input_slices = []
206
+
207
+ start = 0
208
+ for index in image_indices:
209
+ if self.add_special_token:
210
+ end = index + 1
211
+ else:
212
+ end = index
213
+
214
+ # original text tokens
215
+ input_slices.append(input_ids[start:end])
216
+
217
+ # add image tokens, and set the mask as False
218
+ input_slices.append(
219
+ self.image_id * torch.ones((self.num_image_tokens,), dtype=torch.long)
220
+ )
221
+ start = index + 1
222
+
223
+ # the left part
224
+ input_slices.append(input_ids[start:])
225
+
226
+ # concat all slices
227
+ input_ids = torch.cat(input_slices, dim=0)
228
+ num_image_tokens = torch.IntTensor([self.num_image_tokens] * len(image_indices))
229
+
230
+ return input_ids, num_image_tokens
231
+
232
+ def process_one(
233
+ self,
234
+ prompt: str = None,
235
+ conversations: List[Dict[str, str]] = None,
236
+ images: List[Image] = None,
237
+ **kwargs,
238
+ ):
239
+ """
240
+
241
+ Args:
242
+ prompt (str): the formatted prompt;
243
+ conversations (List[Dict]): conversations with a list of messages;
244
+ images (List[ImageType]): the list of images;
245
+ **kwargs:
246
+
247
+ Returns:
248
+ outputs (BaseProcessorOutput): the output of the processor,
249
+ - input_ids (torch.LongTensor): [N + image tokens]
250
+ - target_ids (torch.LongTensor): [N + image tokens]
251
+ - images (torch.FloatTensor): [n_images, 3, H, W]
252
+ - image_id (int): the id of the image token
253
+ - num_image_tokens (List[int]): the number of image tokens
254
+ """
255
+
256
+ assert (
257
+ prompt is None or conversations is None
258
+ ), "prompt and conversations cannot be used at the same time."
259
+
260
+ if prompt is None:
261
+ # apply sft format
262
+ sft_format = self.apply_sft_template_for_multi_turn_prompts(
263
+ conversations=conversations,
264
+ sft_format=self.sft_format,
265
+ system_prompt=self.system_prompt,
266
+ )
267
+ else:
268
+ sft_format = prompt
269
+
270
+ # tokenize
271
+ input_ids = self.tokenizer.encode(sft_format)
272
+ input_ids = torch.LongTensor(input_ids)
273
+
274
+ # add image tokens to the input_ids
275
+ image_token_mask: torch.BoolTensor = input_ids == self.image_id
276
+ image_indices = image_token_mask.nonzero()
277
+ input_ids, num_image_tokens = self.add_image_token(
278
+ image_indices=image_indices,
279
+ input_ids=input_ids,
280
+ )
281
+
282
+ # load images
283
+ images_outputs = self.image_processor(images, return_tensors="pt")
284
+
285
+ prepare = VLChatProcessorOutput(
286
+ sft_format=sft_format,
287
+ input_ids=input_ids,
288
+ pixel_values=images_outputs.pixel_values,
289
+ num_image_tokens=num_image_tokens,
290
+ )
291
+
292
+ return prepare
293
+
294
+ def __call__(
295
+ self,
296
+ *,
297
+ prompt: str = None,
298
+ conversations: List[Dict[str, str]] = None,
299
+ images: List[Image] = None,
300
+ force_batchify: bool = True,
301
+ **kwargs,
302
+ ):
303
+ """
304
+
305
+ Args:
306
+ prompt (str): the formatted prompt;
307
+ conversations (List[Dict]): conversations with a list of messages;
308
+ images (List[ImageType]): the list of images;
309
+ force_batchify (bool): force batchify the inputs;
310
+ **kwargs:
311
+
312
+ Returns:
313
+ outputs (BaseProcessorOutput): the output of the processor,
314
+ - input_ids (torch.LongTensor): [N + image tokens]
315
+ - images (torch.FloatTensor): [n_images, 3, H, W]
316
+ - image_id (int): the id of the image token
317
+ - num_image_tokens (List[int]): the number of image tokens
318
+ """
319
+
320
+ prepare = self.process_one(
321
+ prompt=prompt, conversations=conversations, images=images
322
+ )
323
+
324
+ if force_batchify:
325
+ prepare = self.batchify([prepare])
326
+
327
+ return prepare
328
+
329
+ def batchify(
330
+ self, prepare_list: List[VLChatProcessorOutput]
331
+ ) -> BatchedVLChatProcessorOutput:
332
+ """
333
+ Preprocesses the inputs for multimodal inference.
334
+
335
+ Args:
336
+ prepare_list (List[VLChatProcessorOutput]): A list of VLChatProcessorOutput.
337
+
338
+ Returns:
339
+ BatchedVLChatProcessorOutput: A dictionary of the inputs to use for multimodal inference.
340
+ """
341
+
342
+ batch_size = len(prepare_list)
343
+ sft_format = []
344
+ n_images = []
345
+ seq_lens = []
346
+ for prepare in prepare_list:
347
+ n_images.append(len(prepare.num_image_tokens))
348
+ seq_lens.append(len(prepare))
349
+
350
+ input_token_max_len = max(seq_lens)
351
+ max_n_images = max(1, max(n_images))
352
+
353
+ batched_input_ids = torch.full(
354
+ (batch_size, input_token_max_len), self.pad_id
355
+ ).long() # FIXME
356
+ batched_attention_mask = torch.zeros((batch_size, input_token_max_len)).long()
357
+ batched_pixel_values = torch.zeros(
358
+ (batch_size, max_n_images, *self.image_processor.default_shape)
359
+ ).float()
360
+ batched_images_seq_mask = torch.zeros((batch_size, input_token_max_len)).bool()
361
+ batched_images_emb_mask = torch.zeros(
362
+ (batch_size, max_n_images, self.num_image_tokens)
363
+ ).bool()
364
+
365
+ for i, prepare in enumerate(prepare_list):
366
+ input_ids = prepare.input_ids
367
+ seq_len = len(prepare)
368
+ n_image = len(prepare.num_image_tokens)
369
+ # left-padding
370
+ batched_attention_mask[i, -seq_len:] = 1
371
+ batched_input_ids[i, -seq_len:] = torch.LongTensor(input_ids)
372
+ batched_images_seq_mask[i, -seq_len:] = input_ids == self.image_id
373
+
374
+ if n_image > 0:
375
+ batched_pixel_values[i, :n_image] = prepare.pixel_values
376
+ for j, n_image_tokens in enumerate(prepare.num_image_tokens):
377
+ batched_images_emb_mask[i, j, :n_image_tokens] = True
378
+
379
+ sft_format.append(prepare.sft_format)
380
+
381
+ batched_prepares = BatchedVLChatProcessorOutput(
382
+ input_ids=batched_input_ids,
383
+ attention_mask=batched_attention_mask,
384
+ pixel_values=batched_pixel_values,
385
+ images_seq_mask=batched_images_seq_mask,
386
+ images_emb_mask=batched_images_emb_mask,
387
+ sft_format=sft_format,
388
+ )
389
+
390
+ return batched_prepares
deepseek_vl/models/projector.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from typing import Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn as nn
24
+ from attrdict import AttrDict
25
+
26
+
27
+ class MlpProjector(nn.Module):
28
+ def __init__(self, cfg):
29
+ super().__init__()
30
+
31
+ self.cfg = cfg
32
+
33
+ if cfg.projector_type == "identity":
34
+ modules = nn.Identity()
35
+
36
+ elif cfg.projector_type == "linear":
37
+ modules = nn.Linear(cfg.input_dim, cfg.n_embed)
38
+
39
+ elif cfg.projector_type == "mlp_gelu":
40
+ mlp_depth = cfg.get("depth", 1)
41
+ modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
42
+ for _ in range(1, mlp_depth):
43
+ modules.append(nn.GELU())
44
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
45
+ modules = nn.Sequential(*modules)
46
+
47
+ elif cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
48
+ mlp_depth = cfg.get("depth", 1)
49
+ self.high_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
50
+ self.low_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
51
+
52
+ modules = []
53
+ for _ in range(1, mlp_depth):
54
+ modules.append(nn.GELU())
55
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
56
+ modules = nn.Sequential(*modules)
57
+
58
+ else:
59
+ raise ValueError(f"Unknown projector type: {cfg.projector_type}")
60
+
61
+ self.layers = modules
62
+
63
+ def forward(
64
+ self, x_or_tuple: Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]
65
+ ):
66
+ """
67
+
68
+ Args:
69
+ x_or_tuple (Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]: if it is a tuple of torch.Tensor,
70
+ then it comes from the hybrid vision encoder, and x = high_res_x, low_res_x);
71
+ otherwise it is the feature from the single vision encoder.
72
+
73
+ Returns:
74
+ x (torch.Tensor): [b, s, c]
75
+ """
76
+
77
+ if isinstance(x_or_tuple, tuple):
78
+ # self.cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
79
+ high_x, low_x = x_or_tuple
80
+ high_x = self.high_up_proj(high_x)
81
+ low_x = self.low_up_proj(low_x)
82
+ x = torch.concat([high_x, low_x], dim=-1)
83
+ else:
84
+ x = x_or_tuple
85
+
86
+ return self.layers(x)
87
+
88
+
89
+ if __name__ == "__main__":
90
+ cfg = AttrDict(
91
+ input_dim=1024,
92
+ n_embed=2048,
93
+ depth=2,
94
+ projector_type="low_high_hybrid_split_mlp_gelu",
95
+ )
96
+ inputs = (torch.rand(4, 576, 1024), torch.rand(4, 576, 1024))
97
+
98
+ m = MlpProjector(cfg)
99
+ out = m(inputs)
100
+ print(out.shape)
deepseek_vl/models/sam.py ADDED
@@ -0,0 +1,593 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import copy
8
+ from dataclasses import dataclass
9
+ from functools import partial
10
+ from typing import List, Optional, Tuple, Type, Union
11
+
12
+ import torch
13
+ import torch.nn as nn
14
+ import torch.nn.functional as F
15
+
16
+
17
+ class MLPBlock(nn.Module):
18
+ def __init__(
19
+ self,
20
+ embedding_dim: int,
21
+ mlp_dim: int,
22
+ act: Type[nn.Module] = nn.GELU,
23
+ ) -> None:
24
+ super().__init__()
25
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
26
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
27
+ self.act = act()
28
+
29
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
30
+ return self.lin2(self.act(self.lin1(x)))
31
+
32
+
33
+ # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
34
+ # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
35
+ class LayerNorm2d(nn.Module):
36
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
37
+ super().__init__()
38
+ self.weight = nn.Parameter(torch.ones(num_channels))
39
+ self.bias = nn.Parameter(torch.zeros(num_channels))
40
+ self.eps = eps
41
+
42
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
43
+ u = x.mean(1, keepdim=True)
44
+ s = (x - u).pow(2).mean(1, keepdim=True)
45
+ x = (x - u) / torch.sqrt(s + self.eps)
46
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
47
+ return x
48
+
49
+
50
+ # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
51
+ class ImageEncoderViT(nn.Module):
52
+ def __init__(
53
+ self,
54
+ img_size: int = 1024,
55
+ patch_size: int = 16,
56
+ in_chans: int = 3,
57
+ embed_dim: int = 768,
58
+ depth: int = 12,
59
+ num_heads: int = 12,
60
+ mlp_ratio: float = 4.0,
61
+ out_chans: int = 256,
62
+ qkv_bias: bool = True,
63
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
64
+ act_layer: Type[nn.Module] = nn.GELU,
65
+ use_abs_pos: bool = True,
66
+ use_rel_pos: bool = False,
67
+ rel_pos_zero_init: bool = True,
68
+ window_size: int = 0,
69
+ global_attn_indexes: Tuple[int, ...] = (),
70
+ downsample_channels: Tuple[int, ...] = (512, 1024),
71
+ ) -> None:
72
+ """
73
+ Args:
74
+ img_size (int): Input image size.
75
+ patch_size (int): Patch size.
76
+ in_chans (int): Number of input image channels.
77
+ embed_dim (int): Patch embedding dimension.
78
+ depth (int): Depth of ViT.
79
+ num_heads (int): Number of attention heads in each ViT block.
80
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
81
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
82
+ norm_layer (nn.Module): Normalization layer.
83
+ act_layer (nn.Module): Activation layer.
84
+ use_abs_pos (bool): If True, use absolute positional embeddings.
85
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
86
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
87
+ window_size (int): Window size for window attention blocks.
88
+ global_attn_indexes (list): Indexes for blocks using global attention.
89
+ downsample_channels (list): Channels for downsampling layers.
90
+ """
91
+ super().__init__()
92
+ self.img_size = img_size
93
+
94
+ self.patch_embed = PatchEmbed(
95
+ kernel_size=(patch_size, patch_size),
96
+ stride=(patch_size, patch_size),
97
+ in_chans=in_chans,
98
+ embed_dim=embed_dim,
99
+ )
100
+
101
+ self.pos_embed: Optional[nn.Parameter] = None
102
+ if use_abs_pos:
103
+ # Initialize absolute positional embedding with pretrain image size.
104
+ self.pos_embed = nn.Parameter(
105
+ torch.zeros(
106
+ 1, img_size // patch_size, img_size // patch_size, embed_dim
107
+ )
108
+ )
109
+
110
+ self.blocks = nn.ModuleList()
111
+ for i in range(depth):
112
+ block = Block(
113
+ dim=embed_dim,
114
+ num_heads=num_heads,
115
+ mlp_ratio=mlp_ratio,
116
+ qkv_bias=qkv_bias,
117
+ norm_layer=norm_layer,
118
+ act_layer=act_layer,
119
+ use_rel_pos=use_rel_pos,
120
+ rel_pos_zero_init=rel_pos_zero_init,
121
+ window_size=window_size if i not in global_attn_indexes else 0,
122
+ input_size=(img_size // patch_size, img_size // patch_size),
123
+ )
124
+ self.blocks.append(block)
125
+
126
+ self.neck = nn.Sequential(
127
+ nn.Conv2d(
128
+ embed_dim,
129
+ out_chans,
130
+ kernel_size=1,
131
+ bias=False,
132
+ ),
133
+ LayerNorm2d(out_chans),
134
+ nn.Conv2d(
135
+ out_chans,
136
+ out_chans,
137
+ kernel_size=3,
138
+ padding=1,
139
+ bias=False,
140
+ ),
141
+ LayerNorm2d(out_chans),
142
+ )
143
+
144
+ in_channels = out_chans
145
+ downsamples = []
146
+ for i in range(len(downsample_channels)):
147
+ out_channels = downsample_channels[i]
148
+ downsamples.append(
149
+ nn.Conv2d(
150
+ in_channels,
151
+ out_channels,
152
+ kernel_size=3,
153
+ stride=2,
154
+ padding=1,
155
+ bias=False,
156
+ )
157
+ )
158
+ in_channels = out_channels
159
+ self.downsamples = nn.Sequential(*downsamples)
160
+
161
+ self.sam_hd = True
162
+ if self.sam_hd:
163
+ self.hd_alpha_downsamples = nn.Parameter(torch.zeros(1))
164
+ # self.neck_hd = nn.Linear(embed_dim, embed_dim)
165
+ self.neck_hd = copy.deepcopy(self.neck)
166
+ # self.downsamples_hd = copy.deepcopy(self.downsamples)
167
+
168
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
169
+ x = self.patch_embed(x)
170
+ if self.pos_embed is not None:
171
+ x = x + self.pos_embed
172
+
173
+ global_features = []
174
+ for i, blk in enumerate(self.blocks):
175
+ x = blk(x)
176
+ if self.sam_hd and blk.window_size == 0:
177
+ global_features.append(x)
178
+
179
+ x = self.neck(x.permute(0, 3, 1, 2))
180
+ x_dtype = x.dtype
181
+ x = F.interpolate(
182
+ x.float(), size=(96, 96), mode="bilinear", align_corners=False
183
+ ).to(x_dtype)
184
+ x = self.downsamples(x)
185
+
186
+ if self.sam_hd:
187
+ first_global_feature = self.neck_hd(global_features[0].permute(0, 3, 1, 2))
188
+ x_dtype = first_global_feature.dtype
189
+ first_global_feature = F.interpolate(
190
+ first_global_feature.float(),
191
+ size=(96, 96),
192
+ mode="bilinear",
193
+ align_corners=False,
194
+ )
195
+ first_global_feature = self.downsamples(first_global_feature.to(x_dtype))
196
+ x = x + first_global_feature * self.hd_alpha_downsamples
197
+
198
+ return x
199
+
200
+
201
+ class Block(nn.Module):
202
+ """Transformer blocks with support of window attention and residual propagation blocks"""
203
+
204
+ def __init__(
205
+ self,
206
+ dim: int,
207
+ num_heads: int,
208
+ mlp_ratio: float = 4.0,
209
+ qkv_bias: bool = True,
210
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
211
+ act_layer: Type[nn.Module] = nn.GELU,
212
+ use_rel_pos: bool = False,
213
+ rel_pos_zero_init: bool = True,
214
+ window_size: int = 0,
215
+ input_size: Optional[Tuple[int, int]] = None,
216
+ ) -> None:
217
+ """
218
+ Args:
219
+ dim (int): Number of input channels.
220
+ num_heads (int): Number of attention heads in each ViT block.
221
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
222
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
223
+ norm_layer (nn.Module): Normalization layer.
224
+ act_layer (nn.Module): Activation layer.
225
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
226
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
227
+ window_size (int): Window size for window attention blocks. If it equals 0, then
228
+ use global attention.
229
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
230
+ positional parameter size.
231
+ """
232
+ super().__init__()
233
+ self.norm1 = norm_layer(dim)
234
+ self.attn = Attention(
235
+ dim,
236
+ num_heads=num_heads,
237
+ qkv_bias=qkv_bias,
238
+ use_rel_pos=use_rel_pos,
239
+ rel_pos_zero_init=rel_pos_zero_init,
240
+ input_size=input_size if window_size == 0 else (window_size, window_size),
241
+ )
242
+
243
+ self.norm2 = norm_layer(dim)
244
+ self.mlp = MLPBlock(
245
+ embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer
246
+ )
247
+
248
+ self.window_size = window_size
249
+
250
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
251
+ shortcut = x
252
+ x = self.norm1(x)
253
+ # Window partition
254
+ if self.window_size > 0:
255
+ H, W = x.shape[1], x.shape[2]
256
+ x, pad_hw = window_partition(x, self.window_size)
257
+
258
+ x = self.attn(x)
259
+ # Reverse window partition
260
+ if self.window_size > 0:
261
+ x = window_unpartition(x, self.window_size, pad_hw, (H, W))
262
+
263
+ x = shortcut + x
264
+ x = x + self.mlp(self.norm2(x))
265
+
266
+ return x
267
+
268
+
269
+ class Attention(nn.Module):
270
+ """Multi-head Attention block with relative position embeddings."""
271
+
272
+ def __init__(
273
+ self,
274
+ dim: int,
275
+ num_heads: int = 8,
276
+ qkv_bias: bool = True,
277
+ use_rel_pos: bool = False,
278
+ rel_pos_zero_init: bool = True,
279
+ input_size: Optional[Tuple[int, int]] = None,
280
+ ) -> None:
281
+ """
282
+ Args:
283
+ dim (int): Number of input channels.
284
+ num_heads (int): Number of attention heads.
285
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
286
+ rel_pos (bool): If True, add relative positional embeddings to the attention map.
287
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
288
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
289
+ positional parameter size.
290
+ """
291
+ super().__init__()
292
+ self.num_heads = num_heads
293
+ head_dim = dim // num_heads
294
+ self.scale = head_dim**-0.5
295
+
296
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
297
+ self.proj = nn.Linear(dim, dim)
298
+
299
+ self.use_rel_pos = use_rel_pos
300
+ if self.use_rel_pos:
301
+ assert (
302
+ input_size is not None
303
+ ), "Input size must be provided if using relative positional encoding."
304
+ # initialize relative positional embeddings
305
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
306
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
307
+
308
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
309
+ B, H, W, _ = x.shape
310
+ # qkv with shape (3, B, nHead, H * W, C)
311
+ qkv = (
312
+ self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
313
+ )
314
+ # q, k, v with shape (B * nHead, H * W, C)
315
+ q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
316
+
317
+ def do_attention(q, k, v):
318
+ attn = (q * self.scale) @ k.transpose(-2, -1)
319
+ if self.use_rel_pos:
320
+ attn = add_decomposed_rel_pos(
321
+ attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)
322
+ )
323
+
324
+ attn = attn.softmax(dim=-1)
325
+ x = (
326
+ (attn @ v)
327
+ .view(B, self.num_heads, H, W, -1)
328
+ .permute(0, 2, 3, 1, 4)
329
+ .reshape(B, H, W, -1)
330
+ )
331
+
332
+ return x
333
+
334
+ # from haiscale.utils import on_demand_checkpoint
335
+ # x = on_demand_checkpoint(do_attention, q, k, v)
336
+ x = do_attention(q, k, v)
337
+ x = self.proj(x)
338
+
339
+ return x
340
+
341
+
342
+ def window_partition(
343
+ x: torch.Tensor, window_size: int
344
+ ) -> Tuple[torch.Tensor, Tuple[int, int]]:
345
+ """
346
+ Partition into non-overlapping windows with padding if needed.
347
+ Args:
348
+ x (tensor): input tokens with [B, H, W, C].
349
+ window_size (int): window size.
350
+
351
+ Returns:
352
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
353
+ (Hp, Wp): padded height and width before partition
354
+ """
355
+ B, H, W, C = x.shape
356
+
357
+ pad_h = (window_size - H % window_size) % window_size
358
+ pad_w = (window_size - W % window_size) % window_size
359
+ if pad_h > 0 or pad_w > 0:
360
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
361
+ Hp, Wp = H + pad_h, W + pad_w
362
+
363
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
364
+ windows = (
365
+ x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
366
+ )
367
+ return windows, (Hp, Wp)
368
+
369
+
370
+ def window_unpartition(
371
+ windows: torch.Tensor,
372
+ window_size: int,
373
+ pad_hw: Tuple[int, int],
374
+ hw: Tuple[int, int],
375
+ ) -> torch.Tensor:
376
+ """
377
+ Window unpartition into original sequences and removing padding.
378
+ Args:
379
+ windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
380
+ window_size (int): window size.
381
+ pad_hw (Tuple): padded height and width (Hp, Wp).
382
+ hw (Tuple): original height and width (H, W) before padding.
383
+
384
+ Returns:
385
+ x: unpartitioned sequences with [B, H, W, C].
386
+ """
387
+ Hp, Wp = pad_hw
388
+ H, W = hw
389
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
390
+ x = windows.view(
391
+ B, Hp // window_size, Wp // window_size, window_size, window_size, -1
392
+ )
393
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
394
+
395
+ if Hp > H or Wp > W:
396
+ x = x[:, :H, :W, :].contiguous()
397
+ return x
398
+
399
+
400
+ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
401
+ """
402
+ Get relative positional embeddings according to the relative positions of
403
+ query and key sizes.
404
+ Args:
405
+ q_size (int): size of query q.
406
+ k_size (int): size of key k.
407
+ rel_pos (Tensor): relative position embeddings (L, C).
408
+
409
+ Returns:
410
+ Extracted positional embeddings according to relative positions.
411
+ """
412
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
413
+ # Interpolate rel pos if needed.
414
+ if rel_pos.shape[0] != max_rel_dist:
415
+ # Interpolate rel pos.
416
+ rel_pos_resized = F.interpolate(
417
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
418
+ size=max_rel_dist,
419
+ mode="linear",
420
+ )
421
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
422
+ else:
423
+ rel_pos_resized = rel_pos
424
+
425
+ # Scale the coords with short length if shapes for q and k are different.
426
+ q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
427
+ k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
428
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
429
+
430
+ return rel_pos_resized[relative_coords.long()]
431
+
432
+
433
+ def add_decomposed_rel_pos(
434
+ attn: torch.Tensor,
435
+ q: torch.Tensor,
436
+ rel_pos_h: torch.Tensor,
437
+ rel_pos_w: torch.Tensor,
438
+ q_size: Tuple[int, int],
439
+ k_size: Tuple[int, int],
440
+ ) -> torch.Tensor:
441
+ """
442
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
443
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
444
+ Args:
445
+ attn (Tensor): attention map.
446
+ q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
447
+ rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
448
+ rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
449
+ q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
450
+ k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
451
+
452
+ Returns:
453
+ attn (Tensor): attention map with added relative positional embeddings.
454
+ """
455
+ q_h, q_w = q_size
456
+ k_h, k_w = k_size
457
+ Rh = get_rel_pos(q_h, k_h, rel_pos_h)
458
+ Rw = get_rel_pos(q_w, k_w, rel_pos_w)
459
+
460
+ B, _, dim = q.shape
461
+ r_q = q.reshape(B, q_h, q_w, dim)
462
+ rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
463
+ rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
464
+
465
+ attn = (
466
+ attn.view(B, q_h, q_w, k_h, k_w)
467
+ + rel_h[:, :, :, :, None]
468
+ + rel_w[:, :, :, None, :]
469
+ ).view(B, q_h * q_w, k_h * k_w)
470
+
471
+ return attn
472
+
473
+
474
+ class PatchEmbed(nn.Module):
475
+ """
476
+ Image to Patch Embedding.
477
+ """
478
+
479
+ def __init__(
480
+ self,
481
+ kernel_size: Tuple[int, int] = (16, 16),
482
+ stride: Tuple[int, int] = (16, 16),
483
+ padding: Tuple[int, int] = (0, 0),
484
+ in_chans: int = 3,
485
+ embed_dim: int = 768,
486
+ ) -> None:
487
+ """
488
+ Args:
489
+ kernel_size (Tuple): kernel size of the projection layer.
490
+ stride (Tuple): stride of the projection layer.
491
+ padding (Tuple): padding size of the projection layer.
492
+ in_chans (int): Number of input image channels.
493
+ embed_dim (int): Patch embedding dimension.
494
+ """
495
+ super().__init__()
496
+
497
+ self.proj = nn.Conv2d(
498
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
499
+ )
500
+
501
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
502
+ x = self.proj(x)
503
+ # B C H W -> B H W C
504
+ x = x.permute(0, 2, 3, 1)
505
+ return x
506
+
507
+
508
+ @dataclass
509
+ class SAMViTCfg:
510
+ image_size: Union[Tuple[int, int], int] = 1024
511
+ width: int = 1024
512
+ layers: int = 23
513
+ heads: int = 16
514
+ patch_size: int = 16
515
+ window_size: int = 14
516
+ prompt_embed_dim: int = 256
517
+ global_attn_indexes: Union[List[int], Tuple[int]] = (5, 11, 17, 23)
518
+ downsample_channels: Union[List[int], Tuple[int]] = (512, 1024)
519
+
520
+
521
+ SAM_MODEL_CONFIG = {
522
+ "sam_vit_b": {
523
+ "width": 768,
524
+ "layers": 12,
525
+ "heads": 12,
526
+ "global_attn_indexes": [2, 5, 8, 11],
527
+ "downsample_channels": (),
528
+ },
529
+ "sam_b_downsample": {
530
+ "width": 768,
531
+ "layers": 12,
532
+ "heads": 12,
533
+ "global_attn_indexes": [2, 5, 8, 11],
534
+ "downsample_channels": (512, 1024),
535
+ },
536
+ "sam_vit_l": {
537
+ "width": 1024,
538
+ "layers": 24,
539
+ "heads": 16,
540
+ "global_attn_indexes": [5, 11, 17, 23],
541
+ "downsample_channels": (),
542
+ },
543
+ "sam_vit_h": {
544
+ "width": 1280,
545
+ "layers": 32,
546
+ "heads": 16,
547
+ "global_attn_indexes": [7, 15, 23, 31],
548
+ "downsample_channels": (),
549
+ },
550
+ }
551
+
552
+
553
+ def create_sam_vit(
554
+ model_name: str = "sam_b_downsample",
555
+ image_size: int = 1024,
556
+ ckpt_path: str = "",
557
+ **kwargs,
558
+ ):
559
+ assert (
560
+ model_name in SAM_MODEL_CONFIG.keys()
561
+ ), f"model name: {model_name} should be in {SAM_MODEL_CONFIG.keys()}"
562
+
563
+ sam_cfg = SAMViTCfg(**SAM_MODEL_CONFIG[model_name])
564
+ image_encoder = ImageEncoderViT(
565
+ depth=sam_cfg.layers,
566
+ embed_dim=sam_cfg.width,
567
+ img_size=image_size,
568
+ mlp_ratio=4,
569
+ norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
570
+ num_heads=sam_cfg.heads,
571
+ patch_size=sam_cfg.patch_size,
572
+ qkv_bias=True,
573
+ use_rel_pos=True,
574
+ global_attn_indexes=sam_cfg.global_attn_indexes,
575
+ window_size=14,
576
+ out_chans=sam_cfg.prompt_embed_dim,
577
+ downsample_channels=sam_cfg.downsample_channels,
578
+ )
579
+
580
+ if ckpt_path:
581
+ state_dict = torch.load(ckpt_path)
582
+ image_encoder.load_state_dict(state_dict, strict=False)
583
+ print(f"SAM-ViT restores from {ckpt_path}")
584
+
585
+ return image_encoder
586
+
587
+
588
+ if __name__ == "__main__":
589
+ x = torch.zeros(2, 3, 1024, 1024).bfloat16()
590
+ # x.permute(0, 3, 1, 2)
591
+ net = create_sam_vit().bfloat16()
592
+ out = net(x)
593
+ print(x.shape, out.shape)
deepseek_vl/models/siglip_vit.py ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ # https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
21
+ import math
22
+ import warnings
23
+ from dataclasses import dataclass
24
+ from functools import partial
25
+ from typing import (
26
+ Callable,
27
+ Dict,
28
+ Final,
29
+ List,
30
+ Literal,
31
+ Optional,
32
+ Sequence,
33
+ Set,
34
+ Tuple,
35
+ Type,
36
+ Union,
37
+ )
38
+
39
+ import torch
40
+ import torch.nn as nn
41
+ import torch.nn.functional as F
42
+ from timm.layers import (
43
+ AttentionPoolLatent,
44
+ DropPath,
45
+ LayerType,
46
+ Mlp,
47
+ PatchDropout,
48
+ PatchEmbed,
49
+ resample_abs_pos_embed,
50
+ )
51
+ from timm.models._manipulate import checkpoint_seq, named_apply
52
+
53
+
54
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
55
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
56
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
57
+ def norm_cdf(x):
58
+ # Computes standard normal cumulative distribution function
59
+ return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
60
+
61
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
62
+ warnings.warn(
63
+ "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
64
+ "The distribution of values may be incorrect.",
65
+ stacklevel=2,
66
+ )
67
+
68
+ with torch.no_grad():
69
+ # Values are generated by using a truncated uniform distribution and
70
+ # then using the inverse CDF for the normal distribution.
71
+ # Get upper and lower cdf values
72
+ l = norm_cdf((a - mean) / std) # noqa: E741
73
+ u = norm_cdf((b - mean) / std)
74
+
75
+ # Uniformly fill tensor with values from [l, u], then translate to
76
+ # [2l-1, 2u-1].
77
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
78
+
79
+ # Use inverse cdf transform for normal distribution to get truncated
80
+ # standard normal
81
+ tensor.erfinv_()
82
+
83
+ # Transform to proper mean, std
84
+ tensor.mul_(std * math.sqrt(2.0))
85
+ tensor.add_(mean)
86
+
87
+ # Clamp to ensure it's in the proper range
88
+ tensor.clamp_(min=a, max=b)
89
+ return tensor
90
+
91
+
92
+ def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
93
+ # type: (torch.Tensor, float, float, float, float) -> torch.Tensor
94
+ r"""The original timm.models.layers.weight_init.trunc_normal_ can not handle bfloat16 yet, here we first
95
+ convert the tensor to float32, apply the trunc_normal_() in float32, and then convert it back to its orignal dtype.
96
+ Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn
97
+ from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
98
+ with values outside :math:`[a, b]` redrawn until they are within
99
+ the bounds. The method used for generating the random values works
100
+ best when :math:`a \leq \text{mean} \leq b`.
101
+ Args:
102
+ tensor: an n-dimensional `torch.Tensor`
103
+ mean: the mean of the normal distribution
104
+ std: the standard deviation of the normal distribution
105
+ a: the minimum cutoff value
106
+ b: the maximum cutoff value
107
+ Examples:
108
+ >>> w = torch.empty(3, 5)
109
+ >>> nn.init.trunc_normal_(w)
110
+ """
111
+
112
+ with torch.no_grad():
113
+ dtype = tensor.dtype
114
+ tensor_fp32 = tensor.float()
115
+ tensor_fp32 = _no_grad_trunc_normal_(tensor_fp32, mean, std, a, b)
116
+ tensor_dtype = tensor_fp32.to(dtype=dtype)
117
+ tensor.copy_(tensor_dtype)
118
+
119
+
120
+ def init_weights(self):
121
+ if self.pos_embed is not None:
122
+ trunc_normal_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5)
123
+ trunc_normal_(self.latent, std=self.latent_dim**-0.5)
124
+
125
+
126
+ def init_weights_vit_timm(module: nn.Module, name: str = "") -> None:
127
+ """ViT weight initialization, original timm impl (for reproducibility)"""
128
+ if isinstance(module, nn.Linear):
129
+ trunc_normal_(module.weight, std=0.02)
130
+ if module.bias is not None:
131
+ nn.init.zeros_(module.bias)
132
+ elif hasattr(module, "init_weights"):
133
+ module.init_weights()
134
+
135
+
136
+ class Attention(nn.Module):
137
+ fused_attn: Final[bool]
138
+
139
+ def __init__(
140
+ self,
141
+ dim: int,
142
+ num_heads: int = 8,
143
+ qkv_bias: bool = False,
144
+ qk_norm: bool = False,
145
+ attn_drop: float = 0.0,
146
+ proj_drop: float = 0.0,
147
+ norm_layer: nn.Module = nn.LayerNorm,
148
+ ) -> None:
149
+ super().__init__()
150
+ assert dim % num_heads == 0, "dim should be divisible by num_heads"
151
+ self.num_heads = num_heads
152
+ self.head_dim = dim // num_heads
153
+ self.scale = self.head_dim**-0.5
154
+ # self.fused_attn = use_fused_attn()
155
+ self.fused_attn = True
156
+
157
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
158
+ self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
159
+ self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
160
+ self.attn_drop = nn.Dropout(attn_drop)
161
+ self.proj = nn.Linear(dim, dim)
162
+ self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0.0 else nn.Identity()
163
+
164
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
165
+ B, N, C = x.shape
166
+ qkv = (
167
+ self.qkv(x)
168
+ .reshape(B, N, 3, self.num_heads, self.head_dim)
169
+ .permute(2, 0, 3, 1, 4)
170
+ )
171
+ q, k, v = qkv.unbind(0)
172
+ q, k = self.q_norm(q), self.k_norm(k)
173
+
174
+ if self.fused_attn:
175
+ x = F.scaled_dot_product_attention(
176
+ q,
177
+ k,
178
+ v,
179
+ dropout_p=self.attn_drop.p if self.training else 0.0,
180
+ )
181
+ else:
182
+ q = q * self.scale
183
+ attn = q @ k.transpose(-2, -1)
184
+ attn = attn.softmax(dim=-1)
185
+ attn = self.attn_drop(attn)
186
+ x = attn @ v
187
+
188
+ x = x.transpose(1, 2).reshape(B, N, C)
189
+ x = self.proj(x)
190
+ x = self.proj_drop(x)
191
+ return x
192
+
193
+
194
+ class LayerScale(nn.Module):
195
+ def __init__(
196
+ self,
197
+ dim: int,
198
+ init_values: float = 1e-5,
199
+ inplace: bool = False,
200
+ ) -> None:
201
+ super().__init__()
202
+ self.inplace = inplace
203
+ self.gamma = nn.Parameter(init_values * torch.ones(dim))
204
+
205
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
206
+ return x.mul_(self.gamma) if self.inplace else x * self.gamma
207
+
208
+
209
+ class Block(nn.Module):
210
+ def __init__(
211
+ self,
212
+ dim: int,
213
+ num_heads: int,
214
+ mlp_ratio: float = 4.0,
215
+ qkv_bias: bool = False,
216
+ qk_norm: bool = False,
217
+ proj_drop: float = 0.0,
218
+ attn_drop: float = 0.0,
219
+ init_values: Optional[float] = None,
220
+ drop_path: float = 0.0,
221
+ act_layer: nn.Module = nn.GELU,
222
+ norm_layer: nn.Module = nn.LayerNorm,
223
+ mlp_layer: nn.Module = Mlp,
224
+ ) -> None:
225
+ super().__init__()
226
+ self.norm1 = norm_layer(dim)
227
+ self.attn = Attention(
228
+ dim,
229
+ num_heads=num_heads,
230
+ qkv_bias=qkv_bias,
231
+ qk_norm=qk_norm,
232
+ attn_drop=attn_drop,
233
+ proj_drop=proj_drop,
234
+ norm_layer=norm_layer,
235
+ )
236
+ self.ls1 = (
237
+ LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
238
+ )
239
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
240
+
241
+ self.norm2 = norm_layer(dim)
242
+ self.mlp = mlp_layer(
243
+ in_features=dim,
244
+ hidden_features=int(dim * mlp_ratio),
245
+ act_layer=act_layer,
246
+ drop=proj_drop,
247
+ )
248
+ self.ls2 = (
249
+ LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
250
+ )
251
+ self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
252
+
253
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
254
+ x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
255
+ x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
256
+ return x
257
+
258
+
259
+ class VisionTransformer(nn.Module):
260
+ """Vision Transformer
261
+
262
+ A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
263
+ - https://arxiv.org/abs/2010.11929
264
+ """
265
+
266
+ dynamic_img_size: Final[bool]
267
+
268
+ def __init__(
269
+ self,
270
+ img_size: Union[int, Tuple[int, int]] = 224,
271
+ patch_size: Union[int, Tuple[int, int]] = 16,
272
+ in_chans: int = 3,
273
+ num_classes: int = 1000,
274
+ global_pool: Literal["", "avg", "token", "map"] = "token",
275
+ embed_dim: int = 768,
276
+ depth: int = 12,
277
+ num_heads: int = 12,
278
+ mlp_ratio: float = 4.0,
279
+ qkv_bias: bool = True,
280
+ qk_norm: bool = False,
281
+ init_values: Optional[float] = None,
282
+ class_token: bool = True,
283
+ no_embed_class: bool = False,
284
+ reg_tokens: int = 0,
285
+ pre_norm: bool = False,
286
+ fc_norm: Optional[bool] = None,
287
+ dynamic_img_size: bool = False,
288
+ dynamic_img_pad: bool = False,
289
+ drop_rate: float = 0.0,
290
+ pos_drop_rate: float = 0.0,
291
+ patch_drop_rate: float = 0.0,
292
+ proj_drop_rate: float = 0.0,
293
+ attn_drop_rate: float = 0.0,
294
+ drop_path_rate: float = 0.0,
295
+ weight_init: Literal["skip", "jax", "jax_nlhb", "moco", ""] = "",
296
+ embed_layer: Callable = PatchEmbed,
297
+ norm_layer: Optional[LayerType] = None,
298
+ act_layer: Optional[LayerType] = None,
299
+ block_fn: Type[nn.Module] = Block,
300
+ mlp_layer: Type[nn.Module] = Mlp,
301
+ ignore_head: bool = False,
302
+ ) -> None:
303
+ """
304
+ Args:
305
+ img_size: Input image size.
306
+ patch_size: Patch size.
307
+ in_chans: Number of image input channels.
308
+ num_classes: Mumber of classes for classification head.
309
+ global_pool: Type of global pooling for final sequence (default: 'token').
310
+ embed_dim: Transformer embedding dimension.
311
+ depth: Depth of transformer.
312
+ num_heads: Number of attention heads.
313
+ mlp_ratio: Ratio of mlp hidden dim to embedding dim.
314
+ qkv_bias: Enable bias for qkv projections if True.
315
+ init_values: Layer-scale init values (layer-scale enabled if not None).
316
+ class_token: Use class token.
317
+ no_embed_class: Don't include position embeddings for class (or reg) tokens.
318
+ reg_tokens: Number of register tokens.
319
+ fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'.
320
+ drop_rate: Head dropout rate.
321
+ pos_drop_rate: Position embedding dropout rate.
322
+ attn_drop_rate: Attention dropout rate.
323
+ drop_path_rate: Stochastic depth rate.
324
+ weight_init: Weight initialization scheme.
325
+ embed_layer: Patch embedding layer.
326
+ norm_layer: Normalization layer.
327
+ act_layer: MLP activation layer.
328
+ block_fn: Transformer block layer.
329
+ """
330
+ super().__init__()
331
+ assert global_pool in ("", "avg", "token", "map")
332
+ assert class_token or global_pool != "token"
333
+ use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm
334
+ # norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-6)
335
+ # act_layer = get_act_layer(act_layer) or nn.GELU
336
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
337
+ act_layer = nn.GELU
338
+
339
+ self.num_classes = num_classes
340
+ self.global_pool = global_pool
341
+ self.num_features = self.embed_dim = (
342
+ embed_dim # num_features for consistency with other models
343
+ )
344
+ self.num_prefix_tokens = 1 if class_token else 0
345
+ self.num_prefix_tokens += reg_tokens
346
+ self.num_reg_tokens = reg_tokens
347
+ self.has_class_token = class_token
348
+ self.no_embed_class = (
349
+ no_embed_class # don't embed prefix positions (includes reg)
350
+ )
351
+ self.dynamic_img_size = dynamic_img_size
352
+ self.grad_checkpointing = False
353
+ self.ignore_head = ignore_head
354
+
355
+ embed_args = {}
356
+ if dynamic_img_size:
357
+ # flatten deferred until after pos embed
358
+ embed_args.update(dict(strict_img_size=False, output_fmt="NHWC"))
359
+ self.patch_embed = embed_layer(
360
+ img_size=img_size,
361
+ patch_size=patch_size,
362
+ in_chans=in_chans,
363
+ embed_dim=embed_dim,
364
+ bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP)
365
+ dynamic_img_pad=dynamic_img_pad,
366
+ **embed_args,
367
+ )
368
+ num_patches = self.patch_embed.num_patches
369
+
370
+ self.cls_token = (
371
+ nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
372
+ )
373
+ self.reg_token = (
374
+ nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None
375
+ )
376
+ embed_len = (
377
+ num_patches if no_embed_class else num_patches + self.num_prefix_tokens
378
+ )
379
+ self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
380
+ self.pos_drop = nn.Dropout(p=pos_drop_rate)
381
+ if patch_drop_rate > 0:
382
+ self.patch_drop = PatchDropout(
383
+ patch_drop_rate,
384
+ num_prefix_tokens=self.num_prefix_tokens,
385
+ )
386
+ else:
387
+ self.patch_drop = nn.Identity()
388
+ self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity()
389
+
390
+ dpr = [
391
+ x.item() for x in torch.linspace(0, drop_path_rate, depth)
392
+ ] # stochastic depth decay rule
393
+ self.blocks = nn.Sequential(
394
+ *[
395
+ block_fn(
396
+ dim=embed_dim,
397
+ num_heads=num_heads,
398
+ mlp_ratio=mlp_ratio,
399
+ qkv_bias=qkv_bias,
400
+ qk_norm=qk_norm,
401
+ init_values=init_values,
402
+ proj_drop=proj_drop_rate,
403
+ attn_drop=attn_drop_rate,
404
+ drop_path=dpr[i],
405
+ norm_layer=norm_layer,
406
+ act_layer=act_layer,
407
+ mlp_layer=mlp_layer,
408
+ )
409
+ for i in range(depth)
410
+ ]
411
+ )
412
+ self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()
413
+
414
+ # Classifier Head
415
+ if global_pool == "map":
416
+ AttentionPoolLatent.init_weights = init_weights
417
+ self.attn_pool = AttentionPoolLatent(
418
+ self.embed_dim,
419
+ num_heads=num_heads,
420
+ mlp_ratio=mlp_ratio,
421
+ norm_layer=norm_layer,
422
+ )
423
+ else:
424
+ self.attn_pool = None
425
+ self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
426
+ self.head_drop = nn.Dropout(drop_rate)
427
+ self.head = (
428
+ nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
429
+ )
430
+
431
+ if weight_init != "skip":
432
+ self.init_weights(weight_init)
433
+
434
+ def init_weights(self, mode: Literal["jax", "jax_nlhb", "moco", ""] = "") -> None:
435
+ assert mode in ("jax", "jax_nlhb", "moco", "")
436
+ # head_bias = -math.log(self.num_classes) if "nlhb" in mode else 0.0
437
+ trunc_normal_(self.pos_embed, std=0.02)
438
+ if self.cls_token is not None:
439
+ nn.init.normal_(self.cls_token, std=1e-6)
440
+ named_apply(init_weights_vit_timm, self)
441
+
442
+ @torch.jit.ignore
443
+ def no_weight_decay(self) -> Set:
444
+ return {"pos_embed", "cls_token", "dist_token"}
445
+
446
+ @torch.jit.ignore
447
+ def group_matcher(self, coarse: bool = False) -> Dict:
448
+ return dict(
449
+ stem=r"^cls_token|pos_embed|patch_embed", # stem and embed
450
+ blocks=[(r"^blocks\.(\d+)", None), (r"^norm", (99999,))],
451
+ )
452
+
453
+ @torch.jit.ignore
454
+ def set_grad_checkpointing(self, enable: bool = True) -> None:
455
+ self.grad_checkpointing = enable
456
+
457
+ @torch.jit.ignore
458
+ def get_classifier(self) -> nn.Module:
459
+ return self.head
460
+
461
+ def reset_classifier(self, num_classes: int, global_pool=None) -> None:
462
+ self.num_classes = num_classes
463
+ if global_pool is not None:
464
+ assert global_pool in ("", "avg", "token", "map")
465
+ if global_pool == "map" and self.attn_pool is None:
466
+ assert (
467
+ False
468
+ ), "Cannot currently add attention pooling in reset_classifier()."
469
+ elif global_pool != "map " and self.attn_pool is not None:
470
+ self.attn_pool = None # remove attention pooling
471
+ self.global_pool = global_pool
472
+ self.head = (
473
+ nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
474
+ )
475
+
476
+ def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
477
+ if self.dynamic_img_size:
478
+ B, H, W, C = x.shape
479
+ pos_embed = resample_abs_pos_embed(
480
+ self.pos_embed,
481
+ (H, W),
482
+ num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
483
+ )
484
+ x = x.view(B, -1, C)
485
+ else:
486
+ pos_embed = self.pos_embed
487
+
488
+ to_cat = []
489
+ if self.cls_token is not None:
490
+ to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
491
+ if self.reg_token is not None:
492
+ to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))
493
+
494
+ if self.no_embed_class:
495
+ # deit-3, updated JAX (big vision)
496
+ # position embedding does not overlap with class token, add then concat
497
+ x = x + pos_embed
498
+ if to_cat:
499
+ x = torch.cat(to_cat + [x], dim=1)
500
+ else:
501
+ # original timm, JAX, and deit vit impl
502
+ # pos_embed has entry for class token, concat then add
503
+ if to_cat:
504
+ x = torch.cat(to_cat + [x], dim=1)
505
+ x = x + pos_embed
506
+
507
+ return self.pos_drop(x)
508
+
509
+ def _intermediate_layers(
510
+ self,
511
+ x: torch.Tensor,
512
+ n: Union[int, Sequence] = 1,
513
+ ) -> List[torch.Tensor]:
514
+ outputs, num_blocks = [], len(self.blocks)
515
+ take_indices = set(
516
+ range(num_blocks - n, num_blocks) if isinstance(n, int) else n
517
+ )
518
+
519
+ # forward pass
520
+ x = self.patch_embed(x)
521
+ x = self._pos_embed(x)
522
+ x = self.patch_drop(x)
523
+ x = self.norm_pre(x)
524
+ for i, blk in enumerate(self.blocks):
525
+ x = blk(x)
526
+ if i in take_indices:
527
+ outputs.append(x)
528
+
529
+ return outputs
530
+
531
+ def get_intermediate_layers(
532
+ self,
533
+ x: torch.Tensor,
534
+ n: Union[int, Sequence] = 1,
535
+ reshape: bool = False,
536
+ return_prefix_tokens: bool = False,
537
+ norm: bool = False,
538
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
539
+ """Intermediate layer accessor (NOTE: This is a WIP experiment).
540
+ Inspired by DINO / DINOv2 interface
541
+ """
542
+ # take last n blocks if n is an int, if in is a sequence, select by matching indices
543
+ outputs = self._intermediate_layers(x, n)
544
+ if norm:
545
+ outputs = [self.norm(out) for out in outputs]
546
+ prefix_tokens = [out[:, 0 : self.num_prefix_tokens] for out in outputs]
547
+ outputs = [out[:, self.num_prefix_tokens :] for out in outputs]
548
+
549
+ if reshape:
550
+ grid_size = self.patch_embed.grid_size
551
+ outputs = [
552
+ out.reshape(x.shape[0], grid_size[0], grid_size[1], -1)
553
+ .permute(0, 3, 1, 2)
554
+ .contiguous()
555
+ for out in outputs
556
+ ]
557
+
558
+ if return_prefix_tokens:
559
+ return tuple(zip(outputs, prefix_tokens))
560
+ return tuple(outputs)
561
+
562
+ def forward_features(self, x: torch.Tensor) -> torch.Tensor:
563
+ x = self.patch_embed(x)
564
+ x = self._pos_embed(x)
565
+ x = self.patch_drop(x)
566
+ x = self.norm_pre(x)
567
+ if self.grad_checkpointing and not torch.jit.is_scripting():
568
+ x = checkpoint_seq(self.blocks, x)
569
+ else:
570
+ x = self.blocks(x)
571
+ x = self.norm(x)
572
+ return x
573
+
574
+ def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor:
575
+ if self.attn_pool is not None:
576
+ x = self.attn_pool(x)
577
+ elif self.global_pool == "avg":
578
+ x = x[:, self.num_prefix_tokens :].mean(dim=1)
579
+ elif self.global_pool:
580
+ x = x[:, 0] # class token
581
+ x = self.fc_norm(x)
582
+ x = self.head_drop(x)
583
+ return x if pre_logits else self.head(x)
584
+
585
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
586
+ x = self.forward_features(x)
587
+ if not self.ignore_head:
588
+ x = self.forward_head(x)
589
+ return x
590
+
591
+
592
+ @dataclass
593
+ class SigLIPVisionCfg:
594
+ width: int = 1152
595
+ layers: Union[Tuple[int, int, int, int], int] = 27
596
+ heads: int = 16
597
+ patch_size: int = 14
598
+ image_size: Union[Tuple[int, int], int] = 336
599
+ global_pool: str = "map"
600
+ mlp_ratio: float = 3.7362
601
+ class_token: bool = False
602
+ num_classes: int = 0
603
+ use_checkpoint: bool = False
604
+
605
+
606
+ SigLIP_MODEL_CONFIG = {
607
+ "siglip_so400m_patch14_384": {
608
+ "image_size": 336,
609
+ "patch_size": 14,
610
+ "width": 1152,
611
+ "layers": 27,
612
+ "heads": 16,
613
+ "mlp_ratio": 3.7362,
614
+ "global_pool": "map",
615
+ "use_checkpoint": False,
616
+ },
617
+ "siglip_so400m_patch14_224": {
618
+ "image_size": 224,
619
+ "patch_size": 14,
620
+ "width": 1152,
621
+ "layers": 27,
622
+ "heads": 16,
623
+ "mlp_ratio": 3.7362,
624
+ "global_pool": "map",
625
+ "use_checkpoint": False,
626
+ },
627
+ "siglip_large_patch16_384": {
628
+ "image_size": 384,
629
+ "patch_size": 16,
630
+ "width": 1024,
631
+ "layers": 24,
632
+ "heads": 16,
633
+ "mlp_ratio": 4,
634
+ "global_pool": "map",
635
+ "use_checkpoint": False,
636
+ },
637
+ }
638
+
639
+
640
+ def create_siglip_vit(
641
+ model_name: str = "siglip_so400m_patch14_384",
642
+ image_size: int = 384,
643
+ select_layer: int = -1,
644
+ ckpt_path: str = "",
645
+ **kwargs,
646
+ ):
647
+ assert (
648
+ model_name in SigLIP_MODEL_CONFIG.keys()
649
+ ), f"model name should be in {SigLIP_MODEL_CONFIG.keys()}"
650
+
651
+ vision_cfg = SigLIPVisionCfg(**SigLIP_MODEL_CONFIG[model_name])
652
+
653
+ if select_layer <= 0:
654
+ layers = min(vision_cfg.layers, vision_cfg.layers + select_layer + 1)
655
+ else:
656
+ layers = min(vision_cfg.layers, select_layer)
657
+
658
+ model = VisionTransformer(
659
+ img_size=image_size,
660
+ patch_size=vision_cfg.patch_size,
661
+ embed_dim=vision_cfg.width,
662
+ depth=layers,
663
+ num_heads=vision_cfg.heads,
664
+ mlp_ratio=vision_cfg.mlp_ratio,
665
+ class_token=vision_cfg.class_token,
666
+ global_pool=vision_cfg.global_pool,
667
+ ignore_head=kwargs.get("ignore_head", True),
668
+ weight_init=kwargs.get("weight_init", "skip"),
669
+ num_classes=0,
670
+ )
671
+
672
+ if ckpt_path:
673
+ state_dict = torch.load(ckpt_path, map_location="cpu")
674
+
675
+ incompatible_keys = model.load_state_dict(state_dict, strict=False)
676
+ print(
677
+ f"SigLIP-ViT restores from {ckpt_path},\n"
678
+ f"\tincompatible_keys:', {incompatible_keys}."
679
+ )
680
+
681
+ return model
deepseek_vl/serve/app_deepseek.py ADDED
@@ -0,0 +1,514 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ # -*- coding:utf-8 -*-
21
+
22
+ import base64
23
+ from io import BytesIO
24
+
25
+ import gradio as gr
26
+ import torch
27
+ from app_modules.gradio_utils import (
28
+ cancel_outputing,
29
+ delete_last_conversation,
30
+ reset_state,
31
+ reset_textbox,
32
+ transfer_input,
33
+ wrap_gen_fn,
34
+ )
35
+ from app_modules.overwrites import reload_javascript
36
+ from app_modules.presets import CONCURRENT_COUNT, description, description_top, title
37
+ from app_modules.utils import configure_logger, is_variable_assigned, strip_stop_words
38
+
39
+ from deepseek_vl.serve.inference import (
40
+ convert_conversation_to_prompts,
41
+ deepseek_generate,
42
+ load_model,
43
+ )
44
+ from deepseek_vl.utils.conversation import SeparatorStyle
45
+
46
+
47
+ def load_models():
48
+ models = {
49
+ "DeepSeek-VL 7B": "deepseek-ai/deepseek-vl-7b-chat",
50
+ }
51
+
52
+ for model_name in models:
53
+ models[model_name] = load_model(models[model_name])
54
+
55
+ return models
56
+
57
+
58
+ logger = configure_logger()
59
+ models = load_models()
60
+ MODELS = sorted(list(models.keys()))
61
+
62
+
63
+ def generate_prompt_with_history(
64
+ text, image, history, vl_chat_processor, tokenizer, max_length=2048
65
+ ):
66
+ """
67
+ Generate a prompt with history for the deepseek application.
68
+
69
+ Args:
70
+ text (str): The text prompt.
71
+ image (str): The image prompt.
72
+ history (list): List of previous conversation messages.
73
+ tokenizer: The tokenizer used for encoding the prompt.
74
+ max_length (int): The maximum length of the prompt.
75
+
76
+ Returns:
77
+ tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None.
78
+ """
79
+
80
+ sft_format = "deepseek"
81
+ user_role_ind = 0
82
+ bot_role_ind = 1
83
+
84
+ # Initialize conversation
85
+ conversation = vl_chat_processor.new_chat_template()
86
+
87
+ if history:
88
+ conversation.messages = history
89
+
90
+ if image is not None:
91
+ if "<image_placeholder>" not in text:
92
+ text = (
93
+ "<image_placeholder>" + "\n" + text
94
+ ) # append the <image_placeholder> in a new line after the text prompt
95
+ text = (text, image)
96
+
97
+ conversation.append_message(conversation.roles[user_role_ind], text)
98
+ conversation.append_message(conversation.roles[bot_role_ind], "")
99
+
100
+ # Create a copy of the conversation to avoid history truncation in the UI
101
+ conversation_copy = conversation.copy()
102
+ logger.info("=" * 80)
103
+ logger.info(get_prompt(conversation))
104
+
105
+ rounds = len(conversation.messages) // 2
106
+
107
+ for _ in range(rounds):
108
+ current_prompt = get_prompt(conversation)
109
+ current_prompt = (
110
+ current_prompt.replace("</s>", "")
111
+ if sft_format == "deepseek"
112
+ else current_prompt
113
+ )
114
+
115
+ if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length:
116
+ return conversation_copy
117
+
118
+ if len(conversation.messages) % 2 != 0:
119
+ gr.Error("The messages between user and assistant are not paired.")
120
+ return
121
+
122
+ try:
123
+ for _ in range(2): # pop out two messages in a row
124
+ conversation.messages.pop(0)
125
+ except IndexError:
126
+ gr.Error("Input text processing failed, unable to respond in this round.")
127
+ return None
128
+
129
+ gr.Error("Prompt could not be generated within max_length limit.")
130
+ return None
131
+
132
+
133
+ def to_gradio_chatbot(conv):
134
+ """Convert the conversation to gradio chatbot format."""
135
+ ret = []
136
+ for i, (role, msg) in enumerate(conv.messages[conv.offset :]):
137
+ if i % 2 == 0:
138
+ if type(msg) is tuple:
139
+ msg, image = msg
140
+ if isinstance(image, str):
141
+ with open(image, "rb") as f:
142
+ data = f.read()
143
+ img_b64_str = base64.b64encode(data).decode()
144
+ image_str = f'<video src="data:video/mp4;base64,{img_b64_str}" controls width="426" height="240"></video>'
145
+ msg = msg.replace("\n".join(["<image_placeholder>"] * 4), image_str)
146
+ else:
147
+ max_hw, min_hw = max(image.size), min(image.size)
148
+ aspect_ratio = max_hw / min_hw
149
+ max_len, min_len = 800, 400
150
+ shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
151
+ longest_edge = int(shortest_edge * aspect_ratio)
152
+ W, H = image.size
153
+ if H > W:
154
+ H, W = longest_edge, shortest_edge
155
+ else:
156
+ H, W = shortest_edge, longest_edge
157
+ image = image.resize((W, H))
158
+ buffered = BytesIO()
159
+ image.save(buffered, format="JPEG")
160
+ img_b64_str = base64.b64encode(buffered.getvalue()).decode()
161
+ img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
162
+ msg = msg.replace("<image_placeholder>", img_str)
163
+ ret.append([msg, None])
164
+ else:
165
+ ret[-1][-1] = msg
166
+ return ret
167
+
168
+
169
+ def to_gradio_history(conv):
170
+ """Convert the conversation to gradio history state."""
171
+ return conv.messages[conv.offset :]
172
+
173
+
174
+ def get_prompt(conv) -> str:
175
+ """Get the prompt for generation."""
176
+ system_prompt = conv.system_template.format(system_message=conv.system_message)
177
+ if conv.sep_style == SeparatorStyle.DeepSeek:
178
+ seps = [conv.sep, conv.sep2]
179
+ if system_prompt == "" or system_prompt is None:
180
+ ret = ""
181
+ else:
182
+ ret = system_prompt + seps[0]
183
+ for i, (role, message) in enumerate(conv.messages):
184
+ if message:
185
+ if type(message) is tuple: # multimodal message
186
+ message, _ = message
187
+ ret += role + ": " + message + seps[i % 2]
188
+ else:
189
+ ret += role + ":"
190
+ return ret
191
+ else:
192
+ return conv.get_prompt
193
+
194
+
195
+ @wrap_gen_fn
196
+ def predict(
197
+ text,
198
+ image,
199
+ chatbot,
200
+ history,
201
+ top_p,
202
+ temperature,
203
+ repetition_penalty,
204
+ max_length_tokens,
205
+ max_context_length_tokens,
206
+ model_select_dropdown,
207
+ ):
208
+ """
209
+ Function to predict the response based on the user's input and selected model.
210
+
211
+ Parameters:
212
+ user_text (str): The input text from the user.
213
+ user_image (str): The input image from the user.
214
+ chatbot (str): The chatbot's name.
215
+ history (str): The history of the chat.
216
+ top_p (float): The top-p parameter for the model.
217
+ temperature (float): The temperature parameter for the model.
218
+ max_length_tokens (int): The maximum length of tokens for the model.
219
+ max_context_length_tokens (int): The maximum length of context tokens for the model.
220
+ model_select_dropdown (str): The selected model from the dropdown.
221
+
222
+ Returns:
223
+ generator: A generator that yields the chatbot outputs, history, and status.
224
+ """
225
+ print("running the prediction function")
226
+ try:
227
+ tokenizer, vl_gpt, vl_chat_processor = models[model_select_dropdown]
228
+
229
+ if text == "":
230
+ yield chatbot, history, "Empty context."
231
+ return
232
+ except KeyError:
233
+ yield [[text, "No Model Found"]], [], "No Model Found"
234
+ return
235
+
236
+ conversation = generate_prompt_with_history(
237
+ text,
238
+ image,
239
+ history,
240
+ vl_chat_processor,
241
+ tokenizer,
242
+ max_length=max_context_length_tokens,
243
+ )
244
+ prompts = convert_conversation_to_prompts(conversation)
245
+
246
+ stop_words = conversation.stop_str
247
+ gradio_chatbot_output = to_gradio_chatbot(conversation)
248
+
249
+ full_response = ""
250
+ with torch.no_grad():
251
+ for x in deepseek_generate(
252
+ prompts=prompts,
253
+ vl_gpt=vl_gpt,
254
+ vl_chat_processor=vl_chat_processor,
255
+ tokenizer=tokenizer,
256
+ stop_words=stop_words,
257
+ max_length=max_length_tokens,
258
+ temperature=temperature,
259
+ repetition_penalty=repetition_penalty,
260
+ top_p=top_p,
261
+ ):
262
+ full_response += x
263
+ response = strip_stop_words(full_response, stop_words)
264
+ conversation.update_last_message(response)
265
+ gradio_chatbot_output[-1][1] = response
266
+ yield gradio_chatbot_output, to_gradio_history(
267
+ conversation
268
+ ), "Generating..."
269
+
270
+ print("flushed result to gradio")
271
+ torch.cuda.empty_cache()
272
+
273
+ if is_variable_assigned("x"):
274
+ print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}")
275
+ print(
276
+ f"temperature: {temperature}, top_p: {top_p}, repetition_penalty: {repetition_penalty}, max_length_tokens: {max_length_tokens}"
277
+ )
278
+
279
+ yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"
280
+
281
+
282
+ def retry(
283
+ text,
284
+ image,
285
+ chatbot,
286
+ history,
287
+ top_p,
288
+ temperature,
289
+ repetition_penalty,
290
+ max_length_tokens,
291
+ max_context_length_tokens,
292
+ model_select_dropdown,
293
+ ):
294
+ if len(history) == 0:
295
+ yield (chatbot, history, "Empty context")
296
+ return
297
+
298
+ chatbot.pop()
299
+ history.pop()
300
+ text = history.pop()[-1]
301
+ if type(text) is tuple:
302
+ text, image = text
303
+
304
+ yield from predict(
305
+ text,
306
+ image,
307
+ chatbot,
308
+ history,
309
+ top_p,
310
+ temperature,
311
+ repetition_penalty,
312
+ max_length_tokens,
313
+ max_context_length_tokens,
314
+ model_select_dropdown,
315
+ )
316
+
317
+
318
+ def build_demo(MODELS):
319
+ with open("deepseek_vl/serve/assets/custom.css", "r", encoding="utf-8") as f:
320
+ customCSS = f.read()
321
+
322
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
323
+ history = gr.State([])
324
+ input_text = gr.State()
325
+ input_image = gr.State()
326
+
327
+ with gr.Row():
328
+ gr.HTML(title)
329
+ status_display = gr.Markdown("Success", elem_id="status_display")
330
+ gr.Markdown(description_top)
331
+
332
+ with gr.Row(equal_height=True):
333
+ with gr.Column(scale=4):
334
+ with gr.Row():
335
+ chatbot = gr.Chatbot(
336
+ elem_id="deepseek_chatbot",
337
+ show_share_button=True,
338
+ likeable=True,
339
+ bubble_full_width=False,
340
+ height=600,
341
+ )
342
+ with gr.Row():
343
+ with gr.Column(scale=4):
344
+ text_box = gr.Textbox(
345
+ show_label=False, placeholder="Enter text", container=False
346
+ )
347
+ with gr.Column(
348
+ min_width=70,
349
+ ):
350
+ submitBtn = gr.Button("Send")
351
+ with gr.Column(
352
+ min_width=70,
353
+ ):
354
+ cancelBtn = gr.Button("Stop")
355
+ with gr.Row():
356
+ emptyBtn = gr.Button(
357
+ "🧹 New Conversation",
358
+ )
359
+ retryBtn = gr.Button("🔄 Regenerate")
360
+ delLastBtn = gr.Button("🗑️ Remove Last Turn")
361
+
362
+ with gr.Column():
363
+ image_box = gr.Image(type="pil")
364
+
365
+ with gr.Tab(label="Parameter Setting") as parameter_row:
366
+ top_p = gr.Slider(
367
+ minimum=-0,
368
+ maximum=1.0,
369
+ value=0.95,
370
+ step=0.05,
371
+ interactive=True,
372
+ label="Top-p",
373
+ )
374
+ temperature = gr.Slider(
375
+ minimum=0,
376
+ maximum=1.0,
377
+ value=0.1,
378
+ step=0.1,
379
+ interactive=True,
380
+ label="Temperature",
381
+ )
382
+ repetition_penalty = gr.Slider(
383
+ minimum=0.0,
384
+ maximum=2.0,
385
+ value=1.1,
386
+ step=0.1,
387
+ interactive=True,
388
+ label="Repetition penalty",
389
+ )
390
+ max_length_tokens = gr.Slider(
391
+ minimum=0,
392
+ maximum=4096,
393
+ value=2048,
394
+ step=8,
395
+ interactive=True,
396
+ label="Max Generation Tokens",
397
+ )
398
+ max_context_length_tokens = gr.Slider(
399
+ minimum=0,
400
+ maximum=4096,
401
+ value=4096,
402
+ step=128,
403
+ interactive=True,
404
+ label="Max History Tokens",
405
+ )
406
+ model_select_dropdown = gr.Dropdown(
407
+ label="Select Models",
408
+ choices=MODELS,
409
+ multiselect=False,
410
+ value=MODELS[0],
411
+ interactive=True,
412
+ )
413
+
414
+ examples_list = [
415
+ [
416
+ "deepseek_vl/serve/examples/rap.jpeg",
417
+ "Can you write me a master rap song that rhymes very well based on this image?",
418
+ ],
419
+ [
420
+ "deepseek_vl/serve/examples/app.png",
421
+ "What is this app about?",
422
+ ],
423
+ [
424
+ "deepseek_vl/serve/examples/pipeline.png",
425
+ "Help me write a python code based on the image.",
426
+ ],
427
+ [
428
+ "deepseek_vl/serve/examples/chart.png",
429
+ "Could you help me to re-draw this picture with python codes?",
430
+ ],
431
+ [
432
+ "deepseek_vl/serve/examples/mirror.png",
433
+ "How many people are there in the image. Why?",
434
+ ],
435
+ [
436
+ "deepseek_vl/serve/examples/puzzle.png",
437
+ "Can this 2 pieces combine together?",
438
+ ],
439
+ ]
440
+ gr.Examples(examples=examples_list, inputs=[image_box, text_box])
441
+ gr.Markdown(description)
442
+
443
+ input_widgets = [
444
+ input_text,
445
+ input_image,
446
+ chatbot,
447
+ history,
448
+ top_p,
449
+ temperature,
450
+ repetition_penalty,
451
+ max_length_tokens,
452
+ max_context_length_tokens,
453
+ model_select_dropdown,
454
+ ]
455
+ output_widgets = [chatbot, history, status_display]
456
+
457
+ transfer_input_args = dict(
458
+ fn=transfer_input,
459
+ inputs=[text_box, image_box],
460
+ outputs=[input_text, input_image, text_box, image_box, submitBtn],
461
+ show_progress=True,
462
+ )
463
+
464
+ predict_args = dict(
465
+ fn=predict,
466
+ inputs=input_widgets,
467
+ outputs=output_widgets,
468
+ show_progress=True,
469
+ )
470
+
471
+ retry_args = dict(
472
+ fn=retry,
473
+ inputs=input_widgets,
474
+ outputs=output_widgets,
475
+ show_progress=True,
476
+ )
477
+
478
+ reset_args = dict(
479
+ fn=reset_textbox, inputs=[], outputs=[text_box, status_display]
480
+ )
481
+
482
+ predict_events = [
483
+ text_box.submit(**transfer_input_args).then(**predict_args),
484
+ submitBtn.click(**transfer_input_args).then(**predict_args),
485
+ ]
486
+
487
+ emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True)
488
+ emptyBtn.click(**reset_args)
489
+ retryBtn.click(**retry_args)
490
+
491
+ delLastBtn.click(
492
+ delete_last_conversation,
493
+ [chatbot, history],
494
+ output_widgets,
495
+ show_progress=True,
496
+ )
497
+
498
+ cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events)
499
+
500
+ return demo
501
+
502
+
503
+ if __name__ == "__main__":
504
+ demo = build_demo(MODELS)
505
+ demo.title = "DeepSeek-VL Chatbot"
506
+
507
+ reload_javascript()
508
+ demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
509
+ share=False,
510
+ favicon_path="deepseek_vl/serve/assets/favicon.ico",
511
+ inbrowser=False,
512
+ server_name="0.0.0.0",
513
+ server_port=8122,
514
+ )
deepseek_vl/serve/app_modules/gradio_utils.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from functools import wraps
21
+
22
+ import gradio as gr
23
+
24
+
25
+ def wrap_gen_fn(gen_fn):
26
+ @wraps(gen_fn)
27
+ def wrapped_gen_fn(prompt, *args, **kwargs):
28
+ try:
29
+ yield from gen_fn(prompt, *args, **kwargs)
30
+ except gr.Error as g_err:
31
+ raise g_err
32
+ except Exception as e:
33
+ raise gr.Error(f"Failed to generate text: {e}") from e
34
+
35
+ return wrapped_gen_fn
36
+
37
+
38
+ def delete_last_conversation(chatbot, history):
39
+ if len(history) % 2 != 0:
40
+ gr.Error("history length is not even")
41
+ return (
42
+ chatbot,
43
+ history,
44
+ "Delete Done",
45
+ )
46
+
47
+ if len(chatbot) > 0:
48
+ chatbot.pop()
49
+
50
+ if len(history) > 0 and len(history) % 2 == 0:
51
+ history.pop()
52
+ history.pop()
53
+
54
+ return (
55
+ chatbot,
56
+ history,
57
+ "Delete Done",
58
+ )
59
+
60
+
61
+ def reset_state():
62
+ return [], [], None, "Reset Done"
63
+
64
+
65
+ def reset_textbox():
66
+ return gr.update(value=""), ""
67
+
68
+
69
+ def cancel_outputing():
70
+ return "Stop Done"
71
+
72
+
73
+ def transfer_input(input_text, input_image):
74
+ print("transferring input text and input image")
75
+ return (
76
+ input_text,
77
+ input_image,
78
+ gr.update(value=""),
79
+ gr.update(value=None),
80
+ gr.Button(visible=True),
81
+ )
82
+
83
+
84
+ class State:
85
+ interrupted = False
86
+
87
+ def interrupt(self):
88
+ self.interrupted = True
89
+
90
+ def recover(self):
91
+ self.interrupted = False
92
+
93
+
94
+ shared_state = State()
deepseek_vl/serve/app_modules/overwrites.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from __future__ import annotations
21
+
22
+ import logging
23
+ from typing import List, Tuple
24
+
25
+ from app_modules.presets import gr
26
+ from app_modules.utils import convert_asis, convert_mdtext, detect_converted_mark
27
+
28
+
29
+ def compact_text_chunks(self, prompt, text_chunks: List[str]) -> List[str]:
30
+ logging.debug("Compacting text chunks...🚀🚀🚀")
31
+ combined_str = [c.strip() for c in text_chunks if c.strip()]
32
+ combined_str = [f"[{index+1}] {c}" for index, c in enumerate(combined_str)]
33
+ combined_str = "\n\n".join(combined_str)
34
+ # resplit based on self.max_chunk_overlap
35
+ text_splitter = self.get_text_splitter_given_prompt(prompt, 1, padding=1)
36
+ return text_splitter.split_text(combined_str)
37
+
38
+
39
+ def postprocess(
40
+ self, y: List[Tuple[str | None, str | None]]
41
+ ) -> List[Tuple[str | None, str | None]]:
42
+ """
43
+ Parameters:
44
+ y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
45
+ Returns:
46
+ List of tuples representing the message and response. Each message and response will be a string of HTML.
47
+ """
48
+ if y is None or y == []:
49
+ return []
50
+ temp = []
51
+ for x in y:
52
+ user, bot = x
53
+ if not detect_converted_mark(user):
54
+ user = convert_asis(user)
55
+ if not detect_converted_mark(bot):
56
+ bot = convert_mdtext(bot)
57
+ temp.append((user, bot))
58
+ return temp
59
+
60
+
61
+ with open("deepseek_vl/serve/assets/custom.js", "r", encoding="utf-8") as f, open(
62
+ "deepseek_vl/serve/assets/Kelpy-Codos.js", "r", encoding="utf-8"
63
+ ) as f2:
64
+ customJS = f.read()
65
+ kelpyCodos = f2.read()
66
+
67
+
68
+ def reload_javascript():
69
+ print("Reloading javascript...")
70
+ js = f"<script>{customJS}</script><script>{kelpyCodos}</script>"
71
+
72
+ def template_response(*args, **kwargs):
73
+ res = GradioTemplateResponseOriginal(*args, **kwargs)
74
+ res.body = res.body.replace(b"</html>", f"{js}</html>".encode("utf8"))
75
+ res.init_headers()
76
+ return res
77
+
78
+ gr.routes.templates.TemplateResponse = template_response
79
+
80
+
81
+ GradioTemplateResponseOriginal = gr.routes.templates.TemplateResponse
deepseek_vl/serve/app_modules/presets.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ # -*- coding:utf-8 -*-
21
+ import gradio as gr
22
+
23
+ title = """<h1 align="left" style="min-width:200px; margin-top:0;">Chat with DeepSeek-VL </h1>"""
24
+ description_top = """"""
25
+ description = """"""
26
+ CONCURRENT_COUNT = 10
27
+
28
+
29
+ ALREADY_CONVERTED_MARK = "<!-- ALREADY CONVERTED BY PARSER. -->"
30
+
31
+ small_and_beautiful_theme = gr.themes.Soft(
32
+ primary_hue=gr.themes.Color(
33
+ c50="#EBFAF2",
34
+ c100="#CFF3E1",
35
+ c200="#A8EAC8",
36
+ c300="#77DEA9",
37
+ c400="#3FD086",
38
+ c500="#02C160",
39
+ c600="#06AE56",
40
+ c700="#05974E",
41
+ c800="#057F45",
42
+ c900="#04673D",
43
+ c950="#2E5541",
44
+ name="small_and_beautiful",
45
+ ),
46
+ secondary_hue=gr.themes.Color(
47
+ c50="#576b95",
48
+ c100="#576b95",
49
+ c200="#576b95",
50
+ c300="#576b95",
51
+ c400="#576b95",
52
+ c500="#576b95",
53
+ c600="#576b95",
54
+ c700="#576b95",
55
+ c800="#576b95",
56
+ c900="#576b95",
57
+ c950="#576b95",
58
+ ),
59
+ neutral_hue=gr.themes.Color(
60
+ name="gray",
61
+ c50="#f6f7f8",
62
+ # c100="#f3f4f6",
63
+ c100="#F2F2F2",
64
+ c200="#e5e7eb",
65
+ c300="#d1d5db",
66
+ c400="#B2B2B2",
67
+ c500="#808080",
68
+ c600="#636363",
69
+ c700="#515151",
70
+ c800="#393939",
71
+ # c900="#272727",
72
+ c900="#2B2B2B",
73
+ c950="#171717",
74
+ ),
75
+ radius_size=gr.themes.sizes.radius_sm,
76
+ ).set(
77
+ # button_primary_background_fill="*primary_500",
78
+ button_primary_background_fill_dark="*primary_600",
79
+ # button_primary_background_fill_hover="*primary_400",
80
+ # button_primary_border_color="*primary_500",
81
+ button_primary_border_color_dark="*primary_600",
82
+ button_primary_text_color="white",
83
+ button_primary_text_color_dark="white",
84
+ button_secondary_background_fill="*neutral_100",
85
+ button_secondary_background_fill_hover="*neutral_50",
86
+ button_secondary_background_fill_dark="*neutral_900",
87
+ button_secondary_text_color="*neutral_800",
88
+ button_secondary_text_color_dark="white",
89
+ # background_fill_primary="#F7F7F7",
90
+ # background_fill_primary_dark="#1F1F1F",
91
+ # block_title_text_color="*primary_500",
92
+ block_title_background_fill_dark="*primary_900",
93
+ block_label_background_fill_dark="*primary_900",
94
+ input_background_fill="#F6F6F6",
95
+ # chatbot_code_background_color_dark="*neutral_950",
96
+ )
deepseek_vl/serve/app_modules/utils.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ # -*- coding:utf-8 -*-
21
+ from __future__ import annotations
22
+
23
+ import html
24
+ import logging
25
+ import os
26
+ import re
27
+ import time
28
+
29
+ import mdtex2html
30
+ from app_modules.presets import ALREADY_CONVERTED_MARK
31
+ from markdown import markdown
32
+ from pygments import highlight
33
+ from pygments.formatters import HtmlFormatter
34
+ from pygments.lexers import ClassNotFound, get_lexer_by_name, guess_lexer
35
+
36
+ logger = logging.getLogger("gradio_logger")
37
+
38
+
39
+ def configure_logger():
40
+ logger = logging.getLogger("gradio_logger")
41
+ logger.setLevel(logging.DEBUG)
42
+
43
+ timestr = time.strftime("%Y%m%d-%H%M%S")
44
+ os.makedirs("deepseek_vl/serve/logs", exist_ok=True)
45
+ file_handler = logging.FileHandler(
46
+ f"deepseek_vl/serve/logs/{timestr}_gradio_log.log"
47
+ )
48
+ console_handler = logging.StreamHandler()
49
+
50
+ formatter = logging.Formatter(
51
+ "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
52
+ )
53
+ console_handler.setFormatter(formatter)
54
+ file_handler.setFormatter(formatter)
55
+
56
+ console_handler.setLevel(logging.INFO)
57
+ file_handler.setLevel(logging.INFO)
58
+
59
+ logger.addHandler(console_handler)
60
+ logger.addHandler(file_handler)
61
+
62
+ return logger
63
+
64
+
65
+ def strip_stop_words(x, stop_words):
66
+ for w in stop_words:
67
+ if w in x:
68
+ return x[: x.index(w)].strip()
69
+ return x.strip()
70
+
71
+
72
+ def format_output(history, text, x):
73
+ updated_history = history + [[text, x]]
74
+ a = [[y[0], convert_to_markdown(y[1])] for y in updated_history]
75
+ return a, updated_history
76
+
77
+
78
+ def markdown_to_html_with_syntax_highlight(md_str): # deprecated
79
+ def replacer(match):
80
+ lang = match.group(1) or "text"
81
+ code = match.group(2)
82
+
83
+ try:
84
+ lexer = get_lexer_by_name(lang, stripall=True)
85
+ except ValueError:
86
+ lexer = get_lexer_by_name("text", stripall=True)
87
+
88
+ formatter = HtmlFormatter()
89
+ highlighted_code = highlight(code, lexer, formatter)
90
+
91
+ return f'<pre><code class="{lang}">{highlighted_code}</code></pre>'
92
+
93
+ code_block_pattern = r"```(\w+)?\n([\s\S]+?)\n```"
94
+ md_str = re.sub(code_block_pattern, replacer, md_str, flags=re.MULTILINE)
95
+
96
+ html_str = markdown(md_str)
97
+ return html_str
98
+
99
+
100
+ def normalize_markdown(md_text: str) -> str: # deprecated
101
+ lines = md_text.split("\n")
102
+ normalized_lines = []
103
+ inside_list = False
104
+
105
+ for i, line in enumerate(lines):
106
+ if re.match(r"^(\d+\.|-|\*|\+)\s", line.strip()):
107
+ if not inside_list and i > 0 and lines[i - 1].strip() != "":
108
+ normalized_lines.append("")
109
+ inside_list = True
110
+ normalized_lines.append(line)
111
+ elif inside_list and line.strip() == "":
112
+ if i < len(lines) - 1 and not re.match(
113
+ r"^(\d+\.|-|\*|\+)\s", lines[i + 1].strip()
114
+ ):
115
+ normalized_lines.append(line)
116
+ continue
117
+ else:
118
+ inside_list = False
119
+ normalized_lines.append(line)
120
+
121
+ return "\n".join(normalized_lines)
122
+
123
+
124
+ def convert_mdtext(md_text):
125
+ code_block_pattern = re.compile(r"```(.*?)(?:```|$)", re.DOTALL)
126
+ inline_code_pattern = re.compile(r"`(.*?)`", re.DOTALL)
127
+ code_blocks = code_block_pattern.findall(md_text)
128
+ non_code_parts = code_block_pattern.split(md_text)[::2]
129
+
130
+ result = []
131
+ for non_code, code in zip(non_code_parts, code_blocks + [""]):
132
+ if non_code.strip():
133
+ non_code = normalize_markdown(non_code)
134
+ if inline_code_pattern.search(non_code):
135
+ result.append(markdown(non_code, extensions=["tables"]))
136
+ else:
137
+ result.append(mdtex2html.convert(non_code, extensions=["tables"]))
138
+ if code.strip():
139
+ code = f"\n```{code}\n\n```"
140
+ code = markdown_to_html_with_syntax_highlight(code)
141
+ result.append(code)
142
+ result = "".join(result)
143
+ result += ALREADY_CONVERTED_MARK
144
+ return result
145
+
146
+
147
+ def convert_asis(userinput):
148
+ return f'<p style="white-space:pre-wrap;">{html.escape(userinput)}</p>{ALREADY_CONVERTED_MARK}'
149
+
150
+
151
+ def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
152
+ return any(s.endswith(stop_word) for stop_word in stop_words)
153
+
154
+
155
+ def detect_converted_mark(userinput):
156
+ return bool(userinput.endswith(ALREADY_CONVERTED_MARK))
157
+
158
+
159
+ def detect_language(code):
160
+ first_line = "" if code.startswith("\n") else code.strip().split("\n", 1)[0]
161
+ language = first_line.lower() if first_line else ""
162
+ code_without_language = code[len(first_line) :].lstrip() if first_line else code
163
+ return language, code_without_language
164
+
165
+
166
+ def convert_to_markdown(text):
167
+ text = text.replace("$", "&#36;")
168
+ text = text.replace("\r\n", "\n")
169
+
170
+ def replace_leading_tabs_and_spaces(line):
171
+ new_line = []
172
+
173
+ for char in line:
174
+ if char == "\t":
175
+ new_line.append("&#9;")
176
+ elif char == " ":
177
+ new_line.append("&nbsp;")
178
+ else:
179
+ break
180
+ return "".join(new_line) + line[len(new_line) :]
181
+
182
+ markdown_text = ""
183
+ lines = text.split("\n")
184
+ in_code_block = False
185
+
186
+ for line in lines:
187
+ if in_code_block is False and line.startswith("```"):
188
+ in_code_block = True
189
+ markdown_text += f"{line}\n"
190
+ elif in_code_block is True and line.startswith("```"):
191
+ in_code_block = False
192
+ markdown_text += f"{line}\n"
193
+ elif in_code_block:
194
+ markdown_text += f"{line}\n"
195
+ else:
196
+ line = replace_leading_tabs_and_spaces(line)
197
+ line = re.sub(r"^(#)", r"\\\1", line)
198
+ markdown_text += f"{line} \n"
199
+
200
+ return markdown_text
201
+
202
+
203
+ def add_language_tag(text):
204
+ def detect_language(code_block):
205
+ try:
206
+ lexer = guess_lexer(code_block)
207
+ return lexer.name.lower()
208
+ except ClassNotFound:
209
+ return ""
210
+
211
+ code_block_pattern = re.compile(r"(```)(\w*\n[^`]+```)", re.MULTILINE)
212
+
213
+ def replacement(match):
214
+ code_block = match.group(2)
215
+ if match.group(2).startswith("\n"):
216
+ language = detect_language(code_block)
217
+ return (
218
+ f"```{language}{code_block}```" if language else f"```\n{code_block}```"
219
+ )
220
+ else:
221
+ return match.group(1) + code_block + "```"
222
+
223
+ text2 = code_block_pattern.sub(replacement, text)
224
+ return text2
225
+
226
+
227
+ def is_variable_assigned(var_name: str) -> bool:
228
+ return var_name in locals()
deepseek_vl/serve/assets/Kelpy-Codos.js ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /**
2
+ * Copyright (c) 2023-2024 DeepSeek.
3
+ *
4
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
5
+ * this software and associated documentation files (the "Software"), to deal in
6
+ * the Software without restriction, including without limitation the rights to
7
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
8
+ * the Software, and to permit persons to whom the Software is furnished to do so,
9
+ * subject to the following conditions:
10
+ *
11
+ * The above copyright notice and this permission notice shall be included in all
12
+ * copies or substantial portions of the Software.
13
+ *
14
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
16
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
17
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
18
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
19
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
20
+ */
21
+
22
+ // ==UserScript==
23
+ // @name Kelpy Codos
24
+ // @namespace https://github.com/Keldos-Li/Kelpy-Codos
25
+ // @version 1.0.5
26
+ // @author Keldos; https://keldos.me/
27
+ // @description Add copy button to PRE tags before CODE tag, for Chuanhu ChatGPT especially.
28
+ // Based on Chuanhu ChatGPT version: ac04408 (2023-3-22)
29
+ // @license GPL-3.0
30
+ // @grant none
31
+ // ==/UserScript==
32
+
33
+ (function () {
34
+ "use strict";
35
+
36
+ function addCopyButton(pre) {
37
+ var code = pre.querySelector("code");
38
+ if (!code) {
39
+ return; // 如果没有找到 <code> 元素,则不添加按钮
40
+ }
41
+ var firstChild = code.firstChild;
42
+ if (!firstChild) {
43
+ return; // 如果 <code> 元素没有子节点,则不添加按钮
44
+ }
45
+ var button = document.createElement("button");
46
+ button.textContent = "\uD83D\uDCCE"; // 使用 📎 符号作为“复制”按钮的文本
47
+ button.style.position = "relative";
48
+ button.style.float = "right";
49
+ button.style.fontSize = "1em"; // 可选:调整按钮大小
50
+ button.style.background = "none"; // 可选:去掉背景颜色
51
+ button.style.border = "none"; // 可选:去掉边框
52
+ button.style.cursor = "pointer"; // 可选:显示指针样式
53
+ button.addEventListener("click", function () {
54
+ var range = document.createRange();
55
+ range.selectNodeContents(code);
56
+ range.setStartBefore(firstChild); // 将范围设置为第一个子节点之前
57
+ var selection = window.getSelection();
58
+ selection.removeAllRanges();
59
+ selection.addRange(range);
60
+
61
+ try {
62
+ var success = document.execCommand("copy");
63
+ if (success) {
64
+ button.textContent = "\u2714";
65
+ setTimeout(function () {
66
+ button.textContent = "\uD83D\uDCCE"; // 恢复按钮为“复制”
67
+ }, 2000);
68
+ } else {
69
+ button.textContent = "\u2716";
70
+ }
71
+ } catch (e) {
72
+ console.error(e);
73
+ button.textContent = "\u2716";
74
+ }
75
+
76
+ selection.removeAllRanges();
77
+ });
78
+ code.insertBefore(button, firstChild); // 将按钮插入到第一个子元素之前
79
+ }
80
+
81
+ function handleNewElements(mutationsList, observer) {
82
+ for (var mutation of mutationsList) {
83
+ if (mutation.type === "childList") {
84
+ for (var node of mutation.addedNodes) {
85
+ if (node.nodeName === "PRE") {
86
+ addCopyButton(node);
87
+ }
88
+ }
89
+ }
90
+ }
91
+ }
92
+
93
+ var observer = new MutationObserver(handleNewElements);
94
+ observer.observe(document.documentElement, {
95
+ childList: true,
96
+ subtree: true,
97
+ });
98
+
99
+ document.querySelectorAll("pre").forEach(addCopyButton);
100
+ })();
deepseek_vl/serve/assets/avatar.png ADDED
deepseek_vl/serve/assets/custom.css ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /**
2
+ * Copyright (c) 2023-2024 DeepSeek.
3
+ *
4
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
5
+ * this software and associated documentation files (the "Software"), to deal in
6
+ * the Software without restriction, including without limitation the rights to
7
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
8
+ * the Software, and to permit persons to whom the Software is furnished to do so,
9
+ * subject to the following conditions:
10
+ *
11
+ * The above copyright notice and this permission notice shall be included in all
12
+ * copies or substantial portions of the Software.
13
+ *
14
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
16
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
17
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
18
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
19
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
20
+ */
21
+
22
+ :root {
23
+ --chatbot-color-light: #f3f3f3;
24
+ --chatbot-color-dark: #121111;
25
+ }
26
+
27
+ /* status_display */
28
+ #status_display {
29
+ display: flex;
30
+ min-height: 2.5em;
31
+ align-items: flex-end;
32
+ justify-content: flex-end;
33
+ }
34
+ #status_display p {
35
+ font-size: 0.85em;
36
+ font-family: monospace;
37
+ color: var(--body-text-color-subdued);
38
+ }
39
+
40
+ /* usage_display */
41
+ #usage_display {
42
+ height: 1em;
43
+ }
44
+ #usage_display p {
45
+ padding: 0 1em;
46
+ font-size: 0.85em;
47
+ font-family: monospace;
48
+ color: var(--body-text-color-subdued);
49
+ }
50
+ /* list */
51
+ ol:not(.options),
52
+ ul:not(.options) {
53
+ padding-inline-start: 2em !important;
54
+ }
55
+
56
+ /* Thank @Keldos-Li for fixing it */
57
+ /* Light mode (default) */
58
+ #deepseek_chatbot {
59
+ background-color: var(--chatbot-color-light) !important;
60
+ color: #000000 !important;
61
+ }
62
+ [data-testid="bot"] {
63
+ background-color: #ffffff !important;
64
+ }
65
+ [data-testid="user"] {
66
+ background-color: #95ec69 !important;
67
+ }
68
+
69
+ /* Dark mode */
70
+ .dark #deepseek_chatbot {
71
+ background-color: var(--chatbot-color-dark) !important;
72
+ color: #ffffff !important;
73
+ }
74
+ .dark [data-testid="bot"] {
75
+ background-color: #2c2c2c !important;
76
+ }
77
+ .dark [data-testid="user"] {
78
+ background-color: #26b561 !important;
79
+ }
80
+
81
+ #deepseek_chatbot {
82
+ height: 100%;
83
+ min-height: 800px;
84
+ flex-grow: 1;
85
+ overflow: auto;
86
+ }
87
+
88
+ [class*="message"] {
89
+ border-radius: var(--radius-xl) !important;
90
+ border: none;
91
+ padding: var(--spacing-xl) !important;
92
+ font-size: var(--text-md) !important;
93
+ line-height: var(--line-md) !important;
94
+ min-height: calc(var(--text-md) * var(--line-md) + 2 * var(--spacing-xl));
95
+ min-width: calc(var(--text-md) * var(--line-md) + 2 * var(--spacing-xl));
96
+ }
97
+ [data-testid="bot"] {
98
+ max-width: 85%;
99
+ border-bottom-left-radius: 0 !important;
100
+ }
101
+ [data-testid="user"] {
102
+ max-width: 85%;
103
+ width: auto !important;
104
+ border-bottom-right-radius: 0 !important;
105
+ }
106
+ /* Table */
107
+ table {
108
+ margin: 1em 0;
109
+ border-collapse: collapse;
110
+ empty-cells: show;
111
+ }
112
+ td,
113
+ th {
114
+ border: 1.2px solid var(--border-color-primary) !important;
115
+ padding: 0.2em;
116
+ }
117
+ thead {
118
+ background-color: rgba(175, 184, 193, 0.2);
119
+ }
120
+ thead th {
121
+ padding: 0.5em 0.2em;
122
+ }
123
+ /* Inline code */
124
+ #deepseek_chatbot code {
125
+ display: inline;
126
+ white-space: break-spaces;
127
+ border-radius: 6px;
128
+ margin: 0 2px 0 2px;
129
+ padding: 0.2em 0.4em 0.1em 0.4em;
130
+ background-color: rgba(175, 184, 193, 0.2);
131
+ }
132
+ /* Code block */
133
+ #deepseek_chatbot pre code {
134
+ display: block;
135
+ overflow: auto;
136
+ white-space: pre;
137
+ background-color: #1c1d1e !important;
138
+ border-radius: 10px;
139
+ padding: 1.4em 1.2em 0em 1.4em;
140
+ margin: 1.2em 2em 1.2em 0.5em;
141
+ color: #fdf8f8;
142
+ box-shadow: 6px 6px 16px hsla(0, 0%, 0%, 0.2);
143
+ }
144
+ /* Hightlight */
145
+ #deepseek_chatbot .highlight {
146
+ background-color: transparent;
147
+ }
148
+ #deepseek_chatbot .highlight .hll {
149
+ background-color: #49483e;
150
+ }
151
+ #deepseek_chatbot .highlight .c {
152
+ color: #75715e;
153
+ } /* Comment */
154
+ #deepseek_chatbot .highlight .err {
155
+ color: #960050;
156
+ background-color: #1e0010;
157
+ } /* Error */
158
+ #deepseek_chatbot .highlight .k {
159
+ color: #66d9ef;
160
+ } /* Keyword */
161
+ #deepseek_chatbot .highlight .l {
162
+ color: #ae81ff;
163
+ } /* Literal */
164
+ #deepseek_chatbot .highlight .n {
165
+ color: #f8f8f2;
166
+ } /* Name */
167
+ #deepseek_chatbot .highlight .o {
168
+ color: #f92672;
169
+ } /* Operator */
170
+ #deepseek_chatbot .highlight .p {
171
+ color: #f8f8f2;
172
+ } /* Punctuation */
173
+ #deepseek_chatbot .highlight .ch {
174
+ color: #75715e;
175
+ } /* Comment.Hashbang */
176
+ #deepseek_chatbot .highlight .cm {
177
+ color: #75715e;
178
+ } /* Comment.Multiline */
179
+ #deepseek_chatbot .highlight .cp {
180
+ color: #75715e;
181
+ } /* Comment.Preproc */
182
+ #deepseek_chatbot .highlight .cpf {
183
+ color: #75715e;
184
+ } /* Comment.PreprocFile */
185
+ #deepseek_chatbot .highlight .c1 {
186
+ color: #75715e;
187
+ } /* Comment.Single */
188
+ #deepseek_chatbot .highlight .cs {
189
+ color: #75715e;
190
+ } /* Comment.Special */
191
+ #deepseek_chatbot .highlight .gd {
192
+ color: #f92672;
193
+ } /* Generic.Deleted */
194
+ #deepseek_chatbot .highlight .ge {
195
+ font-style: italic;
196
+ } /* Generic.Emph */
197
+ #deepseek_chatbot .highlight .gi {
198
+ color: #a6e22e;
199
+ } /* Generic.Inserted */
200
+ #deepseek_chatbot .highlight .gs {
201
+ font-weight: bold;
202
+ } /* Generic.Strong */
203
+ #deepseek_chatbot .highlight .gu {
204
+ color: #75715e;
205
+ } /* Generic.Subheading */
206
+ #deepseek_chatbot .highlight .kc {
207
+ color: #66d9ef;
208
+ } /* Keyword.Constant */
209
+ #deepseek_chatbot .highlight .kd {
210
+ color: #66d9ef;
211
+ } /* Keyword.Declaration */
212
+ #deepseek_chatbot .highlight .kn {
213
+ color: #f92672;
214
+ } /* Keyword.Namespace */
215
+ #deepseek_chatbot .highlight .kp {
216
+ color: #66d9ef;
217
+ } /* Keyword.Pseudo */
218
+ #deepseek_chatbot .highlight .kr {
219
+ color: #66d9ef;
220
+ } /* Keyword.Reserved */
221
+ #deepseek_chatbot .highlight .kt {
222
+ color: #66d9ef;
223
+ } /* Keyword.Type */
224
+ #deepseek_chatbot .highlight .ld {
225
+ color: #e6db74;
226
+ } /* Literal.Date */
227
+ #deepseek_chatbot .highlight .m {
228
+ color: #ae81ff;
229
+ } /* Literal.Number */
230
+ #deepseek_chatbot .highlight .s {
231
+ color: #e6db74;
232
+ } /* Literal.String */
233
+ #deepseek_chatbot .highlight .na {
234
+ color: #a6e22e;
235
+ } /* Name.Attribute */
236
+ #deepseek_chatbot .highlight .nb {
237
+ color: #f8f8f2;
238
+ } /* Name.Builtin */
239
+ #deepseek_chatbot .highlight .nc {
240
+ color: #a6e22e;
241
+ } /* Name.Class */
242
+ #deepseek_chatbot .highlight .no {
243
+ color: #66d9ef;
244
+ } /* Name.Constant */
245
+ #deepseek_chatbot .highlight .nd {
246
+ color: #a6e22e;
247
+ } /* Name.Decorator */
248
+ #deepseek_chatbot .highlight .ni {
249
+ color: #f8f8f2;
250
+ } /* Name.Entity */
251
+ #deepseek_chatbot .highlight .ne {
252
+ color: #a6e22e;
253
+ } /* Name.Exception */
254
+ #deepseek_chatbot .highlight .nf {
255
+ color: #a6e22e;
256
+ } /* Name.Function */
257
+ #deepseek_chatbot .highlight .nl {
258
+ color: #f8f8f2;
259
+ } /* Name.Label */
260
+ #deepseek_chatbot .highlight .nn {
261
+ color: #f8f8f2;
262
+ } /* Name.Namespace */
263
+ #deepseek_chatbot .highlight .nx {
264
+ color: #a6e22e;
265
+ } /* Name.Other */
266
+ #deepseek_chatbot .highlight .py {
267
+ color: #f8f8f2;
268
+ } /* Name.Property */
269
+ #deepseek_chatbot .highlight .nt {
270
+ color: #f92672;
271
+ } /* Name.Tag */
272
+ #deepseek_chatbot .highlight .nv {
273
+ color: #f8f8f2;
274
+ } /* Name.Variable */
275
+ #deepseek_chatbot .highlight .ow {
276
+ color: #f92672;
277
+ } /* Operator.Word */
278
+ #deepseek_chatbot .highlight .w {
279
+ color: #f8f8f2;
280
+ } /* Text.Whitespace */
281
+ #deepseek_chatbot .highlight .mb {
282
+ color: #ae81ff;
283
+ } /* Literal.Number.Bin */
284
+ #deepseek_chatbot .highlight .mf {
285
+ color: #ae81ff;
286
+ } /* Literal.Number.Float */
287
+ #deepseek_chatbot .highlight .mh {
288
+ color: #ae81ff;
289
+ } /* Literal.Number.Hex */
290
+ #deepseek_chatbot .highlight .mi {
291
+ color: #ae81ff;
292
+ } /* Literal.Number.Integer */
293
+ #deepseek_chatbot .highlight .mo {
294
+ color: #ae81ff;
295
+ } /* Literal.Number.Oct */
296
+ #deepseek_chatbot .highlight .sa {
297
+ color: #e6db74;
298
+ } /* Literal.String.Affix */
299
+ #deepseek_chatbot .highlight .sb {
300
+ color: #e6db74;
301
+ } /* Literal.String.Backtick */
302
+ #deepseek_chatbot .highlight .sc {
303
+ color: #e6db74;
304
+ } /* Literal.String.Char */
305
+ #deepseek_chatbot .highlight .dl {
306
+ color: #e6db74;
307
+ } /* Literal.String.Delimiter */
308
+ #deepseek_chatbot .highlight .sd {
309
+ color: #e6db74;
310
+ } /* Literal.String.Doc */
311
+ #deepseek_chatbot .highlight .s2 {
312
+ color: #e6db74;
313
+ } /* Literal.String.Double */
314
+ #deepseek_chatbot .highlight .se {
315
+ color: #ae81ff;
316
+ } /* Literal.String.Escape */
317
+ #deepseek_chatbot .highlight .sh {
318
+ color: #e6db74;
319
+ } /* Literal.String.Heredoc */
320
+ #deepseek_chatbot .highlight .si {
321
+ color: #e6db74;
322
+ } /* Literal.String.Interpol */
323
+ #deepseek_chatbot .highlight .sx {
324
+ color: #e6db74;
325
+ } /* Literal.String.Other */
326
+ #deepseek_chatbot .highlight .sr {
327
+ color: #e6db74;
328
+ } /* Literal.String.Regex */
329
+ #deepseek_chatbot .highlight .s1 {
330
+ color: #e6db74;
331
+ } /* Literal.String.Single */
332
+ #deepseek_chatbot .highlight .ss {
333
+ color: #e6db74;
334
+ } /* Literal.String.Symbol */
335
+ #deepseek_chatbot .highlight .bp {
336
+ color: #f8f8f2;
337
+ } /* Name.Builtin.Pseudo */
338
+ #deepseek_chatbot .highlight .fm {
339
+ color: #a6e22e;
340
+ } /* Name.Function.Magic */
341
+ #deepseek_chatbot .highlight .vc {
342
+ color: #f8f8f2;
343
+ } /* Name.Variable.Class */
344
+ #deepseek_chatbot .highlight .vg {
345
+ color: #f8f8f2;
346
+ } /* Name.Variable.Global */
347
+ #deepseek_chatbot .highlight .vi {
348
+ color: #f8f8f2;
349
+ } /* Name.Variable.Instance */
350
+ #deepseek_chatbot .highlight .vm {
351
+ color: #f8f8f2;
352
+ } /* Name.Variable.Magic */
353
+ #deepseek_chatbot .highlight .il {
354
+ color: #ae81ff;
355
+ } /* Literal.Number.Integer.Long */
deepseek_vl/serve/assets/custom.js ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /**
2
+ * Copyright (c) 2023-2024 DeepSeek.
3
+ *
4
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
5
+ * this software and associated documentation files (the "Software"), to deal in
6
+ * the Software without restriction, including without limitation the rights to
7
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
8
+ * the Software, and to permit persons to whom the Software is furnished to do so,
9
+ * subject to the following conditions:
10
+ *
11
+ * The above copyright notice and this permission notice shall be included in all
12
+ * copies or substantial portions of the Software.
13
+ *
14
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
16
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
17
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
18
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
19
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
20
+ */
21
+
22
+ // custom javascript here
deepseek_vl/serve/assets/favicon.ico ADDED
deepseek_vl/serve/examples/app.png ADDED
deepseek_vl/serve/examples/chart.png ADDED
deepseek_vl/serve/examples/mirror.png ADDED
deepseek_vl/serve/examples/pipeline.png ADDED
deepseek_vl/serve/examples/puzzle.png ADDED
deepseek_vl/serve/examples/rap.jpeg ADDED
deepseek_vl/serve/inference.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from threading import Thread
21
+ from typing import List
22
+
23
+ import torch
24
+ import transformers
25
+ from transformers import (
26
+ AutoModelForCausalLM,
27
+ StoppingCriteria,
28
+ StoppingCriteriaList,
29
+ TextIteratorStreamer,
30
+ )
31
+
32
+ from deepseek_vl.models import MultiModalityCausalLM, VLChatProcessor
33
+ from deepseek_vl.utils.conversation import Conversation
34
+
35
+
36
+ def load_model(model_path):
37
+ vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
38
+ tokenizer = vl_chat_processor.tokenizer
39
+ vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
40
+ model_path, trust_remote_code=True
41
+ )
42
+ vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
43
+ return tokenizer, vl_gpt, vl_chat_processor
44
+
45
+
46
+ def convert_conversation_to_prompts(conversation: Conversation):
47
+ prompts = []
48
+ messages = conversation.messages
49
+
50
+ for i in range(0, len(messages), 2):
51
+ prompt = {
52
+ "role": messages[i][0],
53
+ "content": (
54
+ messages[i][1][0]
55
+ if isinstance(messages[i][1], tuple)
56
+ else messages[i][1]
57
+ ),
58
+ "images": [messages[i][1][1]] if isinstance(messages[i][1], tuple) else [],
59
+ }
60
+ response = {"role": messages[i + 1][0], "content": messages[i + 1][1]}
61
+ prompts.extend([prompt, response])
62
+
63
+ return prompts
64
+
65
+
66
+ class StoppingCriteriaSub(StoppingCriteria):
67
+ def __init__(self, stops=[], encounters=1):
68
+ super().__init__()
69
+ self.stops = [stop.to("cuda") for stop in stops]
70
+
71
+ def __call__(
72
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
73
+ ):
74
+ for stop in self.stops:
75
+ if input_ids.shape[-1] < len(stop):
76
+ continue
77
+ if torch.all((stop == input_ids[0][-len(stop) :])).item():
78
+ return True
79
+
80
+ return False
81
+
82
+
83
+ @torch.inference_mode()
84
+ def deepseek_generate(
85
+ prompts: list,
86
+ vl_gpt: torch.nn.Module,
87
+ vl_chat_processor,
88
+ tokenizer: transformers.PreTrainedTokenizer,
89
+ stop_words: list,
90
+ max_length: int = 256,
91
+ temperature: float = 1.0,
92
+ top_p: float = 1.0,
93
+ repetition_penalty=1.1,
94
+ ):
95
+ prompts = prompts
96
+ pil_images = list()
97
+ for message in prompts:
98
+ if "images" not in message:
99
+ continue
100
+ for pil_img in message["images"]:
101
+ pil_images.append(pil_img)
102
+
103
+ prepare_inputs = vl_chat_processor(
104
+ conversations=prompts, images=pil_images, force_batchify=True
105
+ ).to(vl_gpt.device)
106
+
107
+ return generate(
108
+ vl_gpt,
109
+ tokenizer,
110
+ prepare_inputs,
111
+ max_length,
112
+ temperature,
113
+ repetition_penalty,
114
+ top_p,
115
+ stop_words,
116
+ )
117
+
118
+
119
+ @torch.inference_mode()
120
+ def generate(
121
+ vl_gpt,
122
+ tokenizer,
123
+ prepare_inputs,
124
+ max_gen_len: int = 256,
125
+ temperature: float = 0,
126
+ repetition_penalty=1.1,
127
+ top_p: float = 0.95,
128
+ stop_words: List[str] = [],
129
+ ):
130
+ """Stream the text output from the multimodality model with prompt and image inputs."""
