File size: 66,484 Bytes
a1bd5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bb2ae
 
a1bd5f2
81bb2ae
 
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
626629d
 
81bb2ae
626629d
 
81bb2ae
626629d
 
81bb2ae
626629d
 
81bb2ae
626629d
a1bd5f2
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
81bb2ae
 
 
 
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
 
 
 
 
 
 
 
 
a1bd5f2
 
81bb2ae
 
 
 
 
 
a1bd5f2
 
81bb2ae
 
 
 
 
 
 
a1bd5f2
81bb2ae
 
 
 
 
 
 
 
 
a1bd5f2
 
81bb2ae
 
 
a1bd5f2
 
81bb2ae
 
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
626629d
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
 
 
a1bd5f2
 
626629d
a1bd5f2
 
81bb2ae
 
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
81bb2ae
 
a1bd5f2
 
626629d
a1bd5f2
 
81bb2ae
 
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
626629d
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
626629d
 
81bb2ae
626629d
 
81bb2ae
626629d
 
81bb2ae
 
 
626629d
 
81bb2ae
 
626629d
 
81bb2ae
 
626629d
 
81bb2ae
 
626629d
 
81bb2ae
 
 
 
626629d
 
81bb2ae
 
 
626629d
 
81bb2ae
626629d
 
81bb2ae
626629d
 
81bb2ae
626629d
 
81bb2ae
626629d
 
81bb2ae
626629d
a1bd5f2
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
 
a1bd5f2
626629d
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
 
 
a1bd5f2
 
81bb2ae
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
 
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
 
a1bd5f2
 
81bb2ae
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
 
 
 
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
81bb2ae
 
 
 
626629d
81bb2ae
 
 
 
 
 
 
a1bd5f2
81bb2ae
a1bd5f2
 
81bb2ae
 
 
 
a1bd5f2
 
81bb2ae
 
 
 
 
a1bd5f2
 
81bb2ae
 
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
81bb2ae
 
 
 
626629d
81bb2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
 
 
a1bd5f2
 
81bb2ae
 
 
 
 
 
a1bd5f2
 
81bb2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1bd5f2
81bb2ae
 
 
 
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
81bb2ae
 
 
 
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
 
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
 
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
81bb2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1bd5f2
 
 
 
 
 
 
 
 
 
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
 
 
 
 
 
 
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
 
 
 
 
 
 
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
 
 
 
 
 
 
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
81bb2ae
a1bd5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bb2ae
 
 
a1bd5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bb2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1bd5f2
 
 
 
 
81bb2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1bd5f2
 
 
 
 
 
 
81bb2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1bd5f2
 
 
 
 
 
 
81bb2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1bd5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bb2ae
a1bd5f2
81bb2ae
 
 
 
 
a1bd5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bb2ae
 
 
 
 
a1bd5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
---
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1490
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Can you explain how to configure the credentials for authentication
    to a remote MLflow tracking server in ZenML?
  sentences:
  - 'w_bucket=gs://my_bucket --provider=<YOUR_PROVIDER>You can pass other configurations
    specific to the stack components as key-value arguments. If you don''t provide
    a name, a random one is generated for you. For more information about how to work
    use the CLI for this, please refer to the dedicated documentation section.


    Authentication Methods


    You need to configure the following credentials for authentication to a remote
    MLflow tracking server:


    tracking_uri: The URL pointing to the MLflow tracking server. If using an MLflow
    Tracking Server managed by Databricks, then the value of this attribute should
    be "databricks".


    tracking_username: Username for authenticating with the MLflow tracking server.


    tracking_password: Password for authenticating with the MLflow tracking server.


    tracking_token (in place of tracking_username and tracking_password): Token for
    authenticating with the MLflow tracking server.


    tracking_insecure_tls (optional): Set to skip verifying the MLflow tracking server
    SSL certificate.


    databricks_host: The host of the Databricks workspace with the MLflow-managed
    server to connect to. This is only required if the tracking_uri value is set to
    "databricks". More information: Access the MLflow tracking server from outside
    Databricks


    Either tracking_token or tracking_username and tracking_password must be specified.


    This option configures the credentials for the MLflow tracking service directly
    as stack component attributes.


    This is not recommended for production settings as the credentials won''t be stored
    securely and will be clearly visible in the stack configuration.


    # Register the MLflow experiment tracker


    zenml experiment-tracker register mlflow_experiment_tracker --flavor=mlflow \


    --tracking_uri=<URI> --tracking_token=<token>


    # You can also register it like this:


    # zenml experiment-tracker register mlflow_experiment_tracker --flavor=mlflow
    \


    #    --tracking_uri=<URI> --tracking_username=<USERNAME> --tracking_password=<PASSWORD>


    # Register and set a stack with the new experiment tracker'
  - 'token_hex

    token_hex(32)or:Copyopenssl rand -hex 32Important: If you configure encryption
    for your SQL database secrets store, you should keep the ZENML_SECRETS_STORE_ENCRYPTION_KEY
    value somewhere safe and secure, as it will always be required by the ZenML server
    to decrypt the secrets in the database. If you lose the encryption key, you will
    not be able to decrypt the secrets in the database and will have to reset them.


