zhangcsv commited on
Commit
414a377
·
verified ·
1 Parent(s): 36628da

Model save

Browse files
README.md CHANGED
@@ -1,199 +1,58 @@
1
  ---
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model: Qwen/Qwen2-VL-2B-Instruct
3
  library_name: transformers
4
+ model_name: Qwen2-VL-2B-Instruct-SFT
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
  ---
11
 
12
+ # Model Card for Qwen2-VL-2B-Instruct-SFT
13
 
14
+ This model is a fine-tuned version of [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
+ ## Quick start
18
 
19
+ ```python
20
+ from transformers import pipeline
21
 
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="zhangcsv/Qwen2-VL-2B-Instruct-SFT", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
 
28
+ ## Training procedure
29
 
30
+
31
 
 
32
 
33
+ This model was trained with SFT.
 
 
 
 
 
 
34
 
35
+ ### Framework versions
36
 
37
+ - TRL: 0.14.0
38
+ - Transformers: 4.50.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.3.2
41
+ - Tokenizers: 0.21.0
42
 
43
+ ## Citations
 
 
44
 
 
45
 
 
46
 
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 2.567967004866642e+17,
4
+ "train_loss": 0.07939198961997766,
5
+ "train_runtime": 7762.1038,
6
+ "train_samples": 70000,
7
+ "train_samples_per_second": 9.018,
8
+ "train_steps_per_second": 0.07
9
+ }
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2-VL-2B-Instruct",
3
+ "architectures": [
4
+ "Qwen2VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8960,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2_vl",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": true,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.50.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "hidden_size": 1536,
40
+ "in_chans": 3,
41
+ "model_type": "qwen2_vl",
42
+ "spatial_patch_size": 14,
43
+ "torch_dtype": "bfloat16"
44
+ },
45
+ "vision_end_token_id": 151653,
46
+ "vision_start_token_id": 151652,
47
+ "vision_token_id": 151654,
48
+ "vocab_size": 151936
49
+ }
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": null,
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "temperature": 0.01,
11
+ "top_k": 1,
12
+ "top_p": 0.001,
13
+ "transformers_version": "4.50.0.dev0",
14
+ "use_cache": false
15
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f5091db66038a282e74262c62f1c34f230486c6355c5b0f08ae343c208b9871
3
+ size 4884798456
tokenizer_config.json CHANGED
@@ -138,7 +138,6 @@
138
  "model_max_length": 32768,
139
  "pad_token": "<|endoftext|>",
140
  "padding_side": "left",
141
- "processor_class": "Qwen2VLProcessor",
142
  "split_special_tokens": false,
143
  "tokenizer_class": "Qwen2Tokenizer",
144
  "unk_token": null
 
138
  "model_max_length": 32768,
139
  "pad_token": "<|endoftext|>",
140
  "padding_side": "left",
 
141
  "split_special_tokens": false,
142
  "tokenizer_class": "Qwen2Tokenizer",
143
  "unk_token": null
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 2.567967004866642e+17,
4
+ "train_loss": 0.07939198961997766,
5
+ "train_runtime": 7762.1038,
6
+ "train_samples": 70000,
7
+ "train_samples_per_second": 9.018,
8
+ "train_steps_per_second": 0.07
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,805 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 547,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.009140767824497258,
13
+ "grad_norm": 72.8250732421875,
14
+ "learning_rate": 1.8181818181818183e-06,
15
+ "loss": 3.402,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.018281535648994516,
