Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,386 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- sparse sparsity quantized onnx embeddings int8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
license: mit
|
5 |
language:
|
6 |
- en
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- sparse sparsity quantized onnx embeddings int8
|
4 |
+
- mteb
|
5 |
+
- mteb
|
6 |
+
model-index:
|
7 |
+
- name: gte-large-quant
|
8 |
+
results:
|
9 |
+
- task:
|
10 |
+
type: STS
|
11 |
+
dataset:
|
12 |
+
type: mteb/biosses-sts
|
13 |
+
name: MTEB BIOSSES
|
14 |
+
config: default
|
15 |
+
split: test
|
16 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
17 |
+
metrics:
|
18 |
+
- type: cos_sim_pearson
|
19 |
+
value: 90.27260027646717
|
20 |
+
- type: cos_sim_spearman
|
21 |
+
value: 87.97790825077952
|
22 |
+
- type: euclidean_pearson
|
23 |
+
value: 88.42832241523092
|
24 |
+
- type: euclidean_spearman
|
25 |
+
value: 87.97248644049293
|
26 |
+
- type: manhattan_pearson
|
27 |
+
value: 88.13802465778512
|
28 |
+
- type: manhattan_spearman
|
29 |
+
value: 87.43391995202266
|
30 |
+
- task:
|
31 |
+
type: STS
|
32 |
+
dataset:
|
33 |
+
type: mteb/sickr-sts
|
34 |
+
name: MTEB SICK-R
|
35 |
+
config: default
|
36 |
+
split: test
|
37 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
38 |
+
metrics:
|
39 |
+
- type: cos_sim_pearson
|
40 |
+
value: 85.1416039713116
|
41 |
+
- type: cos_sim_spearman
|
42 |
+
value: 79.13359419669726
|
43 |
+
- type: euclidean_pearson
|
44 |
+
value: 83.08042050989465
|
45 |
+
- type: euclidean_spearman
|
46 |
+
value: 79.31565112619433
|
47 |
+
- type: manhattan_pearson
|
48 |
+
value: 83.10376638254372
|
49 |
+
- type: manhattan_spearman
|
50 |
+
value: 79.30772376012946
|
51 |
+
- task:
|
52 |
+
type: STS
|
53 |
+
dataset:
|
54 |
+
type: mteb/sts12-sts
|
55 |
+
name: MTEB STS12
|
56 |
+
config: default
|
57 |
+
split: test
|
58 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
59 |
+
metrics:
|
60 |
+
- type: cos_sim_pearson
|
61 |
+
value: 84.93030439955828
|
62 |
+
- type: cos_sim_spearman
|
63 |
+
value: 75.98104622572393
|
64 |
+
- type: euclidean_pearson
|
65 |
+
value: 81.20791722502764
|
66 |
+
- type: euclidean_spearman
|
67 |
+
value: 75.74595761987686
|
68 |
+
- type: manhattan_pearson
|
69 |
+
value: 81.23169425598003
|
70 |
+
- type: manhattan_spearman
|
71 |
+
value: 75.73065403644094
|
72 |
+
- task:
|
73 |
+
type: STS
|
74 |
+
dataset:
|
75 |
+
type: mteb/sts13-sts
|
76 |
+
name: MTEB STS13
|
77 |
+
config: default
|
78 |
+
split: test
|
79 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
80 |
+
metrics:
|
81 |
+
- type: cos_sim_pearson
|
82 |
+
value: 85.6693892097855
|
83 |
+
- type: cos_sim_spearman
|
84 |
+
value: 87.54973524492165
|
85 |
+
- type: euclidean_pearson
|
86 |
+
value: 86.55642466103943
|
87 |
+
- type: euclidean_spearman
|
88 |
+
value: 87.47921340148683
|
89 |
+
- type: manhattan_pearson
|
90 |
+
value: 86.52043275063926
|
91 |
+
- type: manhattan_spearman
|
92 |
+
value: 87.43869426658489
|
93 |
+
- task:
|
94 |
+
type: STS
|
95 |
+
dataset:
|
96 |
+
type: mteb/sts14-sts
|
97 |
+
