File size: 1,592 Bytes
3f84d48
 
731c7e7
 
3f84d48
731c7e7
a6151ba
731c7e7
 
 
 
 
 
 
 
 
b570325
731c7e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
license: mit
language:
- en
---

# bge-micro-v2-quant

This is the quantized (INT8) ONNX variant of the [bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) embeddings model created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export/inference and Neural Magic's [Sparsify](https://github.com/neuralmagic/sparsify) for one-shot quantization.

```bash
pip install -U deepsparse-nightly[sentence_transformers]
```

```python
from deepsparse.sentence_transformers import SentenceTransformer
model = SentenceTransformer('zeroshot/bge-micro-v2-quant', export=False)

# Our sentences we like to encode
sentences = ['This framework generates embeddings for each input sentence',
    'Sentences are passed as a list of string.',
    'The quick brown fox jumps over the lazy dog.']

# Sentences are encoded by calling model.encode()
embeddings = model.encode(sentences)

# Print the embeddings
for sentence, embedding in zip(sentences, embeddings):
    print("Sentence:", sentence)
    print("Embedding:", embedding.shape)
    print("")
```

For further details regarding DeepSparse & Sentence Transformers integration, refer to the [DeepSparse README](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/sentence_transformers).

For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).

![;)](https://media.giphy.com/media/bYg33GbNbNIVzSrr84/giphy-downsized-large.gif)