    These configuration options are only relevant if you''re using the AWS Secrets
    Manager as the secrets store backend.


    ZENML_SECRETS_STORE_TYPE: Set this to aws in order to set this type of secret
    store.


    The AWS Secrets Store uses the ZenML AWS Service Connector under the hood to authenticate
    with the AWS Secrets Manager API. This means that you can use any of the authentication
    methods supported by the AWS Service Connector to authenticate with the AWS Secrets
    Manager API.


    "Version": "2012-10-17",


    "Statement": [


    "Sid": "ZenMLSecretsStore",


    "Effect": "Allow",


    "Action": [


    "secretsmanager:CreateSecret",


    "secretsmanager:GetSecretValue",


    "secretsmanager:DescribeSecret",


    "secretsmanager:PutSecretValue",


    "secretsmanager:TagResource",


    "secretsmanager:DeleteSecret"


    ],


    "Resource": "arn:aws:secretsmanager:<AWS-region>:<AWS-account-id>:secret:zenml/*"


    The following configuration options are supported:


    ZENML_SECRETS_STORE_AUTH_METHOD: The AWS Service Connector authentication method
    to use (e.g. secret-key or iam-role).


    ZENML_SECRETS_STORE_AUTH_CONFIG: The AWS Service Connector configuration, in JSON
    format (e.g. {"aws_access_key_id":"<aws-key-id>","aws_secret_access_key":"<aws-secret-key>","region":"<aws-region>"}).


    Note: The remaining configuration options are deprecated and may be removed in
    a future release. Instead, you should set the ZENML_SECRETS_STORE_AUTH_METHOD
    and ZENML_SECRETS_STORE_AUTH_CONFIG variables to use the AWS Service Connector
    authentication method.'
  - 'tive Directory credentials or generic OIDC tokens.This authentication method
    only requires a GCP workload identity external account JSON file that only contains
    the configuration for the external account without any sensitive credentials.
    It allows implementing a two layer authentication scheme that keeps the set of
    permissions associated with implicit credentials down to the bare minimum and
    grants permissions to the privilege-bearing GCP service account instead.


    This authentication method can be used to authenticate to GCP services using credentials
    from other cloud providers or identity providers. When used with workloads running
    on AWS or Azure, it involves automatically picking up credentials from the AWS
    IAM or Azure AD identity associated with the workload and using them to authenticate
    to GCP services. This means that the result depends on the environment where the
    ZenML server is deployed and is thus not fully reproducible.


    When used with AWS or Azure implicit in-cloud authentication, this method may
    constitute a security risk, because it can give users access to the identity (e.g.
    AWS IAM role or Azure AD principal) implicitly associated with the environment
    where the ZenML server is running. For this reason, all implicit authentication
    methods are disabled by default and need to be explicitly enabled by setting the
    ZENML_ENABLE_IMPLICIT_AUTH_METHODS environment variable or the helm chart enableImplicitAuthMethods
    configuration option to true in the ZenML deployment.


    By default, the GCP connector generates temporary OAuth 2.0 tokens from the external
    account credentials and distributes them to clients. The tokens have a limited
    lifetime of 1 hour. This behavior can be disabled by setting the generate_temporary_tokens
    configuration option to False, in which case, the connector will distribute the
    external account credentials JSON to clients instead (not recommended).'
- source_sentence: What is an example of a ZenML server YAML configuration file?
  sentences:
  - 'sing a type annotation.


    Tuple vs multiple outputsIt is impossible for ZenML to detect whether you want
    your step to have a single output artifact of type Tuple or multiple output artifacts
    just by looking at the type annotation.


    We use the following convention to differentiate between the two: When the return
    statement is followed by a tuple literal (e.g. return 1, 2 or return (value_1,
    value_2)) we treat it as a step with multiple outputs. All other cases are treated
    as a step with a single output of type Tuple.


    from zenml import step


    from typing_extensions import Annotated


    from typing import Tuple


    # Single output artifact


    @step


    def my_step() -> Tuple[int, int]:


    output_value = (0, 1)


    return output_value


    # Single output artifact with variable length


    @step


    def my_step(condition) -> Tuple[int, ...]:


    if condition:


    output_value = (0, 1)


    else:


    output_value = (0, 1, 2)


    return output_value


    # Single output artifact using the `Annotated` annotation


    @step


    def my_step() -> Annotated[Tuple[int, ...], "my_output"]:


    return 0, 1


    # Multiple output artifacts


    @step


    def my_step() -> Tuple[int, int]:


    return 0, 1


    # Not allowed: Variable length tuple annotation when using


    # multiple output artifacts


    @step


    def my_step() -> Tuple[int, ...]:


    return 0, 1


    Step output names


    By default, ZenML uses the output name output for single output steps and output_0,
    output_1, ... for steps with multiple outputs. These output names are used to
    display your outputs in the dashboard and fetch them after your pipeline is finished.


