File size: 3,463 Bytes
8447474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9103a61
 
 
 
 
 
8447474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9103a61
 
8447474
 
 
9103a61
8447474
 
 
 
 
9103a61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8447474
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: google/long-t5-tglobal-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: Word-selector
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Word-selector

This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1303
- Rouge1: 0.3216
- Rouge2: 0.0621
- Rougel: 0.2469
- Rougelsum: 0.2469
- Gen Len: 48.8488

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 400  | 2.2490          | 0.1594 | 0.0161 | 0.1319 | 0.1321    | 69.2094 |
| 2.7083        | 2.0   | 800  | 2.1665          | 0.2025 | 0.0287 | 0.1648 | 0.1647    | 69.5888 |
| 2.369         | 3.0   | 1200 | 2.1296          | 0.2381 | 0.0344 | 0.1878 | 0.1878    | 57.9775 |
| 2.2185        | 4.0   | 1600 | 2.0890          | 0.2525 | 0.0399 | 0.1986 | 0.1984    | 60.2588 |
| 2.1014        | 5.0   | 2000 | 2.0731          | 0.2795 | 0.0484 | 0.2199 | 0.2199    | 49.5737 |
| 2.1014        | 6.0   | 2400 | 2.0601          | 0.2862 | 0.0525 | 0.2249 | 0.2246    | 54.4206 |
| 1.9992        | 7.0   | 2800 | 2.0592          | 0.3004 | 0.0533 | 0.2351 | 0.2351    | 49.9325 |
| 1.9232        | 8.0   | 3200 | 2.0529          | 0.3033 | 0.0558 | 0.2366 | 0.2368    | 49.8744 |
| 1.8534        | 9.0   | 3600 | 2.0600          | 0.3024 | 0.0573 | 0.2366 | 0.2366    | 50.355  |
| 1.795         | 10.0  | 4000 | 2.0715          | 0.3082 | 0.0561 | 0.2392 | 0.2392    | 47.2162 |
| 1.795         | 11.0  | 4400 | 2.0657          | 0.3137 | 0.0595 | 0.2437 | 0.2439    | 50.3438 |
| 1.73          | 12.0  | 4800 | 2.0759          | 0.3142 | 0.0597 | 0.2434 | 0.2433    | 51.1619 |
| 1.6844        | 13.0  | 5200 | 2.0818          | 0.3172 | 0.0605 | 0.2458 | 0.2458    | 48.9956 |
| 1.6398        | 14.0  | 5600 | 2.0942          | 0.3149 | 0.0599 | 0.2428 | 0.243     | 47.3812 |
| 1.6063        | 15.0  | 6000 | 2.1047          | 0.3171 | 0.0609 | 0.243  | 0.243     | 51.685  |
| 1.6063        | 16.0  | 6400 | 2.1095          | 0.3234 | 0.0622 | 0.248  | 0.248     | 50.1588 |
| 1.5659        | 17.0  | 6800 | 2.1180          | 0.3212 | 0.0627 | 0.2479 | 0.2478    | 49.0894 |
| 1.5456        | 18.0  | 7200 | 2.1212          | 0.3208 | 0.0616 | 0.2455 | 0.2456    | 48.8688 |
| 1.5177        | 19.0  | 7600 | 2.1275          | 0.3214 | 0.0628 | 0.2467 | 0.2467    | 48.4125 |
| 1.5161        | 20.0  | 8000 | 2.1303          | 0.3216 | 0.0621 | 0.2469 | 0.2469    | 48.8488 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.1+cu121
- Datasets 3.0.1
- Tokenizers 0.15.1