name: MTEB STS14
|
98 |
+
config: default
|
99 |
+
split: test
|
100 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
101 |
+
metrics:
|
102 |
+
- type: cos_sim_pearson
|
103 |
+
value: 84.37393784507647
|
104 |
+
- type: cos_sim_spearman
|
105 |
+
value: 81.98702164762233
|
106 |
+
- type: euclidean_pearson
|
107 |
+
value: 84.22038158338351
|
108 |
+
- type: euclidean_spearman
|
109 |
+
value: 81.9872746771322
|
110 |
+
- type: manhattan_pearson
|
111 |
+
value: 84.21915949674062
|
112 |
+
- type: manhattan_spearman
|
113 |
+
value: 81.97923386273747
|
114 |
+
- task:
|
115 |
+
type: STS
|
116 |
+
dataset:
|
117 |
+
type: mteb/sts15-sts
|
118 |
+
name: MTEB STS15
|
119 |
+
config: default
|
120 |
+
split: test
|
121 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
122 |
+
metrics:
|
123 |
+
- type: cos_sim_pearson
|
124 |
+
value: 87.34477744314285
|
125 |
+
- type: cos_sim_spearman
|
126 |
+
value: 88.92669309789463
|
127 |
+
- type: euclidean_pearson
|
128 |
+
value: 88.20128441166663
|
129 |
+
- type: euclidean_spearman
|
130 |
+
value: 88.91524205114627
|
131 |
+
- type: manhattan_pearson
|
132 |
+
value: 88.24425729639415
|
133 |
+
- type: manhattan_spearman
|
134 |
+
value: 88.97457451709523
|
135 |
+
- task:
|
136 |
+
type: STS
|
137 |
+
dataset:
|
138 |
+
type: mteb/sts16-sts
|
139 |
+
name: MTEB STS16
|
140 |
+
config: default
|
141 |
+
split: test
|
142 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
143 |
+
metrics:
|
144 |
+
- type: cos_sim_pearson
|
145 |
+
value: 82.11827015492467
|
146 |
+
- type: cos_sim_spearman
|
147 |
+
value: 83.59397157586835
|
148 |
+
- type: euclidean_pearson
|
149 |
+
value: 82.97284591328044
|
150 |
+
- type: euclidean_spearman
|
151 |
+
value: 83.74509747941255
|
152 |
+
- type: manhattan_pearson
|
153 |
+
value: 82.974440264842
|
154 |
+
- type: manhattan_spearman
|
155 |
+
value: 83.72260506292083
|
156 |
+
- task:
|
157 |
+
type: STS
|
158 |
+
dataset:
|
159 |
+
type: mteb/sts17-crosslingual-sts
|
160 |
+
name: MTEB STS17 (en-en)
|
161 |
+
config: en-en
|
162 |
+
split: test
|
163 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
164 |
+
metrics:
|
165 |
+
- type: cos_sim_pearson
|
166 |
+
value: 88.29744487677577
|
167 |
+
- type: cos_sim_spearman
|
168 |
+
value: 88.50799779856109
|
169 |
+
- type: euclidean_pearson
|
170 |
+
value: 89.0149154609955
|
171 |
+
- type: euclidean_spearman
|
172 |
+
value: 88.72798794474068
|
173 |
+
- type: manhattan_pearson
|
174 |
+
value: 89.14318227078863
|
175 |
+
- type: manhattan_spearman
|
176 |
+
value: 88.98372697017017
|
177 |
+
- task:
|
178 |
+
type: STS
|
179 |
+
dataset:
|
180 |
+
type: mteb/sts22-crosslingual-sts
|
181 |
+
name: MTEB STS22 (en)
|
182 |
+
config: en
|
183 |
+
split: test
|
184 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
185 |
+
metrics:
|
186 |
+
- type: cos_sim_pearson
|
187 |
+
value: 70.114540107077
|
188 |
+
- type: cos_sim_spearman
|
189 |
+
value: 69.72244488054433
|
190 |
+
- type: euclidean_pearson
|
191 |
+
value: 70.03658853094686
|
192 |
+
- type: euclidean_spearman
|
193 |
+
value: 68.96035610557085
|
194 |
+
- type: manhattan_pearson