    If you want to use custom output names for your steps, use the Annotated type
    annotation:


    from typing_extensions import Annotated  # or `from typing import Annotated on
    Python 3.9+


    from typing import Tuple


    from zenml import step


    @step


    def square_root(number: int) -> Annotated[float, "custom_output_name"]:


    return number ** 0.5


    @step


    def divide(a: int, b: int) -> Tuple[


    Annotated[int, "quotient"],


    Annotated[int, "remainder"]


    ]:


    return a // b, a % b'
  - 'HyperAI Orchestrator


    Orchestrating your pipelines to run on HyperAI.ai instances.


    HyperAI is a cutting-edge cloud compute platform designed to make AI accessible
    for everyone. The HyperAI orchestrator is an orchestrator flavor that allows you
    to easily deploy your pipelines on HyperAI instances.


    This component is only meant to be used within the context of a remote ZenML deployment
    scenario. Usage with a local ZenML deployment may lead to unexpected behavior!


    When to use it


    You should use the HyperAI orchestrator if:


    you''re looking for a managed solution for running your pipelines.


    you''re a HyperAI customer.


    Prerequisites


    You will need to do the following to start using the HyperAI orchestrator:


    Have a running HyperAI instance. It must be accessible from the internet (or at
    least from the IP addresses of your ZenML users) and allow SSH key based access
    (passwords are not supported).


    Ensure that a recent version of Docker is installed. This version must include
    Docker Compose, meaning that the command docker compose works.


    Ensure that the appropriate NVIDIA Driver is installed on the HyperAI instance
    (if not already installed by the HyperAI team).


    Ensure that the NVIDIA Container Toolkit is installed and configured on the HyperAI
    instance.


    Note that it is possible to omit installing the NVIDIA Driver and NVIDIA Container
    Toolkit. However, you will then be unable to use the GPU from within your ZenML
    pipeline. Additionally, you will then need to disable GPU access within the container
    when configuring the Orchestrator component, or the pipeline will not start correctly.


    How it works'
  - 'fied, or a string, in which case it must be a path# to a CA certificate bundle
    to use or the CA bundle value itself


    verify_ssl:


    Here is an example of a ZenML server YAML configuration file:


    url: https://ac8ef63af203226194a7725ee71d85a-7635928635.us-east-1.elb.amazonaws.com/zenml


    verify_ssl: |


    -----BEGIN CERTIFICATE-----


    ...


    -----END CERTIFICATE-----


    To disconnect from the current ZenML server and revert to using the local default
    database, use the following command:


    zenml disconnect


    How does it work?


    Here''s an architecture diagram that shows how the workflow looks like when you
    do zenml deploy.


    The deploy CLI makes use of a "recipe" inside the zenml-io/zenml repository to
    deploy the server on the right cloud. Any configuration that you pass with the
    CLI, is sent to the recipe as input variables.


    PreviousDeploying ZenML


    NextDeploy with Docker


    Last updated 15 days ago'
- source_sentence: When should I update my service account name to ensure security?
  sentences:
  - 'y <SERVICE_ACCOUNT_NAME> update.


    Important noticeEvery API key issued is a potential gateway to access your data,
    secrets and infrastructure. It''s important to regularly rotate API keys and deactivate
    or delete service accounts and API keys that are no longer needed.


    PreviousConnect in with your User (interactive)


    NextInteract with secrets


    Last updated 15 days ago'
  - 'Connect in with your User (interactive)


    You can authenticate your clients with the ZenML Server using the ZenML CLI and
    the web based login. This can be executed with the command:


    zenml connect --url https://...


    This command will start a series of steps to validate the device from where you
    are connecting that will happen in your browser. You can choose whether to mark
    your respective device as trusted or not. If you choose not to click Trust this
    device, a 24-hour token will be issued for authentication services. Choosing to
    trust the device will issue a 30-day token instead.


    To see all devices you''ve permitted, use the following command:


    zenml authorized-device list


    Additionally, the following command allows you to more precisely inspect one of
    these devices:


    zenml authorized-device describe <DEVICE_ID>


    For increased security, you can invalidate a token using the zenml device lock
    command followed by the device ID. This helps provide an extra layer of security
    and control over your devices.


    zenml authorized-device lock <DEVICE_ID>


    To keep things simple, we can summarize the steps:


    Use the zenml connect --url command to start a device flow and connect to a zenml
    server.


    Choose whether to trust the device when prompted.


    Check permitted devices with zenml devices list.


    Invalidate a token with zenml device lock ....


    Important notice


    Using the ZenML CLI is a secure and comfortable way to interact with your ZenML
    tenants. It''s important to always ensure that only trusted devices are used to
    maintain security and privacy.


    Don''t forget to manage your device trust levels regularly for optimal security.
    Should you feel a device trust needs to be revoked, lock the device immediately.
    Every token issued is a potential gateway to access your data, secrets and infrastructure.


    PreviousConnect to a server


    NextConnect with a Service Account


    Last updated 19 days ago'
  - '━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━┷━━━━━━━┷━━━━━━━━┛A lot more is hidden behind
    a Service Connector Type than a name and a simple list of resource types. Before
    using a Service Connector Type to configure a Service Connector, you probably
    need to understand what it is, what it can offer and what are the supported authentication
    methods and their requirements. All this can be accessed directly through the
    CLI. Some examples are included here.