20
+ "grad_norm": 28.21662139892578,
21
+ "learning_rate": 3.6363636363636366e-06,
22
+ "loss": 2.6895,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.027422303473491772,
27
+ "grad_norm": 12.129012107849121,
28
+ "learning_rate": 5.4545454545454545e-06,
29
+ "loss": 1.2964,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.03656307129798903,
34
+ "grad_norm": 4.143538475036621,
35
+ "learning_rate": 7.272727272727273e-06,
36
+ "loss": 0.386,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.04570383912248629,
41
+ "grad_norm": 9.900189399719238,
42
+ "learning_rate": 9.090909090909091e-06,
43
+ "loss": 0.2348,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.054844606946983544,
48
+ "grad_norm": 2.2335424423217773,
49
+ "learning_rate": 1.0909090909090909e-05,
50
+ "loss": 0.1444,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.06398537477148081,
55
+ "grad_norm": 2.3110196590423584,
56
+ "learning_rate": 1.2727272727272728e-05,
57
+ "loss": 0.1224,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.07312614259597806,
62
+ "grad_norm": 2.3454320430755615,
63
+ "learning_rate": 1.4545454545454546e-05,
64
+ "loss": 0.1052,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.08226691042047532,
69
+ "grad_norm": 2.230443239212036,
70
+ "learning_rate": 1.6363636363636366e-05,
71
+ "loss": 0.0856,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.09140767824497258,
76
+ "grad_norm": 2.1253552436828613,
77
+ "learning_rate": 1.8181818181818182e-05,
78
+ "loss": 0.0625,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.10054844606946983,
83
+ "grad_norm": 1.7156140804290771,
84
+ "learning_rate": 2e-05,
85
+ "loss": 0.0384,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.10968921389396709,
90
+ "grad_norm": 1.71486234664917,
91
+ "learning_rate": 1.9994903844605973e-05,
92
+ "loss": 0.0293,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.11882998171846434,
97
+ "grad_norm": 0.5556156039237976,
98
+ "learning_rate": 1.9979620572583846e-05,
99
+ "loss": 0.0122,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.12797074954296161,
104
+ "grad_norm": 0.2656179368495941,
105
+ "learning_rate": 1.995416576111945e-05,
106
+ "loss": 0.0073,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.13711151736745886,
111
+ "grad_norm": 0.21650183200836182,
112
+ "learning_rate": 1.9918565354547738e-05,
113
+ "loss": 0.0045,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.14625228519195613,
118
+ "grad_norm": 0.6048226952552795,
119
+ "learning_rate": 1.9872855637909506e-05,
120
+ "loss": 0.0042,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.15539305301645337,
125
+ "grad_norm": 0.16227181255817413,
126
+ "learning_rate": 1.9817083199968552e-05,
127
+ "loss": 0.0043,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.16453382084095064,
132
+ "grad_norm": 0.6625558137893677,
133
+ "learning_rate": 1.9751304885726967e-05,
134
+ "loss": 0.0047,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.1736745886654479,
139
+ "grad_norm": 0.31208521127700806,
140
+ "learning_rate": 1.9675587738486935e-05,
141
+ "loss": 0.003,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.18281535648994515,
146
+ "grad_norm": 0.21230654418468475,
147
+ "learning_rate": 1.9590008931518133e-05,
148
+ "loss": 0.0023,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.19195612431444242,
153
+ "grad_norm": 0.2529038190841675,
154
+ "learning_rate": 1.9494655689400294e-05,
155