|
195 |
+
value: 69.83707789686764
|
196 |
+
- type: manhattan_spearman
|
197 |
+
value: 68.71831797289812
|
198 |
+
- task:
|
199 |
+
type: STS
|
200 |
+
dataset:
|
201 |
+
type: mteb/stsbenchmark-sts
|
202 |
+
name: MTEB STSBenchmark
|
203 |
+
config: default
|
204 |
+
split: test
|
205 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
206 |
+
metrics:
|
207 |
+
- type: cos_sim_pearson
|
208 |
+
value: 84.86664469775837
|
209 |
+
- type: cos_sim_spearman
|
210 |
+
value: 85.39649452953681
|
211 |
+
- type: euclidean_pearson
|
212 |
+
value: 85.68509956626748
|
213 |
+
- type: euclidean_spearman
|
214 |
+
value: 85.50984027606854
|
215 |
+
- type: manhattan_pearson
|
216 |
+
value: 85.6688745008871
|
217 |
+
- type: manhattan_spearman
|
218 |
+
value: 85.465201888803
|
219 |
+
- task:
|
220 |
+
type: PairClassification
|
221 |
+
dataset:
|
222 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
223 |
+
name: MTEB SprintDuplicateQuestions
|
224 |
+
config: default
|
225 |
+
split: test
|
226 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
227 |
+
metrics:
|
228 |
+
- type: cos_sim_accuracy
|
229 |
+
value: 99.8079207920792
|
230 |
+
- type: cos_sim_ap
|
231 |
+
value: 95.62897445718106
|
232 |
+
- type: cos_sim_f1
|
233 |
+
value: 90.03083247687564
|
234 |
+
- type: cos_sim_precision
|
235 |
+
value: 92.60042283298098
|
236 |
+
- type: cos_sim_recall
|
237 |
+
value: 87.6
|
238 |
+
- type: dot_accuracy
|
239 |
+
value: 99.67029702970297
|
240 |
+
- type: dot_ap
|
241 |
+
value: 90.20258347721159
|
242 |
+
- type: dot_f1
|
243 |
+
value: 83.06172839506172
|
244 |
+
- type: dot_precision
|
245 |
+
value: 82.04878048780488
|
246 |
+
- type: dot_recall
|
247 |
+
value: 84.1
|
248 |
+
- type: euclidean_accuracy
|
249 |
+
value: 99.80594059405941
|
250 |
+
- type: euclidean_ap
|
251 |
+
value: 95.53963697283662
|
252 |
+
- type: euclidean_f1
|
253 |
+
value: 89.92405063291139
|
254 |
+
- type: euclidean_precision
|
255 |
+
value: 91.07692307692308
|
256 |
+
- type: euclidean_recall
|
257 |
+
value: 88.8
|
258 |
+
- type: manhattan_accuracy
|
259 |
+
value: 99.80594059405941
|
260 |
+
- type: manhattan_ap
|
261 |
+
value: 95.55714505339634
|
262 |
+
- type: manhattan_f1
|
263 |
+
value: 90.06085192697769
|
264 |
+
- type: manhattan_precision
|
265 |
+
value: 91.35802469135803
|
266 |
+
- type: manhattan_recall
|
267 |
+
value: 88.8
|
268 |
+
- type: max_accuracy
|
269 |
+
value: 99.8079207920792
|
270 |
+
- type: max_ap
|
271 |
+
value: 95.62897445718106
|
272 |
+
- type: max_f1
|
273 |
+
value: 90.06085192697769
|
274 |
+
- task:
|
275 |
+
type: PairClassification
|
276 |
+
dataset:
|
277 |
+
type: mteb/twittersemeval2015-pairclassification
|
278 |
+
name: MTEB TwitterSemEval2015
|
279 |
+
config: default
|
280 |
+
split: test
|
281 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
282 |
+
metrics:
|
283 |
+
- type: cos_sim_accuracy
|
284 |
+
value: 85.87351731537224
|
285 |
+
- type: cos_sim_ap
|
286 |
+
value: 72.87360532701162
|
287 |
+
- type: cos_sim_f1
|
288 |
+
value: 67.8826895565093
|
289 |
+
- type: cos_sim_precision
|
290 |
+
value: 61.918225315354505
|
291 |
+
- type: cos_sim_recall
|
292 |
+
value: 75.11873350923483
|
293 |
+
- type: dot_accuracy
|
294 |
+
value: 80.15139774691542
|
295 |
+
- type: dot_ap
|
296 |
+
value: 53.5201503222712
|
297 |
+
- type: dot_f1
|
298 |
+
value: 53.42203179614388
|
299 |
+
- type: dot_precision
|
300 |
+
value: 46.64303996849773
|
301 |
+
- type: dot_recall
|
302 |
+
value: 62.50659630606861
|
303 |
+
- type: euclidean_accuracy
|
304 |
+
value: 85.87351731537224
|
305 |
+
- type: euclidean_ap
|
306 |
+
value: 73.10465263888227
|
307 |
+
- type: euclidean_f1
|
308 |
+
value: 68.38209376101516
|
309 |
+
- type: euclidean_precision
|
310 |
+
value: 61.63948316034739
|
311 |
+
- type: euclidean_recall
|
312 |
+
value: 76.78100263852242
|
313 |
+
- type: manhattan_accuracy
|
314 |
+
value: 85.83775406806939
|
315 |
+
- type: manhattan_ap
|
316 |
+
value: 73.08358693248583
|
317 |
+
- type: manhattan_f1
|
318 |
+
value: 68.34053485927829
|
319 |
+
- type: manhattan_precision
|
320 |
+
value: 61.303163628745025
|
321 |
+
- type: manhattan_recall
|
322 |
+
value: 77.20316622691293
|
323 |
+
- type: max_accuracy
|
324 |
+
value: 85.87351731537224
|
325 |
+
- type: max_ap
|
326 |
+
value: 73.10465263888227
|
327 |
+
- type: max_f1
|
328 |
+
value: 68.38209376101516
|
329 |
+
- task:
|
330 |
+
type: PairClassification
|
331 |
+
dataset:
|
332 |
+
type: mteb/twitterurlcorpus-pairclassification
|
333 |
+
name: MTEB TwitterURLCorpus
|
334 |
+
config: default
|
335 |
+
split: test
|
336 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
337 |
+
metrics:
|
338 |
+
- type: cos_sim_accuracy
|
339 |
+
value: 88.85202002561415
|
340 |
+
- type: cos_sim_ap
|
341 |
+
value: 85.58170945333845
|
342 |
+
- type: cos_sim_f1
|
343 |
+
value: 77.87783280804442
|
344 |
+
- type: cos_sim_precision
|
345 |
+
value: 75.95140515222482
|
346 |
+
- type: cos_sim_recall
|
347 |
+
value: 79.90452725592854
|
348 |
+
- type: dot_accuracy
|
349 |
+
value: 85.29902588582296
|
350 |
+
- type: dot_ap
|
351 |
+
value: 76.95795800483633
|
352 |
+
- type: dot_f1
|
353 |
+
value: 71.30231900452489
|
354 |
+
- type: dot_precision
|
355 |
+
value: 65.91503267973856
|
356 |
+
- type: dot_recall
|
357 |
+
value: 77.6485987064983
|
358 |
+
- type: euclidean_accuracy
|
359 |
+
value: 88.80738929638684
|
360 |
+
- type: euclidean_ap
|
361 |
+
value: 85.5344499509856
|
362 |
+
- type: euclidean_f1
|
363 |
+
value: 77.9805854353285
|
364 |
+
- type: euclidean_precision
|
365 |
+
value: 75.97312495435624
|
366 |
+
- type: euclidean_recall
|
367 |
+
value: 80.09701262704034
|
368 |
+
- type: manhattan_accuracy
|
369 |
+
value: 88.7782822990647
|
370 |
+
- type: manhattan_ap
|
371 |
+
value: 85.52577812395661
|
372 |
+
- type: manhattan_f1
|
373 |
+
value: 77.97958958110746
|
374 |
+
- type: manhattan_precision
|
375 |
+
value: 74.76510067114094
|
376 |
+
- type: manhattan_recall
|
377 |
+
value: 81.48290729904527
|
378 |
+
- type: max_accuracy
|
379 |
+
value: 88.85202002561415
|
380 |
+
- type: max_ap
|
381 |
+
value: 85.58170945333845
|
382 |
+
- type: max_f1
|
383 |
+
value: 77.9805854353285
|
384 |
license: mit
|
385 |
language:
|
386 |
- en
|