    Showing information about the gcp Service Connector Type:


    zenml service-connector describe-type gcp


    Example Command Output


    ╔══════════════════════════════════════════════════════════════════════════════╗


    ║                🔵 GCP Service Connector (connector type: gcp)                ║


    ╚══════════════════════════════════════════════════════════════════════════════╝


    Authentication methods:


    🔒 implicit


    🔒 user-account


    🔒 service-account


    🔒 oauth2-token


    🔒 impersonation


    Resource types:


    🔵 gcp-generic


    📦 gcs-bucket


    🌀 kubernetes-cluster


    🐳 docker-registry


    Supports auto-configuration: True


    Available locally: True


    Available remotely: True


    The ZenML GCP Service Connector facilitates the authentication and access to


    managed GCP services and resources. These encompass a range of resources,


    including GCS buckets, GCR container repositories and GKE clusters. The


    connector provides support for various authentication methods, including GCP


    user accounts, service accounts, short-lived OAuth 2.0 tokens and implicit


    authentication.


    To ensure heightened security measures, this connector always issues short-lived


    OAuth 2.0 tokens to clients instead of long-lived credentials. Furthermore, it


    includes automatic configuration and detection of  credentials locally


    configured through the GCP CLI.


    This connector serves as a general means of accessing any GCP service by issuing


    OAuth 2.0 credential objects to clients. Additionally, the connector can handle


    specialized authentication for GCS, Docker and Kubernetes Python clients. It'
- source_sentence: Where can I find the instructions to clone the ZenML quickstart
    repository and set up the stack?
  sentences:
  - 'into play when the component is ultimately in use.The design behind this interaction
    lets us separate the configuration of the flavor from its implementation. This
    way we can register flavors and components even when the major dependencies behind
    their implementation are not installed in our local setting (assuming the CustomArtifactStoreFlavor
    and the CustomArtifactStoreConfig are implemented in a different module/path than
    the actual CustomArtifactStore).


    Enabling Artifact Visualizations with Custom Artifact Stores


    ZenML automatically saves visualizations for many common data types and allows
    you to view these visualizations in the ZenML dashboard. Under the hood, this
    works by saving the visualizations together with the artifacts in the artifact
    store.


    In order to load and display these visualizations, ZenML needs to be able to load
    and access the corresponding artifact store. This means that your custom artifact
    store needs to be configured in a way that allows authenticating to the back-end
    without relying on the local environment, e.g., by embedding the authentication
    credentials in the stack component configuration or by referencing a secret.


    Furthermore, for deployed ZenML instances, you need to install the package dependencies
    of your artifact store implementation in the environment where you have deployed
    ZenML. See the Documentation on deploying ZenML with custom Docker images for
    more information on how to do that.


    PreviousAzure Blob Storage


    NextContainer Registries


    Last updated 19 days ago'
  - 't_repository: str


    user: Optional[str]


    resources:cpu_count: Optional[PositiveFloat]


    gpu_count: Optional[NonNegativeInt]


    memory: Optional[ConstrainedStrValue]


    step_operator: Optional[str]


    success_hook_source:


    attribute: Optional[str]


    module: str


    type: SourceType


    train_model:


    enable_artifact_metadata: Optional[bool]


    enable_artifact_visualization: Optional[bool]


    enable_cache: Optional[bool]


    enable_step_logs: Optional[bool]


    experiment_tracker: Optional[str]


    extra: Mapping[str, Any]


    failure_hook_source:


    attribute: Optional[str]


    module: str


    type: SourceType


    model:


    audience: Optional[str]


    description: Optional[str]


    ethics: Optional[str]


    license: Optional[str]


    limitations: Optional[str]


    name: str


    save_models_to_registry: bool


    suppress_class_validation_warnings: bool


    tags: Optional[List[str]]


    trade_offs: Optional[str]


    use_cases: Optional[str]


    version: Union[ModelStages, int, str, NoneType]


    was_created_in_this_run: bool


    name: Optional[str]


    outputs: {}


    parameters: {}


    settings:


    docker:


    apt_packages: List[str]


    build_context_root: Optional[str]


    build_options: Mapping[str, Any]


    copy_files: bool


    copy_global_config: bool


    dockerfile: Optional[str]


    dockerignore: Optional[str]


    environment: Mapping[str, Any]


    install_stack_requirements: bool


    parent_image: Optional[str]


    python_package_installer: PythonPackageInstaller


    replicate_local_python_environment: Union[List[str], PythonEnvironmentExportMethod,


    NoneType]


    required_hub_plugins: List[str]


    required_integrations: List[str]


    requirements: Union[NoneType, str, List[str]]


    skip_build: bool


    source_files: SourceFileMode


    target_repository: str


    user: Optional[str]


    resources:


    cpu_count: Optional[PositiveFloat]


    gpu_count: Optional[NonNegativeInt]


    memory: Optional[ConstrainedStrValue]


    step_operator: Optional[str]


    success_hook_source:


    attribute: Optional[str]


    module: str


    type: SourceType'
  - 'as the ZenML quickstart. You can clone it like so:git clone --depth 1 git@github.com:zenml-io/zenml.git


    cd zenml/examples/quickstart


    pip install -r requirements.txt


    zenml init


    To run a pipeline using the new stack:


    Set the stack as active on your clientCopyzenml stack set a_new_local_stack


    Run your pipeline code:Copypython run.py --training-pipeline


    Keep this code handy as we''ll be using it in the next chapters!


