Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.52 +/- 0.20
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80a69c7f5fece6c6e45c360f6b78fdcff278c6eb683eef1ca11063837956fbac
|
3 |
+
size 107791
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7bf5b18e50>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7bf5b24c40>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1681887789297969351,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVeHSPnSCHDx4pg4/VeHSPnSCHDx4pg4/VeHSPnSCHDx4pg4/VeHSPnSCHDx4pg4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGfbWvsu85L4eP3E/vmBlP4x9070Rbtu/SDphPjQ/jD8fwhw9wMO+vmV4oT9Kz0w/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABV4dI+dIIcPHimDj9/zAY7Ye1BuvBepjtV4dI+dIIcPHimDj9/zAY7Ye1BuvBepjtV4dI+dIIcPHimDj9/zAY7Ye1BuvBepjtV4dI+dIIcPHimDj9/zAY7Ye1BuvBepjuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.4118754 0.00955259 0.5572276 ]\n [0.4118754 0.00955259 0.5572276 ]\n [0.4118754 0.00955259 0.5572276 ]\n [0.4118754 0.00955259 0.5572276 ]]",
|
38 |
+
"desired_goal": "[[-0.41984633 -0.44675288 0.94236934]\n [ 0.8960074 -0.10326681 -1.7142965 ]\n [ 0.21994889 1.0956788 0.03827107]\n [-0.3725872 1.2614866 0.800038 ]]",
|
39 |
+
"observation": "[[ 0.4118754 0.00955259 0.5572276 0.00205687 -0.00073977 0.00507724]\n [ 0.4118754 0.00955259 0.5572276 0.00205687 -0.00073977 0.00507724]\n [ 0.4118754 0.00955259 0.5572276 0.00205687 -0.00073977 0.00507724]\n [ 0.4118754 0.00955259 0.5572276 0.00205687 -0.00073977 0.00507724]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbqL4PYSiET2acF8+GaQQvtQYjj0Tmq891+u/PbqhCr7iMDQ93tsVPmfQy72xFRo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.12140356 0.03555538 0.21820298]\n [-0.14125098 0.06938329 0.08574309]\n [ 0.09371155 -0.13538256 0.04399193]\n [ 0.14634654 -0.09951859 0.15047337]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoik7/aAu9L+UhpRSlIwBbJRLMowBdJRHQKj06XEZR9B1fZQoaAZoCWgPQwje6GM+IJD0v5SGlFKUaBVLMmgWR0Co9ITh5xBFdX2UKGgGaAloD0MIVBwHXi3397+UhpRSlGgVSzJoFkdAqPQk4o7V8XV9lChoBmgJaA9DCJon1xTIbPS/lIaUUpRoFUsyaBZHQKjzwyLyc1B1fZQoaAZoCWgPQwjcoWEx6tr3v5SGlFKUaBVLMmgWR0Co9fS7oStedX2UKGgGaAloD0MIsVJBRdUv7r+UhpRSlGgVSzJoFkdAqPWQJAt4A3V9lChoBmgJaA9DCLXf2omSUPS/lIaUUpRoFUsyaBZHQKj1MEIPbwl1fZQoaAZoCWgPQwjdlzPbFTr1v5SGlFKUaBVLMmgWR0Co9M4pUgjhdX2UKGgGaAloD0MII/jfSnZs8b+UhpRSlGgVSzJoFkdAqPbycNH6M3V9lChoBmgJaA9DCM6qz9VWrPC/lIaUUpRoFUsyaBZHQKj2jiVjZth1fZQoaAZoCWgPQwjfF5eqtMXsv5SGlFKUaBVLMmgWR0Co9i5Zr56/dX2UKGgGaAloD0MI0zHnGfuS6b+UhpRSlGgVSzJoFkdAqPXMXLvCuXV9lChoBmgJaA9DCH46HjNQ2fK/lIaUUpRoFUsyaBZHQKj3/WYnfEZ1fZQoaAZoCWgPQwjyIhPwa+Txv5SGlFKUaBVLMmgWR0Co95knTiKjdX2UKGgGaAloD0MIlQ9B1ehV8L+UhpRSlGgVSzJoFkdAqPc5Zha1TnV9lChoBmgJaA9DCCcxCKwcWve/lIaUUpRoFUsyaBZHQKj214oqkM11fZQoaAZoCWgPQwg334