Ce Zhang commited on
Commit
1173394
1 Parent(s): 8c0fb93
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257
40
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/avner/results/spec_decoding/job-ft-af0609ec-33f0-446a-9603-b142ac39a7d8/checkpoints/checkpoint-9500",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 50256,
9
+ "eos_token_id": 50256,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 2048,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 4,
18
+ "num_key_value_heads": 32,
19
+ "pad_token_id": 0,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-06,
22
+ "rope_scaling": null,
23
+ "rope_theta": 10000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.37.2",
27
+ "use_cache": false,
28
+ "vocab_size": 51200
29
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 50256,
4
+ "eos_token_id": 50256,
5
+ "transformers_version": "4.37.2"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b00519c33eb6bdbccf18128258932d5aca36439b5022f4a12ed6bc12555ef234
3
+ size 4915876192
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenization_codegen25.py ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, salesforce.com, inc.
2
+ # All rights reserved.
3
+ # SPDX-License-Identifier: Apache-2.0
4
+ # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/Apache-2.0
5
+ """Tokenization classes for CodeGen2.5."""
6
+
7
+ from typing import List, Optional
8
+
9
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
10
+ from transformers.utils import logging
11
+
12
+ try:
13
+ import tiktoken
14
+ except ModuleNotFoundError as e:
15
+ raise ModuleNotFoundError("CodeGen2.5 requires the installation of tiktoken. Please install it via `pip install tiktoken`.") from e
16
+
17
+
18
+ logger = logging.get_logger(__name__)
19
+
20
+ MAX_MODEL_INPUT_SIZES = {
21
+ "Salesforce/codegen25-7b-multi": 2048,
22
+ "Salesforce/codegen25-7b-mono": 2048,
23
+ "Salesforce/codegen25-7b-instruct": 2048,
24
+ }
25
+
26
+
27
+ def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True):
28
+ if not add_special:
29
+ return tiktoken.get_encoding(base)
30
+
31
+ def include_whitespace(n_min=2, n_max=20):
32
+ whitespaces = [" " * n for n in reversed(range(n_min, n_max))]
33
+ return whitespaces
34
+
35
+ def include_tabs(n_min=2, n_max=20):
36
+ tabs = ["\t" * n for n in reversed(range(n_min, n_max))]
37
+ return tabs
38
+
39
+ def include_fim_tokens():
40
+ fim_tokens = [
41
+ "<fim_prefix>",
42
+ "<fim_middle>",
43
+ "<fim_suffix>",
44
+ "<fim_pad>",
45
+ "<filename>",
46
+ "<gh_stars>",
47
+ "<issue_start>",
48
+ "<issue_comment>",
49
+ "<issue_closed>",
50
+ "<jupyter_start>",
51
+ "<jupyter_text>",
52
+ "<jupyter_code>",
53
+ "<jupyter_output>",
54
+ "<empty_output>",
55
+ "<commit_before>",
56
+ "<commit_msg>",
57
+ "<commit_after>",
58
+ "<reponame>"
59
+ ]
60
+ return fim_tokens
61
+
62
+ def include_codegen2_tokens():
63
+ tokens = []
64
+ tokens += [f"<dummy_{i}>" for i in range(4)]
65
+ tokens.append("<sep>") # 50317
66
+ tokens.append("<eom>") # 50318
67
+ tokens += [f"<mask_{i}>" for i in reversed(range(1, 51199-50318+1))]
68
+ return tokens
69
+
70
+ add_whitespaces = include_whitespace(n_min=2, n_max=32)
71
+ add_tabs = include_tabs(n_min=2, n_max=10)
72
+ fim_tokens = include_fim_tokens()
73
+ codegen2_tokens = include_codegen2_tokens()
74
+
75
+ tokenizer = tiktoken.get_encoding(base)
76
+
77
+ idx = tokenizer.n_vocab
78
+
79
+ bpe_ranks = tokenizer._mergeable_ranks
80
+
81
+ for wsp in add_whitespaces:
82
+ bpe_ranks[bytes(wsp, 'ascii')] = idx
83
+ idx += 1
84
+ for t in add_tabs:
85
+ bpe_ranks[bytes(t, 'ascii')] = idx
86
+ idx += 1
87
+
88
+ special_tokens = dict()
89
+
90
+ for sp in fim_tokens:
91
+ special_tokens[sp] = idx
92
+ idx += 1
93
+ for sp in codegen2_tokens:
94
+ special_tokens[sp] = idx
95
+ idx += 1
96
+
97
+ if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens:
98
+ special_tokens[pad_token] = idx
99
+ idx += 1
100
+ # In production, load the arguments directly instead of accessing private attributes
101
+ # See openai_public.py for examples of arguments for specific encodings
102
+ enc = tiktoken.Encoding(
103
+ # If you're changing the set of special tokens, make sure to use a different name
104
+ # It should be clear from the name what behaviour to expect.