+ "loss": 0.0017,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.20109689213893966,
160
+ "grad_norm": 0.07652478665113449,
161
+ "learning_rate": 1.9389625199121264e-05,
162
+ "loss": 0.0013,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.21023765996343693,
167
+ "grad_norm": 0.07473216205835342,
168
+ "learning_rate": 1.927502451102095e-05,
169
+ "loss": 0.0008,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.21937842778793418,
174
+ "grad_norm": 0.10759185999631882,
175
+ "learning_rate": 1.9150970429682316e-05,
176
+ "loss": 0.0009,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.22851919561243145,
181
+ "grad_norm": 0.2672303020954132,
182
+ "learning_rate": 1.9017589394880515e-05,
183
+ "loss": 0.0005,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.2376599634369287,
188
+ "grad_norm": 1.33341383934021,
189
+ "learning_rate": 1.8875017352711547e-05,
190
+ "loss": 0.0019,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.24680073126142596,
195
+ "grad_norm": 0.5362780690193176,
196
+ "learning_rate": 1.8723399617031754e-05,
197
+ "loss": 0.0017,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.25594149908592323,
202
+ "grad_norm": 0.3548431694507599,
203
+ "learning_rate": 1.8562890721349434e-05,
204
+ "loss": 0.0015,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.26508226691042047,
209
+ "grad_norm": 0.18760216236114502,
210
+ "learning_rate": 1.8393654261319504e-05,
211
+ "loss": 0.0009,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.2742230347349177,
216
+ "grad_norm": 0.2579905688762665,
217
+ "learning_rate": 1.821586272800168e-05,
218
+ "loss": 0.0007,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.283363802559415,
223
+ "grad_norm": 0.2245369404554367,
224
+ "learning_rate": 1.8029697332052277e-05,
225
+ "loss": 0.0009,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.29250457038391225,
230
+ "grad_norm": 0.8462201952934265,
231
+ "learning_rate": 1.7835347819028642e-05,
232
+ "loss": 0.0026,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 0.3016453382084095,
237
+ "grad_norm": 0.37047141790390015,
238
+ "learning_rate": 1.76330122759946e-05,
239
+ "loss": 0.0011,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 0.31078610603290674,
244
+ "grad_norm": 0.6407871246337891,
245
+ "learning_rate": 1.7422896929623957e-05,
246
+ "loss": 0.0011,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 0.31992687385740404,
251
+ "grad_norm": 0.4370276927947998,
252
+ "learning_rate": 1.720521593600787e-05,
253
+ "loss": 0.0032,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 0.3290676416819013,
258
+ "grad_norm": 0.35974910855293274,
259
+ "learning_rate": 1.6980191162380298e-05,
260
+ "loss": 0.0039,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 0.3382084095063985,
265
+ "grad_norm": 0.1552378237247467,
266
+ "learning_rate": 1.674805196098402e-05,
267
+ "loss": 0.002,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 0.3473491773308958,
272
+ "grad_norm": 0.3591105341911316,
273
+ "learning_rate": 1.6509034935307716e-05,
274
+ "loss": 0.0019,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 0.35648994515539306,
279
+ "grad_norm": 0.04844851791858673,
280
+ "learning_rate": 1.6263383698932307e-05,
281
+ "loss": 0.0011,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 0.3656307129798903,
286
+ "grad_norm": 0.1252487599849701,
287
+ "learning_rate": 1.6011348627232463e-05,
288
+ "loss": 0.0014,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 0.37477148080438755,
293
+ "grad_norm": 0.11114215105772018,
294
+ "learning_rate": 1.5753186602186207e-05,
295
+ "loss": 0.0008,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 0.38391224862888484,
300
+ "grad_norm": 0.023969072848558426,
301
+ "learning_rate": 1.5489160750552833e-05,
302
+ "loss": 0.0004,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 0.3930530164533821,
307
+ "grad_norm": 0.061600591987371445,
308
+ "learning_rate": 1.5219540175685938e-05,
309
+ "loss": 0.0003,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 0.40219378427787933,
314
+ "grad_norm": 0.0951351672410965,
315
+ "learning_rate": 1.4944599683254903e-05,
316
+ "loss": 0.0002,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 0.4113345521023766,
321
+ "grad_norm": 0.08145473152399063,
322
+ "learning_rate": 1.4664619501154445e-05,
323
+ "loss": 0.0002,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 0.42047531992687387,
328
+ "grad_norm": 0.01746625453233719,
329
+ "learning_rate": 1.4379884993887605e-05,
330
+ "loss": 0.0002,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 0.4296160877513711,
335
+ "grad_norm": 0.02120082452893257,
336
+ "learning_rate": 1.4090686371713403e-05,
337
+ "loss": 0.0004,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 0.43875685557586835,
342
+ "grad_norm": 0.019948139786720276,
343
+ "learning_rate": 1.3797318394855496e-05,
344
+ "loss": 0.0002,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 0.44789762340036565,
349
+ "grad_norm": 0.305644690990448,
350
+ "learning_rate": 1.3500080073073436e-05,
351
+ "loss": 0.0006,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 0.4570383912248629,
356
+ "grad_norm": 0.5187322497367859,
357
+ "learning_rate": 1.319927436090259e-05,
358
+ "loss": 0.0006,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 0.46617915904936014,
363
+ "grad_norm": 0.30897632241249084,
364
+ "learning_rate": 1.2895207848873488e-05,
365
+ "loss": 0.0007,
366
+ "step": 255
367
+ },
368
+ {
369
+ "epoch": 0.4753199268738574,
370
+ "grad_norm": 0.07400551438331604,
371
+ "learning_rate": 1.2588190451025209e-05,
372
+ "loss": 0.0005,
373
+ "step": 260
374
+ },
375
+ {
376
+ "epoch": 0.4844606946983547,
377
+ "grad_norm": 0.08495013415813446,
378
+ "learning_rate": 1.2278535089031377e-05,
379
+ "loss": 0.0005,
380
+ "step": 265
381
+ },
382
+ {
383
+ "epoch": 0.4936014625228519,
384
+ "grad_norm": 0.18518061935901642,
385
+ "learning_rate": 1.1966557373260654e-05,
386
+ "loss": 0.0004,
387
+ "step": 270
388
+ },
389
+ {
390
+ "epoch": 0.5027422303473492,
391
+ "grad_norm": 0.16111266613006592,
392
+ "learning_rate": 1.165257528109685e-05,
393
+ "loss": 0.0003,
394
+ "step": 275
395
+ },
396
+ {
397
+ "epoch": 0.5118829981718465,
398
+ "grad_norm": 0.07125530391931534,
399
+ "learning_rate": 1.1336908832846485e-05,
400
+ "loss": 0.0002,
401
+ "step": 280
402
+ },
403
+ {
404
+ "epoch": 0.5210237659963437,
405
+ "grad_norm": 0.027559850364923477,
406
+ "learning_rate": 1.1019879765564155e-05,
407
+ "loss": 0.0002,
408
+ "step": 285
409
+ },
410
+ {
411
+ "epoch": 0.5301645338208409,
412
+ "grad_norm": 0.03874915465712547,
413
+ "learning_rate": 1.0701811205128115e-05,
414
+ "loss": 0.0004,
415
+ "step": 290
416
+ },
417
+ {
418
+ "epoch": 0.5393053016453382,
419
+ "grad_norm": 0.07408824563026428,
420
+ "learning_rate": 1.0383027336900356e-05,
421
+ "loss": 0.0005,
422
+ "step": 295
423
+ },
424
+ {
425
+ "epoch": 0.5484460694698354,
426
+ "grad_norm": 0.19742679595947266,
427
+ "learning_rate": 1.0063853075306792e-05,
428
+ "loss": 0.0004,
429
+ "step": 300
430
+ },
431
+ {
432
+ "epoch": 0.5575868372943327,
433
+ "grad_norm": 0.030554568395018578,
434
+ "learning_rate": 9.744613732674401e-06,
435
+ "loss": 0.0002,
436
+ "step": 305
437
+ },
438
+ {
439
+ "epoch": 0.56672760511883,
440
+ "grad_norm": 0.1797352284193039,
441
+ "learning_rate": 9.425634687662768e-06,
442
+ "loss": 0.0003,
443
+ "step": 310
444
+ },
445
+ {
446
+ "epoch": 0.5758683729433273,
447
+ "grad_norm": 0.08481526374816895,
448
+ "learning_rate": 9.107241053628058e-06,
449
+ "loss": 0.0001,
450
+ "step": 315
451
+ },
452
+ {
453
+ "epoch": 0.5850091407678245,
454
+ "grad_norm": 0.08169592916965485,
455
+ "learning_rate": 8.789757347257373e-06,
456
+ "loss": 0.0002,
457
+ "step": 320
458
+ },
459
+ {
460
+ "epoch": 0.5941499085923218,
461
+ "grad_norm": 0.073927141726017,
462
+ "learning_rate": 8.473507157811254e-06,
463
+ "loss": 0.0003,
464
+ "step": 325
465
+ },
466
+ {
467
+ "epoch": 0.603290676416819,
468
+ "grad_norm": 0.00965256430208683,
469
+ "learning_rate": 8.158812817311474e-06,
470
+ "loss": 0.0002,
471
+ "step": 330
472
+ },
473
+ {
474
+ "epoch": 0.6124314442413162,
475
+ "grad_norm": 0.022856874391436577,
476
+ "learning_rate": 7.845995072010188e-06,
477
+ "loss": 0.0002,
478
+ "step": 335
479
+ },
480
+ {
481
+ "epoch": 0.6215722120658135,
482
+ "grad_norm": 0.06963472068309784,
483
+ "learning_rate": 7.535372755475411e-06,
484
+ "loss": 0.0002,
485
+ "step": 340
486
+ },
487
+ {
488
+ "epoch": 0.6307129798903108,
489
+ "grad_norm": 0.024691695347428322,
490
+ "learning_rate": 7.22726246362592e-06,
491
+ "loss": 0.0002,
492
+ "step": 345
493
+ },
494
+ {
495
+ "epoch": 0.6398537477148081,
496
+ "grad_norm": 0.012590546160936356,
497
+ "learning_rate": 6.921978232046878e-06,
498
+ "loss": 0.0002,
499
+ "step": 350
500
+ },
501
+ {
502
+ "epoch": 0.6489945155393053,
503
+ "grad_norm": 0.05468595027923584,
504
+ "learning_rate": 6.619831215914974e-06,
505
+ "loss": 0.0002,
506
+ "step": 355
507
+ },
508
+ {
509
+ "epoch": 0.6581352833638026,
510
+ "grad_norm": 0.07750693708658218,
511
+ "learning_rate": 6.321129372859418e-06,
512
+ "loss": 0.0002,
513
+ "step": 360
514
+ },
515
+ {
516
+ "epoch": 0.6672760511882998,
517
+ "grad_norm": 0.027170751243829727,
518
+ "learning_rate": 6.026177149081949e-06,
519
+ "loss": 0.0002,
520
+ "step": 365
521
+ },
522
+ {
523
+ "epoch": 0.676416819012797,
524
+ "grad_norm": 0.013442575931549072,
525
+ "learning_rate": 5.7352751690558025e-06,
526
+ "loss": 0.0002,
527
+ "step": 370
528
+ },
529
+ {
530
+ "epoch": 0.6855575868372943,
531
+ "grad_norm": 0.06503641605377197,
532
+ "learning_rate": 5.448719929119916e-06,
533
+ "loss": 0.0002,
534
+ "step": 375
535
+ },
536
+ {
537
+ "epoch": 0.6946983546617916,
538
+ "grad_norm": 0.1688007265329361,
539
+ "learning_rate": 5.166803495280614e-06,
540
+ "loss": 0.0002,
541
+ "step": 380
542
+ },
543
+ {
544
+ "epoch": 0.7038391224862889,
545
+ "grad_norm": 0.16672426462173462,
546
+ "learning_rate": 4.889813205528895e-06,
547
+ "loss": 0.0002,
548
+ "step": 385
549
+ },
550
+ {
551
+ "epoch": 0.7129798903107861,
552
+ "grad_norm": 0.0711933895945549,
553
+ "learning_rate": 4.61803137697661e-06,
554
+ "loss": 0.0002,
555
+ "step": 390
556
+ },
557
+ {
558
+ "epoch": 0.7221206581352834,
559
+ "grad_norm": 0.017142411321401596,
560
+ "learning_rate": 4.351735018110066e-06,
561
+ "loss": 0.0001,