    PreviousDeploying ZenML


    NextConnecting remote storage


    Last updated 19 days ago'
- source_sentence: How do I register and connect an S3 artifact store in ZenML using
    the interactive mode?
  sentences:
  - 'hich Resource Name to use in the interactive mode:zenml artifact-store register
    s3-zenfiles --flavor s3 --path=s3://zenfiles


    zenml service-connector list-resources --resource-type s3-bucket --resource-id
    s3://zenfiles


    zenml artifact-store connect s3-zenfiles --connector aws-multi-type


    Example Command Output


    $ zenml artifact-store register s3-zenfiles --flavor s3 --path=s3://zenfiles


    Running with active workspace: ''default'' (global)


    Running with active stack: ''default'' (global)


    Successfully registered artifact_store `s3-zenfiles`.


    $ zenml service-connector list-resources --resource-type s3-bucket --resource-id
    zenfiles


    The  ''s3-bucket'' resource with name ''zenfiles'' can be accessed by service
    connectors configured in your workspace:


    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓


    ┃             CONNECTOR ID             │ CONNECTOR NAME       │ CONNECTOR TYPE
    │ RESOURCE TYPE │ RESOURCE NAMES ┃


    ┠──────────────────────────────────────┼──────────────────────┼────────────────┼───────────────┼────────────────┨


    ┃ 4a550c82-aa64-4a48-9c7f-d5e127d77a44 │ aws-multi-type       │ 🔶 aws         │
    📦 s3-bucket  │ s3://zenfiles  ┃


    ┠──────────────────────────────────────┼──────────────────────┼────────────────┼───────────────┼────────────────┨


    ┃ 66c0922d-db84-4e2c-9044-c13ce1611613 │ aws-multi-instance   │ 🔶 aws         │
    📦 s3-bucket  │ s3://zenfiles  ┃


    ┠──────────────────────────────────────┼──────────────────────┼────────────────┼───────────────┼────────────────┨


    ┃ 65c82e59-cba0-4a01-b8f6-d75e8a1d0f55 │ aws-single-instance  │ 🔶 aws         │
    📦 s3-bucket  │ s3://zenfiles  ┃


    ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛


    $ zenml artifact-store connect s3-zenfiles --connector aws-multi-type


    Running with active workspace: ''default'' (global)


    Running with active stack: ''default'' (global)


    Successfully connected artifact store `s3-zenfiles` to the following resources:'
  - '👣Step Operators


    Executing individual steps in specialized environments.


    The step operator enables the execution of individual pipeline steps in specialized
    runtime environments that are optimized for certain workloads. These specialized
    environments can give your steps access to resources like GPUs or distributed
    processing frameworks like Spark.


    Comparison to orchestrators: The orchestrator is a mandatory stack component that
    is responsible for executing all steps of a pipeline in the correct order and
    providing additional features such as scheduling pipeline runs. The step operator
    on the other hand is used to only execute individual steps of the pipeline in
    a separate environment in case the environment provided by the orchestrator is
    not feasible.


    When to use it


    A step operator should be used if one or more steps of a pipeline require resources
    that are not available in the runtime environments provided by the orchestrator.
    An example would be a step that trains a computer vision model and requires a
    GPU to run in a reasonable time, combined with a Kubeflow orchestrator running
    on a Kubernetes cluster that does not contain any GPU nodes. In that case, it
    makes sense to include a step operator like SageMaker, Vertex, or AzureML to execute
    the training step with a GPU.


    Step Operator Flavors


    Step operators to execute steps on one of the big cloud providers are provided
    by the following ZenML integrations:


    Step Operator Flavor Integration Notes SageMaker sagemaker aws Uses SageMaker
    to execute steps Vertex vertex gcp Uses Vertex AI to execute steps AzureML azureml
    azure Uses AzureML to execute steps Spark spark spark Uses Spark on Kubernetes
    to execute steps in a distributed manner Custom Implementation custom Extend the
    step operator abstraction and provide your own implementation


    If you would like to see the available flavors of step operators, you can use
    the command:


    zenml step-operator flavor list


    How to use it'
  - 'Azure Container Registry


    Storing container images in Azure.


    The Azure container registry is a container registry flavor that comes built-in
    with ZenML and uses the Azure Container Registry to store container images.


    When to use it


    You should use the Azure container registry if:


    one or more components of your stack need to pull or push container images.


    you have access to Azure. If you''re not using Azure, take a look at the other
    container registry flavors.


    How to deploy it


    Go here and choose a subscription, resource group, location, and registry name.
    Then click on Review + Create and to create your container registry.


    How to find the registry URI


    The Azure container registry URI should have the following format:


    <REGISTRY_NAME>.azurecr.io


    # Examples:


    zenmlregistry.azurecr.io


    myregistry.azurecr.io


    To figure out the URI for your registry:


    Go to the Azure portal.


    In the search bar, enter container registries and select the container registry
    you want to use. If you don''t have any container registries yet, check out the
    deployment section on how to create one.


    Use the name of your registry to fill the template <REGISTRY_NAME>.azurecr.io
    and get your URI.


    How to use it


    To use the Azure container registry, we need:


    Docker installed and running.


    The registry URI. Check out the previous section on the URI format and how to
    get the URI for your registry.


    We can then register the container registry and use it in our active stack:


    zenml container-registry register <NAME> \


    --flavor=azure \


    --uri=<REGISTRY_URI>


    # Add the container registry to the active stack


    zenml stack update -c <NAME>


    You also need to set up authentication required to log in to the container registry.


    Authentication Methods'
model-index:
- name: zenml/finetuned-all-MiniLM-L6-v2
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 384
      type: dim_384
    metrics:
    - type: cosine_accuracy@1
      value: 0.3132530120481928
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6144578313253012
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7168674698795181
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7891566265060241
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3132530120481928
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20481927710843373
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1433734939759036
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0789156626506024
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3132530120481928
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6144578313253012
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7168674698795181
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7891566265060241
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5579120329651274
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.48292933639319197
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4907452723782479
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.2891566265060241
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6144578313253012
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7108433734939759
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7650602409638554
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2891566265060241
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20481927710843373
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14216867469879516
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07650602409638553
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2891566265060241
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6144578313253012
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7108433734939759
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7650602409638554
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5394043126982406
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.46553595333715836
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4739275972429515
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.28313253012048195
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5481927710843374
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6506024096385542
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7168674698795181
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.28313253012048195
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1827309236947791
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1301204819277108
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07168674698795179
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.28313253012048195
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5481927710843374
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6506024096385542
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7168674698795181
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5067699591037801
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.43858529355517323
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.44791284428498435
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.24096385542168675
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.46987951807228917
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5843373493975904
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6807228915662651
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.24096385542168675
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1566265060240964
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11686746987951806
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06807228915662648
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.24096385542168675
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.46987951807228917
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5843373493975904
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6807228915662651
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.45307543718220417
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3806679097341751
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.389050349953244
      name: Cosine Map@100
---

# zenml/finetuned-all-MiniLM-L6-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("zenml/finetuned-all-MiniLM-L6-v2")
# Run inference
sentences = [
    'How do I register and connect an S3 artifact store in ZenML using the interactive mode?',
    "hich Resource Name to use in the interactive mode:zenml artifact-store register s3-zenfiles --flavor s3 --path=s3://zenfiles\n\nzenml service-connector list-resources --resource-type s3-bucket --resource-id s3://zenfiles\n\nzenml artifact-store connect s3-zenfiles --connector aws-multi-type\n\nExample Command Output\n\n$ zenml artifact-store register s3-zenfiles --flavor s3 --path=s3://zenfiles\n\nRunning with active workspace: 'default' (global)\n\nRunning with active stack: 'default' (global)\n\nSuccessfully registered artifact_store `s3-zenfiles`.\n\n$ zenml service-connector list-resources --resource-type s3-bucket --resource-id zenfiles\n\nThe  's3-bucket' resource with name 'zenfiles' can be accessed by service connectors configured in your workspace:\n\n┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓\n\n┃             CONNECTOR ID             │ CONNECTOR NAME       │ CONNECTOR TYPE │ RESOURCE TYPE │ RESOURCE NAMES ┃\n\n┠──────────────────────────────────────┼──────────────────────┼────────────────┼───────────────┼────────────────┨\n\n┃ 4a550c82-aa64-4a48-9c7f-d5e127d77a44 │ aws-multi-type       │ 🔶 aws         │ 📦 s3-bucket  │ s3://zenfiles  ┃\n\n┠──────────────────────────────────────┼──────────────────────┼────────────────┼───────────────┼────────────────┨\n\n┃ 66c0922d-db84-4e2c-9044-c13ce1611613 │ aws-multi-instance   │ 🔶 aws         │ 📦 s3-bucket  │ s3://zenfiles  ┃\n\n┠──────────────────────────────────────┼──────────────────────┼────────────────┼───────────────┼────────────────┨\n\n┃ 65c82e59-cba0-4a01-b8f6-d75e8a1d0f55 │ aws-single-instance  │ 🔶 aws         │ 📦 s3-bucket  │ s3://zenfiles  ┃\n\n┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛\n\n$ zenml artifact-store connect s3-zenfiles --connector aws-multi-type\n\nRunning with active workspace: 'default' (global)\n\nRunning with active stack: 'default' (global)\n\nSuccessfully connected artifact store `s3-zenfiles` to the following resources:",
    "Azure Container Registry\n\nStoring container images in Azure.\n\nThe Azure container registry is a container registry flavor that comes built-in with ZenML and uses the Azure Container Registry to store container images.\n\nWhen to use it\n\nYou should use the Azure container registry if:\n\none or more components of your stack need to pull or push container images.\n\nyou have access to Azure. If you're not using Azure, take a look at the other container registry flavors.\n\nHow to deploy it\n\nGo here and choose a subscription, resource group, location, and registry name. Then click on Review + Create and to create your container registry.\n\nHow to find the registry URI\n\nThe Azure container registry URI should have the following format:\n\n<REGISTRY_NAME>.azurecr.io\n\n# Examples:\n\nzenmlregistry.azurecr.io\n\nmyregistry.azurecr.io\n\nTo figure out the URI for your registry:\n\nGo to the Azure portal.\n\nIn the search bar, enter container registries and select the container registry you want to use. If you don't have any container registries yet, check out the deployment section on how to create one.\n\nUse the name of your registry to fill the template <REGISTRY_NAME>.azurecr.io and get your URI.\n\nHow to use it\n\nTo use the Azure container registry, we need:\n\nDocker installed and running.\n\nThe registry URI. Check out the previous section on the URI format and how to get the URI for your registry.\n\nWe can then register the container registry and use it in our active stack:\n\nzenml container-registry register <NAME> \\\n\n--flavor=azure \\\n\n--uri=<REGISTRY_URI>\n\n# Add the container registry to the active stack\n\nzenml stack update -c <NAME>\n\nYou also need to set up authentication required to log in to the container registry.\n\nAuthentication Methods",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3133     |
| cosine_accuracy@3   | 0.6145     |
| cosine_accuracy@5   | 0.7169     |
| cosine_accuracy@10  | 0.7892     |
| cosine_precision@1  | 0.3133     |
| cosine_precision@3  | 0.2048     |
| cosine_precision@5  | 0.1434     |
| cosine_precision@10 | 0.0789     |
| cosine_recall@1     | 0.3133     |
| cosine_recall@3     | 0.6145     |
| cosine_recall@5     | 0.7169     |
| cosine_recall@10    | 0.7892     |
| cosine_ndcg@10      | 0.5579     |
| cosine_mrr@10       | 0.4829     |
| **cosine_map@100**  | **0.4907** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2892     |
| cosine_accuracy@3   | 0.6145     |
| cosine_accuracy@5   | 0.7108     |
| cosine_accuracy@10  | 0.7651     |
| cosine_precision@1  | 0.2892     |
| cosine_precision@3  | 0.2048     |
| cosine_precision@5  | 0.1422     |
| cosine_precision@10 | 0.0765     |
| cosine_recall@1     | 0.2892     |
| cosine_recall@3     | 0.6145     |
| cosine_recall@5     | 0.7108     |
| cosine_recall@10    | 0.7651     |
| cosine_ndcg@10      | 0.5394     |
| cosine_mrr@10       | 0.4655     |
| **cosine_map@100**  | **0.4739** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2831     |
| cosine_accuracy@3   | 0.5482     |
| cosine_accuracy@5   | 0.6506     |
| cosine_accuracy@10  | 0.7169     |
| cosine_precision@1  | 0.2831     |
| cosine_precision@3  | 0.1827     |
| cosine_precision@5  | 0.1301     |
| cosine_precision@10 | 0.0717     |
| cosine_recall@1     | 0.2831     |
| cosine_recall@3     | 0.5482     |
| cosine_recall@5     | 0.6506     |
| cosine_recall@10    | 0.7169     |
| cosine_ndcg@10      | 0.5068     |
| cosine_mrr@10       | 0.4386     |
| **cosine_map@100**  | **0.4479** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.241      |
| cosine_accuracy@3   | 0.4699     |
| cosine_accuracy@5   | 0.5843     |
| cosine_accuracy@10  | 0.6807     |
| cosine_precision@1  | 0.241      |
| cosine_precision@3  | 0.1566     |
| cosine_precision@5  | 0.1169     |
| cosine_precision@10 | 0.0681     |
| cosine_recall@1     | 0.241      |
| cosine_recall@3     | 0.4699     |
| cosine_recall@5     | 0.5843     |
| cosine_recall@10    | 0.6807     |
| cosine_ndcg@10      | 0.4531     |
| cosine_mrr@10       | 0.3807     |
| **cosine_map@100**  | **0.3891** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,490 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                          | anchor                                                                               |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 9 tokens</li><li>mean: 21.23 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 237.64 tokens</li><li>max: 256 tokens</li></ul> |
* Samples:
  | positive                                                                                                             | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:---------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>How can you leverage MLflow for tracking and visualizing experiment results in ZenML?</code>                   | <code>MLflow<br><br>Logging and visualizing experiments with MLflow.<br><br>The MLflow Experiment Tracker is an Experiment Tracker flavor provided with the MLflow ZenML integration that uses the MLflow tracking service to log and visualize information from your pipeline steps (e.g. models, parameters, metrics).<br><br>When would you want to use it?<br><br>MLflow Tracking is a very popular tool that you would normally use in the iterative ML experimentation phase to track and visualize experiment results. That doesn't mean that it cannot be repurposed to track and visualize the results produced by your automated pipeline runs, as you make the transition toward a more production-oriented workflow.<br><br>You should use the MLflow Experiment Tracker:<br><br>if you have already been using MLflow to track experiment results for your project and would like to continue doing so as you are incorporating MLOps workflows and best practices in your project through ZenML.<br><br>if you are looking for a more visually interactive way of navigating the results produced from your ZenML pipeline runs (e.g. models, metrics, datasets)<br><br>if you or your team already have a shared MLflow Tracking service deployed somewhere on-premise or in the cloud, and you would like to connect ZenML to it to share the artifacts and metrics logged by your pipelines<br><br>You should consider one of the other Experiment Tracker flavors if you have never worked with MLflow before and would rather use another experiment tracking tool that you are more familiar with.<br><br>How do you deploy it?<br><br>The MLflow Experiment Tracker flavor is provided by the MLflow ZenML integration, you need to install it on your local machine to be able to register an MLflow Experiment Tracker and add it to your stack:<br><br>zenml integration install mlflow -y<br><br>The MLflow Experiment Tracker can be configured to accommodate the following MLflow deployment scenarios:</code>                                                                                                                                                                             |
  | <code>What are the required integrations for running pipelines with a Docker-based orchestrator in ZenML?</code>     | <code>ctivated by installing the respective integration:Integration Materializer Handled Data Types Storage Format bentoml BentoMaterializer bentoml.Bento .bento deepchecks DeepchecksResultMateriailzer deepchecks.CheckResult , deepchecks.SuiteResult .json evidently EvidentlyProfileMaterializer evidently.Profile .json great_expectations GreatExpectationsMaterializer great_expectations.ExpectationSuite , great_expectations.CheckpointResult .json huggingface HFDatasetMaterializer datasets.Dataset , datasets.DatasetDict Directory huggingface HFPTModelMaterializer transformers.PreTrainedModel Directory huggingface HFTFModelMaterializer transformers.TFPreTrainedModel Directory huggingface HFTokenizerMaterializer transformers.PreTrainedTokenizerBase Directory lightgbm LightGBMBoosterMaterializer lgbm.Booster .txt lightgbm LightGBMDatasetMaterializer lgbm.Dataset .binary neural_prophet NeuralProphetMaterializer NeuralProphet .pt pillow PillowImageMaterializer Pillow.Image .PNG polars PolarsMaterializer pl.DataFrame , pl.Series .parquet pycaret PyCaretMaterializer Any sklearn , xgboost , lightgbm or catboost model .pkl pytorch PyTorchDataLoaderMaterializer torch.Dataset , torch.DataLoader .pt pytorch PyTorchModuleMaterializer torch.Module .pt scipy SparseMaterializer scipy.spmatrix .npz spark SparkDataFrameMaterializer pyspark.DataFrame .parquet spark SparkModelMaterializer pyspark.Transformer pyspark.Estimator tensorflow KerasMaterializer tf.keras.Model Directory tensorflow TensorflowDatasetMaterializer tf.Dataset Directory whylogs WhylogsMaterializer whylogs.DatasetProfileView .pb xgboost XgboostBoosterMaterializer xgb.Booster .json xgboost XgboostDMatrixMaterializer xgb.DMatrix .binary<br><br>If you are running pipelines with a Docker-based orchestrator, you need to specify the corresponding integration as required_integrations in the DockerSettings of your pipeline in order to have the integration materializer available inside your Docker container. See the pipeline configuration documentation for more information.</code>                                                                                   |
  | <code>What is the difference between the stack component settings at registration time and runtime for ZenML?</code> | <code>ettings to specify AzureML step operator settings.Difference between stack component settings at registration-time vs real-time<br><br>For stack-component-specific settings, you might be wondering what the difference is between these and the configuration passed in while doing zenml stack-component register <NAME> --config1=configvalue --config2=configvalue, etc. The answer is that the configuration passed in at registration time is static and fixed throughout all pipeline runs, while the settings can change.<br><br>A good example of this is the MLflow Experiment Tracker, where configuration which remains static such as the tracking_url is sent through at registration time, while runtime configuration such as the experiment_name (which might change every pipeline run) is sent through as runtime settings.<br><br>Even though settings can be overridden at runtime, you can also specify default values for settings while configuring a stack component. For example, you could set a default value for the nested setting of your MLflow experiment tracker: zenml experiment-tracker register <NAME> --flavor=mlflow --nested=True<br><br>This means that all pipelines that run using this experiment tracker use nested MLflow runs unless overridden by specifying settings for the pipeline at runtime.<br><br>Using the right key for Stack-component-specific settings<br><br>When specifying stack-component-specific settings, a key needs to be passed. This key should always correspond to the pattern: <COMPONENT_CATEGORY>.<COMPONENT_FLAVOR><br><br>For example, the SagemakerStepOperator supports passing in estimator_args. The way to specify this would be to use the key step_operator.sagemaker<br><br>@step(step_operator="nameofstepoperator", settings= {"step_operator.sagemaker": {"estimator_args": {"instance_type": "m7g.medium"}}})<br><br>def my_step():<br><br>...<br><br># Using the class<br><br>@step(step_operator="nameofstepoperator", settings= {"step_operator.sagemaker": SagemakerStepOperatorSettings(instance_type="m7g.medium")})<br><br>def my_step():<br><br>...<br><br>or in YAML:<br><br>steps:<br><br>my_step:</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: True
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step  | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.6667  | 1     | 0.4153                 | 0.4312                 | 0.4460                 | 0.3779                |
| **2.0** | **3** | **0.4465**             | **0.4643**             | **0.4824**             | **0.3832**            |
| 2.6667  | 4     | 0.4479                 | 0.4739                 | 0.4907                 | 0.3891                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->