105
+ name=base.replace("base", "im"),
106
+ pat_str=tokenizer._pat_str,
107
+ mergeable_ranks=bpe_ranks,
108
+ special_tokens={
109
+ **tokenizer._special_tokens,
110
+ **special_tokens
111
+ }
112
+ )
113
+ return enc
114
+
115
+
116
+ class CodeGen25Tokenizer(PreTrainedTokenizer):
117
+ """
118
+ Construct a CodeGen2.5 tokenizer. Based on byte-level Byte-Pair-Encoding.
119
+ Args:
120
+ vocab_file (`str`):
121
+ Path to the vocabulary file.
122
+ """
123
+ max_model_input_sizes = MAX_MODEL_INPUT_SIZES
124
+ model_input_names = ["input_ids", "attention_mask"]
125
+
126
+ def __init__(
127
+ self,
128
+ pad_token=None,
129
+ eos_token="<|endoftext|>",
130
+ add_eos_token=False,
131
+ add_special_tokens=True,
132
+ **kwargs,
133
+ ):
134
+ pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
135
+ eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
136
+ self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens)
137
+ super().__init__(
138
+ pad_token=pad_token_added,
139
+ eos_token=eos_token_added,
140
+ add_eos_token=add_eos_token,
141
+ **kwargs,
142
+ )
143
+ self.add_eos_token = add_eos_token
144
+
145
+ @property
146
+ def vocab_size(self):
147
+ """Returns vocab size"""
148
+ return self.encoder.n_vocab
149
+
150
+ def get_vocab(self):
151
+ """Returns vocab as a dict"""
152
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
153
+ return vocab
154
+
155
+ def _tokenize(self, text, **kwargs):
156
+ """Returns a tokenized string."""
157
+ return self.encoder.encode(text, allowed_special="all")
158
+
159
+ def _convert_token_to_id(self, token):
160
+ """Converts a token (str) in an id using the vocab."""
161
+ if isinstance(token, str):
162
+ return self.encoder.encode_single_token(token)
163
+ else:
164
+ return token
165
+
166
+ def _convert_id_to_token(self, index):
167
+ """Converts an index (integer) in a token (str) using the vocab."""
168
+ try:
169
+ token = self.encoder.decode_single_token_bytes(index).decode("utf-8")
170
+ except Exception:
171
+ token = ""
172
+ return token
173
+
174
+ def _decode(self, token_ids: List[int], skip_special_tokens: bool = False, **kwargs):
175
+ if skip_special_tokens:
176
+ token_ids = [t for t in token_ids if t not in self.all_special_ids]
177
+ return self.encoder.decode(token_ids)
178
+
179
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
180
+ """Build model inputs from a sequence by appending eos_token_id."""
181
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
182
+
183
+ output = token_ids_0 + eos_token_id
184
+
185
+ if token_ids_1 is not None:
186
+ output = output + token_ids_1 + eos_token_id
187
+
188
+ return output
189
+
190
+ def get_special_tokens_mask(
191
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
192
+ already_has_special_tokens: bool = False
193
+ ) -> List[int]:
194
+ """
195
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
196
+ special tokens using the tokenizer `prepare_for_model` method.
197
+ Args:
198
+ token_ids_0 (`List[int]`):
199
+ List of IDs.
200
+ token_ids_1 (`List[int]`, *optional*):
201
+ Optional second list of IDs for sequence pairs.
202
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
203
+ Whether the token list is already formatted with special tokens for the model.
204
+ Returns:
205
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
206
+ """
207
+ if already_has_special_tokens:
208
+ return super().get_special_tokens_mask(
209
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
210
+ )
211
+
212
+ eos_token_id = [1] if self.add_eos_token else []
213
+
214
+ if token_ids_1 is None:
215
+ return ([0] * len(token_ids_0)) + eos_token_id
216
+ return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
217
+
218
+ def create_token_type_ids_from_sequences(
219
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
220
+ ) -> List[int]:
221
+ """
222
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
223
+ sequence pair mask has the following format:
224
+ ```
225
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
226
+ | first sequence | second sequence |
227
+ ```
228
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
229
+ Args:
230
+ token_ids_0 (`List[int]`):
231
+ List of ids.
232
+ token_ids_1 (`List[int]`, *optional*):
233
+ Optional second list of IDs for sequence pairs.
234
+ Returns:
235
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
236
+ """
237
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
238
+
239
+ output = [0] * len(token_ids_0 + eos_token_id)
240
+
241
+ if token_ids_1 is not None:
242
+ output += [1] * len(token_ids_1 + eos_token_id)
243
+
244
+ return output
245
+
246
+ # has no vocab file
247
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
248
+ return ()
tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": true,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "<|endoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "errors": "replace",
22
+ "model_max_length": 1024,
23
+ "pad_token": null,
24
+ "tokenizer_class": "GPT2Tokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<|endoftext|>",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff