|
|
|
import trl |
|
|
|
from os.path import dirname, join, basename, isfile |
|
from tqdm import tqdm |
|
|
|
from models import SyncNet_color as SyncNet |
|
import audio |
|
|
|
import torch |
|
from torch import nn |
|
from torch import optim |
|
import torch.backends.cudnn as cudnn |
|
from torch.utils import data as data_utils |
|
import numpy as np |
|
|
|
from glob import glob |
|
|
|
import os, random, cv2, argparse |
|
from hparams import hparams, get_image_list |
|
|
|
parser = argparse.ArgumentParser(description='Code to train the expert lip-sync discriminator') |
|
|
|
parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=False) |
|
|
|
parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=False, type=str) |
|
parser.add_argument('--checkpoint_path', help='Resumed from this checkpoint', default=None, type=str) |
|
|
|
args = parser.parse_args() |
|
args.data_root='lrs2_preprocessed/LRS2_partly' |
|
args.checkpoint_dir='./tmp2' |
|
|
|
global_step = 0 |
|
global_epoch = 0 |
|
use_cuda = torch.cuda.is_available() |
|
print('use_cuda: {}'.format(use_cuda)) |
|
|
|
syncnet_T = 5 |
|
syncnet_mel_step_size = 16 |
|
|
|
class Dataset(object): |
|
def __init__(self, split): |
|
|
|
self.all_videos =glob('lrs2_preprocessed/LRS2_partly/*') |
|
print(self.all_videos) |
|
def get_frame_id(self, frame): |
|
return int(basename(frame).split('.')[0]) |
|
|
|
def get_window(self, start_frame): |
|
start_id = self.get_frame_id(start_frame) |
|
vidname = dirname(start_frame) |
|
|
|
window_fnames = [] |
|
for frame_id in range(start_id, start_id + syncnet_T): |
|
frame = join(vidname, '{}.jpg'.format(frame_id)) |
|
if not isfile(frame): |
|
return None |
|
window_fnames.append(frame) |
|
return window_fnames |
|
|
|
def crop_audio_window(self, spec, start_frame): |
|
|
|
start_frame_num = self.get_frame_id(start_frame) |
|
start_idx = int(80. * (start_frame_num / float(hparams.fps))) |
|
|
|
end_idx = start_idx + syncnet_mel_step_size |
|
|
|
return spec[start_idx : end_idx, :] |
|
|
|
|
|
def __len__(self): |
|
return len(self.all_videos) |
|
|
|
def __getitem__(self, idx): |
|
while 1: |
|
idx = random.randint(0, len(self.all_videos) - 1) |
|
vidname = self.all_videos[idx] |
|
|
|
img_names = list(glob(join(vidname, '*.jpg'))) |
|
if len(img_names) <= 3 * syncnet_T: |
|
continue |
|
img_name = random.choice(img_names) |
|
wrong_img_name = random.choice(img_names) |
|
while wrong_img_name == img_name: |
|
wrong_img_name = random.choice(img_names) |
|
|
|
if random.choice([True, False]): |
|
y = torch.ones(1).float() |
|
chosen = img_name |
|
else: |
|
y = torch.zeros(1).float() |
|
chosen = wrong_img_name |
|
|
|
window_fnames = self.get_window(chosen) |
|
if window_fnames is None: |
|
continue |
|
|
|
window = [] |
|
all_read = True |
|
for fname in window_fnames: |
|
img = cv2.imread(fname) |
|
if img is None: |
|
all_read = False |
|
break |
|
try: |
|
img = cv2.resize(img, (hparams.img_size, hparams.img_size)) |
|
except Exception as e: |
|
all_read = False |
|
break |
|
|
|
window.append(img) |
|
|
|
if not all_read: continue |
|
|
|
try: |
|
wavpath = join(vidname, "audio.wav") |
|
wav = audio.load_wav(wavpath, hparams.sample_rate) |
|
|
|
orig_mel = audio.melspectrogram(wav).T |
|
except Exception as e: |
|
continue |
|
|
|
mel = self.crop_audio_window(orig_mel.copy(), img_name) |
|
|
|
if (mel.shape[0] != syncnet_mel_step_size): |
|
continue |
|
|
|
|
|
x = np.concatenate(window, axis=2) / 255. |
|
x = x.transpose(2, 0, 1) |
|
x = x[:, x.shape[1]//2:] |
|
|
|
x = torch.FloatTensor(x) |
|
mel = torch.FloatTensor(mel.T).unsqueeze(0) |
|
|
|
return x, mel, y |
|
|
|
logloss = nn.BCELoss() |
|
def cosine_loss(a, v, y): |
|
d = nn.functional.cosine_similarity(a, v) |
|
loss = logloss(d.unsqueeze(1), y) |
|
|
|
return loss |
|
|
|
def train(device, model, train_data_loader, test_data_loader, optimizer, |
|
checkpoint_dir=None, checkpoint_interval=None, nepochs=None): |
|
|
|
global global_step, global_epoch |
|
resumed_step = global_step |
|
|
|
while global_epoch < nepochs: |
|
running_loss = 0. |
|
prog_bar = tqdm(enumerate(train_data_loader)) |
|
for step, (x, mel, y) in prog_bar: |
|
model.train() |
|
optimizer.zero_grad() |
|
|
|
|
|
x = x.to(device) |
|
|
|
mel = mel.to(device) |
|
|
|
a, v = model(mel, x) |
|
y = y.to(device) |
|
|
|
loss = cosine_loss(a, v, y) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
global_step += 1 |
|
cur_session_steps = global_step - resumed_step |
|
running_loss += loss.item() |
|
|
|
if global_step == 1 or global_step % checkpoint_interval == 0: |
|
save_checkpoint( |
|
model, optimizer, global_step, checkpoint_dir, global_epoch) |
|
|
|
if global_step % hparams.syncnet_eval_interval == 0: |
|
with torch.no_grad(): |
|
eval_model(test_data_loader, global_step, device, model, checkpoint_dir) |
|
|
|
prog_bar.set_description('Loss: {}'.format(running_loss / (step + 1))) |
|
|
|
global_epoch += 1 |
|
|
|
def eval_model(test_data_loader, global_step, device, model, checkpoint_dir): |
|
eval_steps = 1400 |
|
print('Evaluating for {} steps'.format(eval_steps)) |
|
losses = [] |
|
while 1: |
|
for step, (x, mel, y) in enumerate(test_data_loader): |
|
|
|
model.eval() |
|
|
|
|
|
x = x.to(device) |
|
|
|
mel = mel.to(device) |
|
|
|
a, v = model(mel, x) |
|
y = y.to(device) |
|
|
|
loss = cosine_loss(a, v, y) |
|
losses.append(loss.item()) |
|
|
|
if step > eval_steps: break |
|
|
|
averaged_loss = sum(losses) / len(losses) |
|
print(averaged_loss) |
|
|
|
return |
|
|
|
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch): |
|
|
|
checkpoint_path = join( |
|
checkpoint_dir, "checkpoint_step{:09d}.pth".format(global_step)) |
|
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None |
|
torch.save({ |
|
"state_dict": model.state_dict(), |
|
"optimizer": optimizer_state, |
|
"global_step": step, |
|
"global_epoch": epoch, |
|
}, checkpoint_path) |
|
print("Saved checkpoint:", checkpoint_path) |
|
|
|
def _load(checkpoint_path): |
|
if use_cuda: |
|
checkpoint = torch.load(checkpoint_path) |
|
else: |
|
checkpoint = torch.load(checkpoint_path, |
|
map_location=lambda storage, loc: storage) |
|
return checkpoint |
|
|
|
def load_checkpoint(path, model, optimizer, reset_optimizer=False): |
|
global global_step |
|
global global_epoch |
|
|
|
print("Load checkpoint from: {}".format(path)) |
|
checkpoint = _load(path) |
|
model.load_state_dict(checkpoint["state_dict"]) |
|
if not reset_optimizer: |
|
optimizer_state = checkpoint["optimizer"] |
|
if optimizer_state is not None: |
|
print("Load optimizer state from {}".format(path)) |
|
optimizer.load_state_dict(checkpoint["optimizer"]) |
|
global_step = checkpoint["global_step"] |
|
global_epoch = checkpoint["global_epoch"] |
|
|
|
return model |
|
|
|
if __name__ == "__main__": |
|
checkpoint_dir = args.checkpoint_dir |
|
checkpoint_path = args.checkpoint_path |
|
|
|
if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) |
|
|
|
|
|
train_dataset = Dataset('train') |
|
test_dataset = Dataset('val') |
|
|
|
train_data_loader = data_utils.DataLoader( |
|
train_dataset, batch_size=hparams.syncnet_batch_size, shuffle=True, |
|
num_workers=hparams.num_workers) |
|
|
|
test_data_loader = data_utils.DataLoader( |
|
test_dataset, batch_size=hparams.syncnet_batch_size, |
|
num_workers=8) |
|
|
|
device = torch.device("cuda" if use_cuda else "cpu") |
|
|
|
|
|
model = SyncNet().to(device) |
|
print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad))) |
|
|
|
optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad], |
|
lr=hparams.syncnet_lr) |
|
|
|
if checkpoint_path is not None: |
|
load_checkpoint(checkpoint_path, model, optimizer, reset_optimizer=False) |
|
|
|
train(device, model, train_data_loader, test_data_loader, optimizer, |
|
checkpoint_dir=checkpoint_dir, |
|
checkpoint_interval=hparams.syncnet_checkpoint_interval, |
|
nepochs=hparams.nepochs) |
|
|