juWdfzv5SGlFKUaBVLMmgWR0Co+RBMrVe8dX2UKGgGaAloD0MIIEYIjzaO8b+UhpRSlGgVSzJoFkdAqPirn3cpLHV9lChoBmgJaA9DCLkWLUDbKvK/lIaUUpRoFUsyaBZHQKj4S+6Ae7t1fZQoaAZoCWgPQwiq0hbX+Ezzv5SGlFKUaBVLMmgWR0Co9+oyTINmdX2UKGgGaAloD0MI/fhLi/pk8r+UhpRSlGgVSzJoFkdAqPoyTKT0QXV9lChoBmgJaA9DCAvUYvAwrfi/lIaUUpRoFUsyaBZHQKj5zcrRSgp1fZQoaAZoCWgPQwj/0MyTa0oBwJSGlFKUaBVLMmgWR0Co+W4J3PiUdX2UKGgGaAloD0MIZK4Mqg3O7r+UhpRSlGgVSzJoFkdAqPkMG1QZXXV9lChoBmgJaA9DCHWr56T3zfy/lIaUUpRoFUsyaBZHQKj7V0gbIcR1fZQoaAZoCWgPQwg6Pe/GgkIAwJSGlFKUaBVLMmgWR0Co+vLtNSIhdX2UKGgGaAloD0MI6q7sgsH18b+UhpRSlGgVSzJoFkdAqPqTQVsUI3V9lChoBmgJaA9DCHKmCdtPBvS/lIaUUpRoFUsyaBZHQKj6MYUnG851fZQoaAZoCWgPQwiq9BPObi3+v5SGlFKUaBVLMmgWR0Co/GU6YE4edX2UKGgGaAloD0MIz6J3KuCe8r+UhpRSlGgVSzJoFkdAqPwAjfNzKnV9lChoBmgJaA9DCLB1qRH6Wfu/lIaUUpRoFUsyaBZHQKj7oOhkAgh1fZQoaAZoCWgPQwgO3IE65XEBwJSGlFKUaBVLMmgWR0Co+z8zyjHodX2UKGgGaAloD0MISIld29tt9r+UhpRSlGgVSzJoFkdAqP14IdELIHV9lChoBmgJaA9DCPFmDd5X5fG/lIaUUpRoFUsyaBZHQKj9E8QI2O11fZQoaAZoCWgPQwhWKNL9nEL+v5SGlFKUaBVLMmgWR0Co/LO/tY0VdX2UKGgGaAloD0MIfXcrS3TW/r+UhpRSlGgVSzJoFkdAqPxRrLyMDXV9lChoBmgJaA9DCNZ0PdF1If2/lIaUUpRoFUsyaBZHQKj+tBUrCnB1fZQoaAZoCWgPQwjsUE1J1iH4v5SGlFKUaBVLMmgWR0Co/k+wkgOjdX2UKGgGaAloD0MIe2ZJgJo6AcCUhpRSlGgVSzJoFkdAqP3wHE/B33V9lChoBmgJaA9DCFz/rs+cNf+/lIaUUpRoFUsyaBZHQKj9ji++M611fZQoaAZoCWgPQwghkbbxJ+ryv5SGlFKUaBVLMmgWR0Co/7sewLVndX2UKGgGaAloD0MIuY0G8BboAsCUhpRSlGgVSzJoFkdAqP9Wykbgj3V9lChoBmgJaA9DCEvpmV5i7Py/lIaUUpRoFUsyaBZHQKj+9sQd0aJ1fZQoaAZoCWgPQwjiAPp9/6b7v5SGlFKUaBVLMmgWR0Co/pS9ugpSdX2UKGgGaAloD0MIizIbZJJR+r+UhpRSlGgVSzJoFkdAqQDAzzmOl3V9lChoBmgJaA9DCHEC02ndxv2/lIaUUpRoFUsyaBZHQKkAXIoVmBh1fZQoaAZoCWgPQwhV3o5wWjAAwJSGlFKUaBVLMmgWR0Co//x6F/QTdX2UKGgGaAloD0MIey3ovTGkAcCUhpRSlGgVSzJoFkdAqP+akZaV2XV9lChoBmgJaA9DCJIHIos08fm/lIaUUpRoFUsyaBZHQKkB2bwz+FV1fZQoaAZoCWgPQwg7inPU0VEEwJSGlFKUaBVLMmgWR0CpAXUJOWSmdX2UKGgGaAloD0MIuJBHcCPl+7+UhpRSlGgVSzJoFkdAqQEVo+Ofd3V9lChoBmgJaA9DCNTWiGAcPAPAlIaUUpRoFUsyaBZHQKkAs7zTWoZ1fZQoaAZoCWgPQwi8WBgip6/8v5SGlFKUaBVLMmgWR0CpAuTnRsuWdX2UKGgGaAloD0MIAd9t3jjp/7+UhpRSlGgVSzJoFkdAqQKAVoHs1XV9lChoBmgJaA9DCJIjnYGRFwHAlIaUUpRoFUsyaBZHQKkCII1LrX11fZQoaAZoCWgPQwio5Qeu8sT7v5SGlFKUaBVLMmgWR0CpAb6shgVodX2UKGgGaAloD0MIjNzT1R2L/r+UhpRSlGgVSzJoFkdAqQPnTTfBN3V9lChoBmgJaA9DCJ91jZYDfQLAlIaUUpRoFUsyaBZHQKkDgp5NXYF1fZQoaAZoCWgPQwj6KCMuAE39v5SGlFKUaBVLMmgWR0CpAyLTYukDdX2UKGgGaAloD0MIL90kBoEV/7+UhpRSlGgVSzJoFkdAqQLA51eSjnV9lChoBmgJaA9DCFouG53z0wHAlIaUUpRoFUsyaBZHQKkE+yeqaPV1fZQoaAZoCWgPQwjRItv5fuoAwJSGlFKUaBVLMmgWR0CpBJZ/9YOldX2UKGgGaAloD0MI1PAtrBsPAMCUhpRSlGgVSzJoFkdAqQQ22oegc3V9lChoBmgJaA9DCEc4LXjRdwPAlIaUUpRoFUsyaBZHQKkD1U70Wdp1fZQoaAZoCWgPQwhLBRVVv3ICwJSGlFKUaBVLMmgWR0CpBgZJbt7bdX2UKGgGaAloD0MI4sluZvQjAMCUhpRSlGgVSzJoFkdAqQWhptaY/nV9lChoBmgJaA9DCFw9J71vnADAlIaUUpRoFUsyaBZHQKkFQdLg4wR1fZQoaAZoCWgPQwglz/V9OAj7v5SGlFKUaBVLMmgWR0CpBOAqEvkBdX2UKGgGaAloD0MInWNA9nq3+r+UhpRSlGgVSzJoFkdAqQcqGYa5w3V9lChoBmgJaA9DCFEtIorJ2/W/lIaUUpRoFUsyaBZHQKkGxsDW9UV1fZQoaAZoCWgPQwgGMGXggFb0v5SGlFKUaBVLMmgWR0CpBmeC04R3dX2UKGgGaAloD0MI0o4bfjdd/7+UhpRSlGgVSzJoFkdAqQYGPLgXM3V9lChoBmgJaA9DCEAUzJiCdfu/lIaUUpRoFUsyaBZHQKkI1iyY5T91fZQoaAZoCWgPQwgtswjFVhD9v5SGlFKUaBVLMmgWR0CpCHKkl/pddX2UKGgGaAloD0MIc7osJjY/AMCUhpRSlGgVSzJoFkdAqQgTTvy9VXV9lChoBmgJaA9DCNsV+mAZ2/6/lIaUUpRoFUsyaBZHQKkHsg9Net11fZQoaAZoCWgPQwg6zm3CvXIDwJSGlFKUaBVLMmgWR0CpCoQLNOdodX2UKGgGaAloD0MIveDTnLzI+7+UhpRSlGgVSzJoFkdAqQogGpuMuXV9lChoBmgJaA9DCFfp7job8vK/lIaUUpRoFUsyaBZHQKkJwNjLB9F1fZQoaAZoCWgPQwg7jh8qjVj+v5SGlFKUaBVLMmgWR0CpCV9tuUD/dX2UKGgGaAloD0MILZW3I5wWAMCUhpRSlGgVSzJoFkdAqQwtE5Qxe3V9lChoBmgJaA9DCOvHJvkRvwDAlIaUUpRoFUsyaBZHQKkLyR7JGON1fZQoaAZoCWgPQwivfQG9cOf6v5SGlFKUaBVLMmgWR0CpC2oK2KEWdX2UKGgGaAloD0MIvi8uVWmL/L+UhpRSlGgVSzJoFkdAqQsJgkTpPnV9lChoBmgJaA9DCFCqfToeM/u/lIaUUpRoFUsyaBZHQKkOBFjurp91fZQoaAZoCWgPQwgKSPsfYG3wv5SGlFKUaBVLMmgWR0CpDaC83++/dX2UKGgGaAloD0MI3lSkwtjC/7+UhpRSlGgVSzJoFkdAqQ1Bjtoi93V9lChoBmgJaA9DCChhpu1fmfu/lIaUUpRoFUsyaBZHQKkM4G0u14R1fZQoaAZoCWgPQwi0rWad8X3ov5SGlFKUaBVLMmgWR0CpEDJOWSlndX2UKGgGaAloD0MI8bxUbMyr+7+UhpRSlGgVSzJoFkdAqQ/OXokiU3V9lChoBmgJaA9DCN3qOel9I/q/lIaUUpRoFUsyaBZHQKkPb18stkF1fZQoaAZoCWgPQwhRn+QOm8jyv5SGlFKUaBVLMmgWR0CpDw+CCjDbdX2UKGgGaAloD0MI3gIJih+j87+UhpRSlGgVSzJoFkdAqRH2t2cJ+nV9lChoBmgJaA9DCL9jeOxnMf+/lIaUUpRoFUsyaBZHQKkRktW+49Z1fZQoaAZoCWgPQwgjoS3nUtz+v5SGlFKUaBVLMmgWR0CpETQnYxtYdX2UKGgGaAloD0MISnoYWp28AMCUhpRSlGgVSzJoFkdAqRDSzE74jHV9lChoBmgJaA9DCEQwDi4dM/2/lIaUUpRoFUsyaBZHQKkTMfg75mB1fZQoaAZoCWgPQwi+v0F79XH6v5SGlFKUaBVLMmgWR0CpEs5bY9PldX2UKGgGaAloD0MIfy+FB80u97+UhpRSlGgVSzJoFkdAqRJvYjB2wHV9lChoBmgJaA9DCAJlU67wjgLAlIaUUpRoFUsyaBZHQKkSDgTAWSF1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44606
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9136e92e66a807ffd9db291a2af78aef4a59c5701ac3803a19efcd226977d0c
|
3 |
size 44606
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 45886
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41b7de00a6a77cfdf111b3c56c1b369a0b51b0d94147004b4aee7996d2fb93a8
|
3 |
size 45886
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc6ab4a2040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc6ab4a0540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681861554438639173, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcVe7Pof4WLzwYBI/cVe7Pof4WLzwYBI/cVe7Pof4WLzwYBI/cVe7Pof4WLzwYBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJUICPg9gmr/nEpY/0V6XP4foz7+N9Lo+QZp5P83qn78Hf+w+nbqvPqQNxj1Jfss9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABxV7s+h/hYvPBgEj93CA68y+5NuzpKrLtxV7s+h/hYvPBgEj93CA68y+5NuzpKrLtxV7s+h/hYvPBgEj93CA68y+5NuzpKrLtxV7s+h/hYvPBgEj93CA68y+5NuzpKrLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3659015 -0.01324285 0.57179165]\n [ 0.3659015 -0.01324285 0.57179165]\n [ 0.3659015 -0.01324285 0.57179165]\n [ 0.3659015 -0.01324285 0.57179165]]", "desired_goal": "[[ 0.12720545 -1.2060565 1.1724519 ]\n [ 1.1825811 -1.6242837 0.36514702]\n [ 0.97501 -1.249353 0.46190664]\n [ 0.34322062 0.0967057 0.09936196]]", "observation": "[[ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]\n [ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]\n [ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]\n [ 0.3659015 -0.01324285 0.57179165 -0.00866901 -0.00314228 -0.00525787]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/U7XPRyoFD76PT4+gtENvuBESD1wVFE+myeNvQiBFjxtB+w8ubbXPYWeDr1EVV0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10513113 0.14517254 0.1857833 ]\n [-0.13849452 0.04889381 0.20442367]\n [-0.0689232 0.00918604 0.02881213]\n [ 0.10532898 -0.03481914 0.21614558]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7SjOUUfHAMCUhpRSlIwBbJRLMowBdJRHQKx8+lnAZbZ1fZQoaAZoCWgPQwjj4xOy83bzv5SGlFKUaBVLMmgWR0CsfH1QZXMhdX2UKGgGaAloD0MI/tKiPskd/b+UhpRSlGgVSzJoFkdArHvJvFWGRHV9lChoBmgJaA9DCISfOIB+nwrAlIaUUpRoFUsyaBZHQKx7H7mdRSB1fZQoaAZoCWgPQwj03a0s0Zn7v5SGlFKUaBVLMmgWR0CsfyZh8YygdX2UKGgGaAloD0MIJLVQMjnVAMCUhpRSlGgVSzJoFkdArH6pfKISDnV9lChoBmgJaA9DCODZHr3hfgrAlIaUUpRoFUsyaBZHQKx99bILgGd1fZQoaAZoCWgPQwgV4SajyrDyv5SGlFKUaBVLMmgWR0CsfUvyCnP3dX2UKGgGaAloD0MIIJvkR/wK67+UhpRSlGgVSzJoFkdArIFV+Vkc0nV9lChoBmgJaA9DCMOAJVex+Oq/lIaUUpRoFUsyaBZHQKyA2OFxn4B1fZQoaAZoCWgPQwgY0XZM3ZUFwJSGlFKUaBVLMmgWR0CsgCUhNdqtdX2UKGgGaAloD0MICYm0jT/REMCUhpRSlGgVSzJoFkdArH97FId2gXV9lChoBmgJaA9DCHvct1onLv6/lIaUUpRoFUsyaBZHQKyCqq/dqL11fZQoaAZoCWgPQwgjZ2FPO/wFwJSGlFKUaBVLMmgWR0Csgiy4vvjPdX2UKGgGaAloD0MIVn4ZjBEJ9b+UhpRSlGgVSzJoFkdArIF32EkB0nV9lChoBmgJaA9DCPlM9s/TAAzAlIaUUpRoFUsyaBZHQKyAzLDAJsx1fZQoaAZoCWgPQwg83uS36MQGwJSGlFKUaBVLMmgWR0Csg+25hBqsdX2UKGgGaAloD0MIUFCKVu4FCcCUhpRSlGgVSzJoFkdArINvsqril3V9lChoBmgJaA9DCM1c4PJYc/y/lIaUUpRoFUsyaBZHQKyCusOoYN11fZQoaAZoCWgPQwjsouiBjyEDwJSGlFKUaBVLMmgWR0Csgg+rMkhSdX2UKGgGaAloD0MI/u4dNSbkB8CUhpRSlGgVSzJoFkdArIU+JWNm2HV9lChoBmgJaA9DCEqX/iWpDBDAlIaUUpRoFUsyaBZHQKyEv/QSi/R1fZQoaAZoCWgPQwhl/tE3aVoGwJSGlFKUaBVLMmgWR0CshAry1/lRdX2UKGgGaAloD0MIVRaFXRS957+UhpRSlGgVSzJoFkdArINf9kz413V9lChoBmgJaA9DCPTeGAKAowLAlIaUUpRoFUsyaBZHQKyGhczqKP51fZQoaAZoCWgPQwieXinLEEfkv5SGlFKUaBVLMmgWR0CshgfNZ/0/dX2UKGgGaAloD0MI+1qXGqGfBsCUhpRSlGgVSzJoFkdArIVS5byH23V9lChoBmgJaA9DCAmNYOP61wzAlIaUUpRoFUsyaBZHQKyEp+KCQLh1fZQoaAZoCWgPQwhRpWYPtAL1v5SGlFKUaBVLMmgWR0Csh79l2/zrdX2UKGgGaAloD0MIMPZefNHeCcCUhpRSlGgVSzJoFkdArIdBWLgn+nV9lChoBmgJaA9DCOay0Tk/pQfAlIaUUpRoFUsyaBZHQKyGjFgDzRR1fZQoaAZoCWgPQwj8x0J0CFz8v5SGlFKUaBVLMmgWR0CsheFEiMYNdX2UKGgGaAloD0MIVwkWhzNfCsCUhpRSlGgVSzJoFkdArIj/q/ub7XV9lChoBmgJaA9DCOPg0jHn2fa/lIaUUpRoFUsyaBZHQKyIgX9BKL91fZQoaAZoCWgPQwg1lxsMdbgJwJSGlFKUaBVLMmgWR0Csh8yBClabdX2UKGgGaAloD0MIS+SCM/j78b+UhpRSlGgVSzJoFkdArIchUBGQS3V9lChoBmgJaA9DCJVkHY6u8g/AlIaUUpRoFUsyaBZHQKyKPEWqLjx1fZQoaAZoCWgPQwgtIR/0bFbwv5SGlFKUaBVLMmgWR0Csib4QBgeBdX2UKGgGaAloD0MIVW03wTdtB8CUhpRSlGgVSzJoFkdArIkI73fygHV9lChoBmgJaA9DCM8R+S6lLvm/lIaUUpRoFUsyaBZHQKyIXdY4hll1fZQoaAZoCWgPQwiJYYcx6W/wv5SGlFKUaBVLMmgWR0Csi3ZTIeYEdX2UKGgGaAloD0MIGf7TDRS48r+UhpRSlGgVSzJoFkdArIr4GfPHDXV9lChoBmgJaA9DCLjIPV3dkQjAlIaUUpRoFUsyaBZHQKyKQ2wV0tB1fZQoaAZoCWgPQwi9rIkFvqL3v5SGlFKUaBVLMmgWR0CsiZhsqJ/HdX2UKGgGaAloD0MI3XniOVsA/7+UhpRSlGgVSzJoFkdArIyz/GVAzHV9lChoBmgJaA9DCEMAcOzZ0w3AlIaUUpRoFUsyaBZHQKyMNe7cwg11fZQoaAZoCWgPQwjcniCx3b0AwJSGlFKUaBVLMmgWR0Csi4D4HoovdX2UKGgGaAloD0MIbeLkfofCCsCUhpRSlGgVSzJoFkdArIrV4Z/CqXV9lChoBmgJaA9DCFrwoq8gDQzAlIaUUpRoFUsyaBZHQKyN5RVp9JB1fZQoaAZoCWgPQwhBYyZRL7gMwJSGlFKUaBVLMmgWR0CsjWbjT8YRdX2UKGgGaAloD0MItTf4wmSq+L+UhpRSlGgVSzJoFkdArIyx+vyLAHV9lChoBmgJaA9DCFVP5h998wfAlIaUUpRoFUsyaBZHQKyMBthNM491fZQoaAZoCWgPQwgrvqHw2fr1v5SGlFKUaBVLMmgWR0CsjyYffXPJdX2UKGgGaAloD0MI91rQe2MI57+UhpRSlGgVSzJoFkdArI6n+wTufHV9lChoBmgJaA9DCCNKe4MvLAfAlIaUUpRoFUsyaBZHQKyN8zUI9kl1fZQoaAZoCWgPQwiaBdodUnwQwJSGlFKUaBVLMmgWR0CsjUf8uSOjdX2UKGgGaAloD0MI0uC2tvA85r+UhpRSlGgVSzJoFkdArJBjoIOYpnV9lChoBmgJaA9DCCIAOPbsufm/lIaUUpRoFUsyaBZHQKyP5WjGkvd1fZQoaAZoCWgPQwh0Ka4q+24CwJSGlFKUaBVLMmgWR0CsjzCsny/cdX2UKGgGaAloD0MIUoGTbeCO+7+UhpRSlGgVSzJoFkdArI6FpM6BAnV9lChoBmgJaA9DCCoCnN7FewLAlIaUUpRoFUsyaBZHQKyRnj2i+L51fZQoaAZoCWgPQwj7sUl+xC8CwJSGlFKUaBVLMmgWR0CskR/ixVyWdX2UKGgGaAloD0MICHb8FwgC+7+UhpRSlGgVSzJoFkdArJBrC79Q43V9lChoBmgJaA9DCMl3KXXJ+Pi/lIaUUpRoFUsyaBZHQKyPwAAAAAB1fZQoaAZoCWgPQwhHVRNE3cf/v5SGlFKUaBVLMmgWR0CsktiKJl8PdX2UKGgGaAloD0MIYFj+fFuAEcCUhpRSlGgVSzJoFkdArJJae05U+HV9lChoBmgJaA9DCPsHkQw59vK/lIaUUpRoFUsyaBZHQKyRpX+VC5V1fZQoaAZoCWgPQwhwzR39LxcNwJSGlFKUaBVLMmgWR0CskPpcHGCJdX2UKGgGaAloD0MIahMn9zs0AMCUhpRSlGgVSzJoFkdArJQLa/RE4XV9lChoBmgJaA9DCDxodt1bUfy/lIaUUpRoFUsyaBZHQKyTjW7voeR1fZQoaAZoCWgPQwjiI2JKJBEAwJSGlFKUaBVLMmgWR0CsktieNDMNdX2UKGgGaAloD0MIC+4HPDBAAcCUhpRSlGgVSzJoFkdArJIthb4agnV9lChoBmgJaA9DCAZM4Nbd/PC/lIaUUpRoFUsyaBZHQKyVRIiC8OF1fZQoaAZoCWgPQwgE54wo7U3yv5SGlFKUaBVLMmgWR0CslMZW7voedX2UKGgGaAloD0MI9S9JZYp5+r+UhpRSlGgVSzJoFkdArJQREUj9oHV9lChoBmgJaA9DCK3fTEwXIv2/lIaUUpRoFUsyaBZHQKyTZiCrcTJ1fZQoaAZoCWgPQwjLun8sRKcPwJSGlFKUaBVLMmgWR0CslyE6T4cndX2UKGgGaAloD0MIR+S7lLqEB8CUhpRSlGgVSzJoFkdArJaklHBk7XV9lChoBmgJaA9DCN1fPe5bbfu/lIaUUpRoFUsyaBZHQKyV8K2rn1Z1fZQoaAZoCWgPQwgUkszqHW7sv5SGlFKUaBVLMmgWR0CslUafapPzdX2UKGgGaAloD0MIv9NkxttKD8CUhpRSlGgVSzJoFkdArJkuaKDTSnV9lChoBmgJaA9DCCibcoV3WQHAlIaUUpRoFUsyaBZHQKyYsUSIxg11fZQoaAZoCWgPQwjeHoSAfPkTwJSGlFKUaBVLMmgWR0Csl/1ZLZi/dX2UKGgGaAloD0MImS1ZFeEGBMCUhpRSlGgVSzJoFkdArJdTHfdhzHV9lChoBmgJaA9DCI50BkZeNgvAlIaUUpRoFUsyaBZHQKybS5Yoy9F1fZQoaAZoCWgPQwh7aYoAp7cFwJSGlFKUaBVLMmgWR0Csms7rTpgUdX2UKGgGaAloD0MIsYnMXODyD8CUhpRSlGgVSzJoFkdArJobPjXFtXV9lChoBmgJaA9DCFwf1hu1QgDAlIaUUpRoFUsyaBZHQKyZcaPS2IB1fZQoaAZoCWgPQwjNeFvptbkCwJSGlFKUaBVLMmgWR0CsnYQhW5pbdX2UKGgGaAloD0MIJ9pVSPlpDcCUhpRSlGgVSzJoFkdArJ0HOryUcHV9lChoBmgJaA9DCCrkSj0L4gTAlIaUUpRoFUsyaBZHQKycUz2OAAh1fZQoaAZoCWgPQwiQ2y+frBgIwJSGlFKUaBVLMmgWR0Csm6k0SAYpdX2UKGgGaAloD0MIa4Ko+wAk/b+UhpRSlGgVSzJoFkdArJ/Tl90A93V9lChoBmgJaA9DCGe0VUlkfwDAlIaUUpRoFUsyaBZHQKyfVnyNGVl1fZQoaAZoCWgPQwhoIQGjy5v+v5SGlFKUaBVLMmgWR0CsnqKUeMhpdX2UKGgGaAloD0MIR+hn6nVLBcCUhpRSlGgVSzJoFkdArJ36vaDf33V9lChoBmgJaA9DCHCUvDrHwArAlIaUUpRoFUsyaBZHQKyh0u8K5TZ1fZQoaAZoCWgPQwhRoiWPpyUAwJSGlFKUaBVLMmgWR0CsoVUkWykcdX2UKGgGaAloD0MID+85sBwh/7+UhpRSlGgVSzJoFkdArKChQm/nGXV9lChoBmgJaA9DCIbLKmwG+PW/lIaUUpRoFUsyaBZHQKyf9nHvMKV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7bf5b18e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7bf5b24c40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681887789297969351, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVeHSPnSCHDx4pg4/VeHSPnSCHDx4pg4/VeHSPnSCHDx4pg4/VeHSPnSCHDx4pg4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGfbWvsu85L4eP3E/vmBlP4x9070Rbtu/SDphPjQ/jD8fwhw9wMO+vmV4oT9Kz0w/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABV4dI+dIIcPHimDj9/zAY7Ye1BuvBepjtV4dI+dIIcPHimDj9/zAY7Ye1BuvBepjtV4dI+dIIcPHimDj9/zAY7Ye1BuvBepjtV4dI+dIIcPHimDj9/zAY7Ye1BuvBepjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4118754 0.00955259 0.5572276 ]\n [0.4118754 0.00955259 0.5572276 ]\n [0.4118754 0.00955259 0.5572276 ]\n [0.4118754 0.00955259 0.5572276 ]]", "desired_goal": "[[-0.41984633 -0.44675288 0.94236934]\n [ 0.8960074 -0.10326681 -1.7142965 ]\n [ 0.21994889 1.0956788 0.03827107]\n [-0.3725872 1.2614866 0.800038 ]]", "observation": "[[ 0.4118754 0.00955259 0.5572276 0.00205687 -0.00073977 0.00507724]\n [ 0.4118754 0.00955259 0.5572276 0.00205687 -0.00073977 0.00507724]\n [ 0.4118754 0.00955259 0.5572276 0.00205687 -0.00073977 0.00507724]\n [ 0.4118754 0.00955259 0.5572276 0.00205687 -0.00073977 0.00507724]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbqL4PYSiET2acF8+GaQQvtQYjj0Tmq891+u/PbqhCr7iMDQ93tsVPmfQy72xFRo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12140356 0.03555538 0.21820298]\n [-0.14125098 0.06938329 0.08574309]\n [ 0.09371155 -0.13538256 0.04399193]\n [ 0.14634654 -0.09951859 0.15047337]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoik7/aAu9L+UhpRSlIwBbJRLMowBdJRHQKj06XEZR9B1fZQoaAZoCWgPQwje6GM+IJD0v5SGlFKUaBVLMmgWR0Co9ITh5xBFdX2UKGgGaAloD0MIVBwHXi3397+UhpRSlGgVSzJoFkdAqPQk4o7V8XV9lChoBmgJaA9DCJon1xTIbPS/lIaUUpRoFUsyaBZHQKjzwyLyc1B1fZQoaAZoCWgPQwjcoWEx6tr3v5SGlFKUaBVLMmgWR0Co9fS7oStedX2UKGgGaAloD0MIsVJBRdUv7r+UhpRSlGgVSzJoFkdAqPWQJAt4A3V9lChoBmgJaA9DCLXf2omSUPS/lIaUUpRoFUsyaBZHQKj1MEIPbwl1fZQoaAZoCWgPQwjdlzPbFTr1v5SGlFKUaBVLMmgWR0Co9M4pUgjhdX2UKGgGaAloD0MII/jfSnZs8b+UhpRSlGgVSzJoFkdAqPbycNH6M3V9lChoBmgJaA9DCM6qz9VWrPC/lIaUUpRoFUsyaBZHQKj2jiVjZth1fZQoaAZoCWgPQwjfF5eqtMXsv5SGlFKUaBVLMmgWR0Co9i5Zr56/dX2UKGgGaAloD0MI0zHnGfuS6b+UhpRSlGgVSzJoFkdAqPXMXLvCuXV9lChoBmgJaA9DCH46HjNQ2fK/lIaUUpRoFUsyaBZHQKj3/WYnfEZ1fZQoaAZoCWgPQwjyIhPwa+Txv5SGlFKUaBVLMmgWR0Co95knTiKjdX2UKGgGaAloD0MIlQ9B1ehV8L+UhpRSlGgVSzJoFkdAqPc5Zha1TnV9lChoBmgJaA9DCCcxCKwcWve/lIaUUpRoFUsyaBZHQKj214oqkM11fZQoaAZoCWgPQwg334juWdfzv5SGlFKUaBVLMmgWR0Co+RBMrVe8dX2UKGgGaAloD0MIIEYIjzaO8b+UhpRSlGgVSzJoFkdAqPirn3cpLHV9lChoBmgJaA9DCLkWLUDbKvK/lIaUUpRoFUsyaBZHQKj4S+6Ae7t1fZQoaAZoCWgPQwiq0hbX+Ezzv5SGlFKUaBVLMmgWR0Co9+oyTINmdX2UKGgGaAloD0MI/fhLi/pk8r+UhpRSlGgVSzJoFkdAqPoyTKT0QXV9lChoBmgJaA9DCAvUYvAwrfi/lIaUUpRoFUsyaBZHQKj5zcrRSgp1fZQoaAZoCWgPQwj/0MyTa0oBwJSGlFKUaBVLMmgWR0Co+W4J3PiUdX2UKGgGaAloD0MIZK4Mqg3O7r+UhpRSlGgVSzJoFkdAqPkMG1QZXXV9lChoBmgJaA9DCHWr56T3zfy/lIaUUpRoFUsyaBZHQKj7V0gbIcR1fZQoaAZoCWgPQwg6Pe/GgkIAwJSGlFKUaBVLMmgWR0Co+vLtNSIhdX2UKGgGaAloD0MI6q7sgsH18b+UhpRSlGgVSzJoFkdAqPqTQVsUI3V9lChoBmgJaA9DCHKmCdtPBvS/lIaUUpRoFUsyaBZHQKj6MYUnG851fZQoaAZoCWgPQwiq9BPObi3+v5SGlFKUaBVLMmgWR0Co/GU6YE4edX2UKGgGaAloD0MIz6J3KuCe8r+UhpRSlGgVSzJoFkdAqPwAjfNzKnV9lChoBmgJaA9DCLB1qRH6Wfu/lIaUUpRoFUsyaBZHQKj7oOhkAgh1fZQoaAZoCWgPQwgO3IE65XEBwJSGlFKUaBVLMmgWR0Co+z8zyjHodX2UKGgGaAloD0MISIld29tt9r+UhpRSlGgVSzJoFkdAqP14IdELIHV9lChoBmgJaA9DCPFmDd5X5fG/lIaUUpRoFUsyaBZHQKj9E8QI2O11fZQoaAZoCWgPQwhWKNL9nEL+v5SGlFKUaBVLMmgWR0Co/LO/tY0VdX2UKGgGaAloD0MIfXcrS3TW/r+UhpRSlGgVSzJoFkdAqPxRrLyMDXV9lChoBmgJaA9DCNZ0PdF1If2/lIaUUpRoFUsyaBZHQKj+tBUrCnB1fZQoaAZoCWgPQwjsUE1J1iH4v5SGlFKUaBVLMmgWR0Co/k+wkgOjdX2UKGgGaAloD0MIe2ZJgJo6AcCUhpRSlGgVSzJoFkdAqP3wHE/B33V9lChoBmgJaA9DCFz/rs+cNf+/lIaUUpRoFUsyaBZHQKj9ji++M611fZQoaAZoCWgPQwghkbbxJ+ryv5SGlFKUaBVLMmgWR0Co/7sewLVndX2UKGgGaAloD0MIuY0G8BboAsCUhpRSlGgVSzJoFkdAqP9Wykbgj3V9lChoBmgJaA9DCEvpmV5i7Py/lIaUUpRoFUsyaBZHQKj+9sQd0aJ1fZQoaAZoCWgPQwjiAPp9/6b7v5SGlFKUaBVLMmgWR0Co/pS9ugpSdX2UKGgGaAloD0MIizIbZJJR+r+UhpRSlGgVSzJoFkdAqQDAzzmOl3V9lChoBmgJaA9DCHEC02ndxv2/lIaUUpRoFUsyaBZHQKkAXIoVmBh1fZQoaAZoCWgPQwhV3o5wWjAAwJSGlFKUaBVLMmgWR0Co//x6F/QTdX2UKGgGaAloD0MIey3ovTGkAcCUhpRSlGgVSzJoFkdAqP+akZaV2XV9lChoBmgJaA9DCJIHIos08fm/lIaUUpRoFUsyaBZHQKkB2bwz+FV1fZQoaAZoCWgPQwg7inPU0VEEwJSGlFKUaBVLMmgWR0CpAXUJOWSmdX2UKGgGaAloD0MIuJBHcCPl+7+UhpRSlGgVSzJoFkdAqQEVo+Ofd3V9lChoBmgJaA9DCNTWiGAcPAPAlIaUUpRoFUsyaBZHQKkAs7zTWoZ1fZQoaAZoCWgPQwi8WBgip6/8v5SGlFKUaBVLMmgWR0CpAuTnRsuWdX2UKGgGaAloD0MIAd9t3jjp/7+UhpRSlGgVSzJoFkdAqQKAVoHs1XV9lChoBmgJaA9DCJIjnYGRFwHAlIaUUpRoFUsyaBZHQKkCII1LrX11fZQoaAZoCWgPQwio5Qeu8sT7v5SGlFKUaBVLMmgWR0CpAb6shgVodX2UKGgGaAloD0MIjNzT1R2L/r+UhpRSlGgVSzJoFkdAqQPnTTfBN3V9lChoBmgJaA9DCJ91jZYDfQLAlIaUUpRoFUsyaBZHQKkDgp5NXYF1fZQoaAZoCWgPQwj6KCMuAE39v5SGlFKUaBVLMmgWR0CpAyLTYukDdX2UKGgGaAloD0MIL90kBoEV/7+UhpRSlGgVSzJoFkdAqQLA51eSjnV9lChoBmgJaA9DCFouG53z0wHAlIaUUpRoFUsyaBZHQKkE+yeqaPV1fZQoaAZoCWgPQwjRItv5fuoAwJSGlFKUaBVLMmgWR0CpBJZ/9YOldX2UKGgGaAloD0MI1PAtrBsPAMCUhpRSlGgVSzJoFkdAqQQ22oegc3V9lChoBmgJaA9DCEc4LXjRdwPAlIaUUpRoFUsyaBZHQKkD1U70Wdp1fZQoaAZoCWgPQwhLBRVVv3ICwJSGlFKUaBVLMmgWR0CpBgZJbt7bdX2UKGgGaAloD0MI4sluZvQjAMCUhpRSlGgVSzJoFkdAqQWhptaY/nV9lChoBmgJaA9DCFw9J71vnADAlIaUUpRoFUsyaBZHQKkFQdLg4wR1fZQoaAZoCWgPQwglz/V9OAj7v5SGlFKUaBVLMmgWR0CpBOAqEvkBdX2UKGgGaAloD0MInWNA9nq3+r+UhpRSlGgVSzJoFkdAqQcqGYa5w3V9lChoBmgJaA9DCFEtIorJ2/W/lIaUUpRoFUsyaBZHQKkGxsDW9UV1fZQoaAZoCWgPQwgGMGXggFb0v5SGlFKUaBVLMmgWR0CpBmeC04R3dX2UKGgGaAloD0MI0o4bfjdd/7+UhpRSlGgVSzJoFkdAqQYGPLgXM3V9lChoBmgJaA9DCEAUzJiCdfu/lIaUUpRoFUsyaBZHQKkI1iyY5T91fZQoaAZoCWgPQwgtswjFVhD9v5SGlFKUaBVLMmgWR0CpCHKkl/pddX2UKGgGaAloD0MIc7osJjY/AMCUhpRSlGgVSzJoFkdAqQgTTvy9VXV9lChoBmgJaA9DCNsV+mAZ2/6/lIaUUpRoFUsyaBZHQKkHsg9Net11fZQoaAZoCWgPQwg6zm3CvXIDwJSGlFKUaBVLMmgWR0CpCoQLNOdodX2UKGgGaAloD0MIveDTnLzI+7+UhpRSlGgVSzJoFkdAqQogGpuMuXV9lChoBmgJaA9DCFfp7job8vK/lIaUUpRoFUsyaBZHQKkJwNjLB9F1fZQoaAZoCWgPQwg7jh8qjVj+v5SGlFKUaBVLMmgWR0CpCV9tuUD/dX2UKGgGaAloD0MILZW3I5wWAMCUhpRSlGgVSzJoFkdAqQwtE5Qxe3V9lChoBmgJaA9DCOvHJvkRvwDAlIaUUpRoFUsyaBZHQKkLyR7JGON1fZQoaAZoCWgPQwivfQG9cOf6v5SGlFKUaBVLMmgWR0CpC2oK2KEWdX2UKGgGaAloD0MIvi8uVWmL/L+UhpRSlGgVSzJoFkdAqQsJgkTpPnV9lChoBmgJaA9DCFCqfToeM/u/lIaUUpRoFUsyaBZHQKkOBFjurp91fZQoaAZoCWgPQwgKSPsfYG3wv5SGlFKUaBVLMmgWR0CpDaC83++/dX2UKGgGaAloD0MI3lSkwtjC/7+UhpRSlGgVSzJoFkdAqQ1Bjtoi93V9lChoBmgJaA9DCChhpu1fmfu/lIaUUpRoFUsyaBZHQKkM4G0u14R1fZQoaAZoCWgPQwi0rWad8X3ov5SGlFKUaBVLMmgWR0CpEDJOWSlndX2UKGgGaAloD0MI8bxUbMyr+7+UhpRSlGgVSzJoFkdAqQ/OXokiU3V9lChoBmgJaA9DCN3qOel9I/q/lIaUUpRoFUsyaBZHQKkPb18stkF1fZQoaAZoCWgPQwhRn+QOm8jyv5SGlFKUaBVLMmgWR0CpDw+CCjDbdX2UKGgGaAloD0MI3gIJih+j87+UhpRSlGgVSzJoFkdAqRH2t2cJ+nV9lChoBmgJaA9DCL9jeOxnMf+/lIaUUpRoFUsyaBZHQKkRktW+49Z1fZQoaAZoCWgPQwgjoS3nUtz+v5SGlFKUaBVLMmgWR0CpETQnYxtYdX2UKGgGaAloD0MISnoYWp28AMCUhpRSlGgVSzJoFkdAqRDSzE74jHV9lChoBmgJaA9DCEQwDi4dM/2/lIaUUpRoFUsyaBZHQKkTMfg75mB1fZQoaAZoCWgPQwi+v0F79XH6v5SGlFKUaBVLMmgWR0CpEs5bY9PldX2UKGgGaAloD0MIfy+FB80u97+UhpRSlGgVSzJoFkdAqRJvYjB2wHV9lChoBmgJaA9DCAJlU67wjgLAlIaUUpRoFUsyaBZHQKkSDgTAWSF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.5212487382348627, "std_reward": 0.1951221813107139, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T08:00:02.431067"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2381
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ebd36217db5dfd84e99a94ac21b8f2462213b88e9f17751f0b6d9d8ce8c56e5
|
3 |
size 2381
|