131
+ inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
132
+
133
+ streamer = TextIteratorStreamer(tokenizer)
134
+
135
+ stop_words_ids = [
136
+ torch.tensor(tokenizer.encode(stop_word)) for stop_word in stop_words
137
+ ]
138
+ stopping_criteria = StoppingCriteriaList(
139
+ [StoppingCriteriaSub(stops=stop_words_ids)]
140
+ )
141
+
142
+ generation_config = dict(
143
+ inputs_embeds=inputs_embeds,
144
+ attention_mask=prepare_inputs.attention_mask,
145
+ pad_token_id=tokenizer.eos_token_id,
146
+ bos_token_id=tokenizer.bos_token_id,
147
+ eos_token_id=tokenizer.eos_token_id,
148
+ max_new_tokens=max_gen_len,
149
+ do_sample=True,
150
+ use_cache=True,
151
+ streamer=streamer,
152
+ stopping_criteria=stopping_criteria,
153
+ )
154
+
155
+ if temperature > 0:
156
+ generation_config.update(
157
+ {
158
+ "do_sample": True,
159
+ "top_p": top_p,
160
+ "temperature": temperature,
161
+ "repetition_penalty": repetition_penalty,
162
+ }
163
+ )
164
+ else:
165
+ generation_config["do_sample"] = False
166
+
167
+ thread = Thread(target=vl_gpt.language_model.generate, kwargs=generation_config)
168
+ thread.start()
169
+
170
+ yield from streamer
deepseek_vl/utils/__init__.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
deepseek_vl/utils/conversation.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ """
21
+ From https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
22
+ """
23
+
24
+ import dataclasses
25
+ from enum import IntEnum, auto
26
+ from typing import Dict, List
27
+
28
+
29
+ class SeparatorStyle(IntEnum):
30
+ """Separator styles."""
31
+
32
+ ADD_COLON_SINGLE = auto()
33
+ ADD_COLON_TWO = auto()
34
+ ADD_COLON_SPACE_SINGLE = auto()
35
+ NO_COLON_SINGLE = auto()
36
+ NO_COLON_TWO = auto()
37
+ ADD_NEW_LINE_SINGLE = auto()
38
+ LLAMA2 = auto()
39
+ CHATGLM = auto()
40
+ CHATML = auto()
41
+ CHATINTERN = auto()
42
+ DOLLY = auto()
43
+ RWKV = auto()
44
+ PHOENIX = auto()
45
+ ROBIN = auto()
46
+ DeepSeek = auto()
47
+ PLAIN = auto()
48
+ ALIGNMENT = auto()
49
+
50
+
51
+ @dataclasses.dataclass
52
+ class Conversation:
53
+ """A class that manages prompt templates and keeps all conversation history."""
54
+
55
+ # The name of this template
56
+ name: str
57
+ # The template of the system prompt
58
+ system_template: str = "{system_message}"
59
+ # The system message
60
+ system_message: str = ""
61
+ # The names of two roles
62
+ roles: List[str] = (("USER", "ASSISTANT"),)
63
+ # All messages. Each item is (role, message).
64
+ messages: List[List[str]] = ()
65
+ # The number of few shot examples
66
+ offset: int = 0
67
+ # The separator style and configurations
68
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
69
+ sep: str = "\n"
70
+ sep2: str = None
71
+ # Stop criteria (the default one is EOS token)
72
+ stop_str: str = None
73
+ # Stops generation if meeting any token in this list
74
+ stop_token_ids: List[int] = None
75
+
76
+ def get_prompt(self) -> str:
77
+ """Get the prompt for generation."""
78
+ system_prompt = self.system_template.format(system_message=self.system_message)
79
+
80
+ if self.sep_style == SeparatorStyle.DeepSeek:
81
+ seps = [self.sep, self.sep2]
82
+ if system_prompt == "" or system_prompt is None:
83
+ ret = ""
84
+ else:
85
+ ret = system_prompt + seps[0]
86
+ for i, (role, message) in enumerate(self.messages):
87
+ if message:
88
+ ret += role + ": " + message + seps[i % 2]
89
+ else:
90
+ ret += role + ":"
91
+ return ret
92
+ elif self.sep_style == SeparatorStyle.LLAMA2:
93
+ seps = [self.sep, self.sep2]
94
+ if self.system_message:
95
+ ret = system_prompt
96
+ else:
97
+ ret = "[INST] "
98
+ for i, (role, message) in enumerate(self.messages):
99
+ tag = self.roles[i % 2]
100
+ if message:
101
+ if type(message) is tuple: # multimodal message
102
+ message, _ = message
103
+ if i == 0:
104
+ ret += message + " "
105
+ else:
106
+ ret += tag + " " + message + seps[i % 2]
107
+ else:
108
+ ret += tag
109
+ return ret
110
+ elif self.sep_style == SeparatorStyle.PLAIN:
111
+ seps = [self.sep, self.sep2]
112
+ ret = ""
113
+ for i, (role, message) in enumerate(self.messages):
114
+ if message:
115
+ if type(message) is tuple:
116
+ message, _, _ = message
117
+ if i % 2 == 0:
118
+ ret += message + seps[i % 2]
119
+ else:
120
+ ret += message + seps[i % 2]
121
+ else:
122
+ ret += ""
123
+ return ret
124
+ elif self.sep_style == SeparatorStyle.ALIGNMENT:
125
+ seps = [self.sep, self.sep2]
126
+ ret = ""
127
+ for i, (role, message) in enumerate(self.messages):
128
+ if message:
129
+ if type(message) is tuple:
130
+ message, _, _ = message
131
+ if i % 2 == 0:
132
+ ret += "<image>\n" + seps[i % 2]
133
+ else:
134
+ ret += message + seps[i % 2]
135
+ else:
136
+ ret += ""
137
+ return ret
138
+ else:
139
+ raise ValueError(f"Invalid style: {self.sep_style}")
140
+
141
+ def get_prompt_for_current_round(self, content=None):
142
+ """Get current round formatted question prompt during sft training"""
143
+ if self.sep_style == SeparatorStyle.PLAIN:
144
+ formatted_question = "<image>\n"
145
+ elif self.sep_style == SeparatorStyle.DeepSeek:
146
+ formatted_question = (
147
+ f"{self.roles[0]}: " + content.strip() + self.sep + f"{self.roles[1]}:"
148
+ )
149
+ else:
150
+ raise ValueError(f"Unsupported sep_style: {self.sep_style}")
151
+ return formatted_question
152
+
153
+ def set_system_message(self, system_message: str):
154
+ """Set the system message."""
155
+ self.system_message = system_message
156
+
157
+ def append_message(self, role: str, message: str):
158
+ """Append a new message."""
159
+ self.messages.append([role, message])
160
+
161
+ def reset_message(self):
162
+ """Reset a new message."""
163
+ self.messages = []
164
+
165
+ def update_last_message(self, message: str):
166
+ """Update the last output.
167
+
168
+ The last message is typically set to be None when constructing the prompt,
169
+ so we need to update it in-place after getting the response from a model.
170
+ """
171
+ self.messages[-1][1] = message
172
+
173
+ def to_gradio_chatbot(self):
174
+ """Convert the conversation to gradio chatbot format."""
175
+ ret = []
176
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
177
+ if i % 2 == 0:
178
+ ret.append([msg, None])
179
+ else:
180
+ ret[-1][-1] = msg
181
+ return ret
182
+
183
+ def to_openai_api_messages(self):
184
+ """Convert the conversation to OpenAI chat completion format."""
185
+ system_prompt = self.system_template.format(system_message=self.system_message)
186
+ ret = [{"role": "system", "content": system_prompt}]
187
+
188
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
189
+ if i % 2 == 0:
190
+ ret.append({"role": "user", "content": msg})
191
+ else:
192
+ if msg is not None:
193
+ ret.append({"role": "assistant", "content": msg})
194
+ return ret
195
+
196
+ def copy(self):
197
+ return Conversation(
198
+ name=self.name,
199
+ system_template=self.system_template,
200
+ system_message=self.system_message,
201
+ roles=self.roles,
202
+ messages=[[x, y] for x, y in self.messages],
203
+ offset=self.offset,
204
+ sep_style=self.sep_style,
205
+ sep=self.sep,
206
+ sep2=self.sep2,
207
+ stop_str=self.stop_str,
208
+ stop_token_ids=self.stop_token_ids,
209
+ )
210
+
211
+ def dict(self):
212
+ return {
213
+ "template_name": self.name,
214
+ "system_message": self.system_message,
215
+ "roles": self.roles,
216
+ "messages": self.messages,
217
+ "offset": self.offset,
218
+ }
219
+
220
+
221
+ # A global registry for all conversation templates
222
+ conv_templates: Dict[str, Conversation] = {}
223
+
224
+
225
+ def register_conv_template(template: Conversation, override: bool = False):
226
+ """Register a new conversation template."""
227
+ if not override:
228
+ assert (
229
+ template.name not in conv_templates
230
+ ), f"{template.name} has been registered."
231
+
232
+ conv_templates[template.name] = template
233
+
234
+
235
+ def get_conv_template(name: str) -> Conversation:
236
+ """Get a conversation template."""
237
+ return conv_templates[name].copy()
238
+
239
+
240
+ # llava_llama2 template
241
+ register_conv_template(
242
+ Conversation(
243
+ name="llava_llama2",
244
+ system_message="You are a helpful language and vision assistant. "
245
+ "You are able to understand the visual content that the user provides, "
246
+ "and assist the user with a variety of tasks using natural language.",
247
+ system_template="[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n",
248
+ roles=("[INST]", "[/INST]"),
249
+ messages=(),
250
+ offset=0,
251
+ sep_style=SeparatorStyle.LLAMA2,
252
+ sep=" ",
253
+ sep2=" </s><s>",
254
+ stop_token_ids=[2],
255
+ )
256
+ )
257
+
258
+ # llama2 template
259
+ # reference: https://github.com/facebookresearch/llama/blob/cfc3fc8c1968d390eb830e65c63865e980873a06/llama/generation.py#L212
260
+ register_conv_template(
261
+ Conversation(
262
+ name="llama-2",
263
+ system_template="[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n",
264
+ roles=("[INST]", "[/INST]"),
265
+ messages=(),
266
+ offset=0,
267
+ sep_style=SeparatorStyle.LLAMA2,
268
+ sep=" ",
269
+ sep2=" </s><s>",
270
+ stop_token_ids=[2],
271
+ )
272
+ )
273
+
274
+
275
+ # deepseek template
276
+ register_conv_template(
277
+ Conversation(
278
+ name="deepseek",
279
+ system_template="{system_message}",
280
+ # system_message="You are a helpful assistant. Please answer truthfully and write out your "
281
+ # "thinking step by step to be sure you get the right answer.",
282
+ system_message="",
283
+ roles=("User", "Assistant"),
284
+ messages=(),
285
+ offset=0,
286
+ sep_style=SeparatorStyle.DeepSeek,
287
+ sep="\n\n",
288
+ sep2="<|end▁of▁sentence|>",
289
+ stop_token_ids=[100001],
290
+ stop_str=["User:", "<|end▁of▁sentence|>"],
291
+ )
292
+ )
293
+
294
+ register_conv_template(
295
+ Conversation(
296
+ name="plain",
297
+ system_template="",
298
+ system_message="",
299
+ roles=("", ""),
300
+ messages=(),
301
+ offset=0,
302
+ sep_style=SeparatorStyle.PLAIN,
303
+ sep="",
304
+ sep2="",
305
+ stop_token_ids=[2],
306
+ stop_str=["</s>"],
307
+ )
308
+ )
309
+
310
+
311
+ register_conv_template(
312
+ Conversation(
313
+ name="alignment",
314
+ system_template="",
315
+ system_message="",
316
+ roles=("", ""),
317
+ messages=(),
318
+ offset=0,
319
+ sep_style=SeparatorStyle.ALIGNMENT,
320
+ sep="",
321
+ sep2="",
322
+ stop_token_ids=[2],
323
+ stop_str=["</s>"],
324
+ )
325
+ )
326
+
327
+
328
+ if __name__ == "__main__":
329
+ # print("Llama-2 template:")
330
+ # conv = get_conv_template("llama-2")
331
+ # conv.set_system_message("You are a helpful, respectful and honest assistant.")
332
+ # conv.append_message(conv.roles[0], "Hello!")
333
+ # conv.append_message(conv.roles[1], "Hi!")
334
+ # conv.append_message(conv.roles[0], "How are you?")
335
+ # conv.append_message(conv.roles[1], None)
336
+ # print(conv.get_prompt())
337
+
338
+ # print("\n")
339
+
340
+ print("deepseek template:")
341
+ conv = get_conv_template("deepseek")
342
+ conv.append_message(conv.roles[0], "Hello!")
343
+ conv.append_message(conv.roles[1], "Hi! This is Tony.")
344
+ conv.append_message(conv.roles[0], "Who are you?")
345
+ conv.append_message(conv.roles[1], "I am a helpful assistant.")
346
+ conv.append_message(conv.roles[0], "How are you?")
347
+ conv.append_message(conv.roles[1], None)
348
+ print(conv.get_prompt())
deepseek_vl/utils/io.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ import json
21
+ from typing import Dict, List
22
+
23
+ import PIL.Image
24
+ import torch
25
+ import base64
26
+ import io
27
+ from transformers import AutoModelForCausalLM
28
+
29
+ from deepseek_vl.models import MultiModalityCausalLM, VLChatProcessor
30
+
31
+
32
+ def load_pretrained_model(model_path: str):
33
+ vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
34
+ tokenizer = vl_chat_processor.tokenizer
35
+
36
+ vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
37
+ model_path, trust_remote_code=True
38
+ )
39
+ vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
40
+
41
+ return tokenizer, vl_chat_processor, vl_gpt
42
+
43
+
44
+ def load_pil_images(conversations: List[Dict[str, str]]) -> List[PIL.Image.Image]:
45
+ """
46
+
47
+ Support file path or base64 images.
48
+
49
+ Args:
50
+ conversations (List[Dict[str, str]]): the conversations with a list of messages. An example is :
51
+ [
52
+ {
53
+ "role": "User",
54
+ "content": "<image_placeholder>\nExtract all information from this image and convert them into markdown format.",
55
+ "images": ["./examples/table_datasets.png"]
56
+ },
57
+ {"role": "Assistant", "content": ""},
58
+ ]
59
+
60
+ Returns:
61
+ pil_images (List[PIL.Image.Image]): the list of PIL images.
62
+
63
+ """
64
+
65
+ pil_images = []
66
+
67
+ for message in conversations:
68
+ if "images" not in message:
69
+ continue
70
+
71
+ for image_data in message["images"]:
72
+ if image_data.startswith("data:image"):
73
+ # Image data is in base64 format
74
+ _, image_data = image_data.split(",", 1)
75
+ image_bytes = base64.b64decode(image_data)
76
+ pil_img = PIL.Image.open(io.BytesIO(image_bytes))
77
+ else:
78
+ # Image data is a file path
79
+ pil_img = PIL.Image.open(image_data)
80
+ pil_img = pil_img.convert("RGB")
81
+ pil_images.append(pil_img)
82
+
83
+ return pil_images
84
+
85
+
86
+ def load_json(filepath):
87
+ with open(filepath, "r") as f:
88
+ data = json.load(f)
89
+ return data
images/badge.svg ADDED
images/dog_a.png ADDED
images/dog_b.png ADDED
images/dog_c.png ADDED
images/dog_d.png ADDED
images/gradio_demo.png ADDED
images/logo.png ADDED
images/logo.svg ADDED
images/monday.jpg ADDED