562
+ "step": 395
563
+ },
564
+ {
565
+ "epoch": 0.7312614259597806,
566
+ "grad_norm": 0.06323219835758209,
567
+ "learning_rate": 4.091195546454398e-06,
568
+ "loss": 0.0002,
569
+ "step": 400
570
+ },
571
+ {
572
+ "epoch": 0.7404021937842779,
573
+ "grad_norm": 0.15650759637355804,
574
+ "learning_rate": 3.8366785119363624e-06,
575
+ "loss": 0.0002,
576
+ "step": 405
577
+ },
578
+ {
579
+ "epoch": 0.7495429616087751,
580
+ "grad_norm": 0.10531863570213318,
581
+ "learning_rate": 3.5884433262276376e-06,
582
+ "loss": 0.0001,
583
+ "step": 410
584
+ },
585
+ {
586
+ "epoch": 0.7586837294332724,
587
+ "grad_norm": 0.009012032300233841,
588
+ "learning_rate": 3.3467429983443477e-06,
589
+ "loss": 0.0003,
590
+ "step": 415
591
+ },
592
+ {
593
+ "epoch": 0.7678244972577697,
594
+ "grad_norm": 0.021396493539214134,
595
+ "learning_rate": 3.111823876772426e-06,
596
+ "loss": 0.0001,
597
+ "step": 420
598
+ },
599
+ {
600
+ "epoch": 0.7769652650822669,
601
+ "grad_norm": 0.03978023678064346,
602
+ "learning_rate": 2.883925398381585e-06,
603
+ "loss": 0.0001,
604
+ "step": 425
605
+ },
606
+ {
607
+ "epoch": 0.7861060329067642,
608
+ "grad_norm": 0.02052459307014942,
609
+ "learning_rate": 2.663279844383815e-06,
610
+ "loss": 0.0001,
611
+ "step": 430
612
+ },
613
+ {
614
+ "epoch": 0.7952468007312614,
615
+ "grad_norm": 0.009402839466929436,
616
+ "learning_rate": 2.4501121035851494e-06,
617
+ "loss": 0.0001,
618
+ "step": 435
619
+ },
620
+ {
621
+ "epoch": 0.8043875685557587,
622
+ "grad_norm": 0.02130948193371296,
623
+ "learning_rate": 2.244639443172013e-06,
624
+ "loss": 0.0001,
625
+ "step": 440
626
+ },
627
+ {
628
+ "epoch": 0.8135283363802559,
629
+ "grad_norm": 0.056616611778736115,
630
+ "learning_rate": 2.047071287265735e-06,
631
+ "loss": 0.0001,
632
+ "step": 445
633
+ },
634
+ {
635
+ "epoch": 0.8226691042047533,
636
+ "grad_norm": 0.05803929269313812,
637
+ "learning_rate": 1.857609003471007e-06,
638
+ "loss": 0.0002,
639
+ "step": 450
640
+ },
641
+ {
642
+ "epoch": 0.8318098720292505,
643
+ "grad_norm": 0.005538036115467548,
644
+ "learning_rate": 1.6764456976357279e-06,
645
+ "loss": 0.0001,
646
+ "step": 455
647
+ },
648
+ {
649
+ "epoch": 0.8409506398537477,
650
+ "grad_norm": 0.0059971073642373085,
651
+ "learning_rate": 1.503766017031547e-06,
652
+ "loss": 0.0001,
653
+ "step": 460
654
+ },
655
+ {
656
+ "epoch": 0.850091407678245,
657
+ "grad_norm": 0.0059807188808918,
658
+ "learning_rate": 1.339745962155613e-06,
659
+ "loss": 0.0001,
660
+ "step": 465
661
+ },
662
+ {
663
+ "epoch": 0.8592321755027422,
664
+ "grad_norm": 0.005512280389666557,
665
+ "learning_rate": 1.1845527073454045e-06,
666
+ "loss": 0.0001,
667
+ "step": 470
668
+ },
669
+ {
670
+ "epoch": 0.8683729433272395,
671
+ "grad_norm": 0.021586749702692032,
672
+ "learning_rate": 1.0383444303894453e-06,
673
+ "loss": 0.0001,
674
+ "step": 475
675
+ },
676
+ {
677
+ "epoch": 0.8775137111517367,
678
+ "grad_norm": 0.01218556147068739,
679
+ "learning_rate": 9.012701513075839e-07,
680
+ "loss": 0.0001,
681
+ "step": 480
682
+ },
683
+ {
684
+ "epoch": 0.886654478976234,
685
+ "grad_norm": 0.005609170068055391,
686
+ "learning_rate": 7.734695804651693e-07,
687
+ "loss": 0.0001,
688
+ "step": 485
689
+ },
690
+ {
691
+ "epoch": 0.8957952468007313,
692
+ "grad_norm": 0.02664189226925373,
693
+ "learning_rate": 6.550729761758901e-07,
694
+ "loss": 0.0001,
695
+ "step": 490
696
+ },
697
+ {
698
+ "epoch": 0.9049360146252285,
699
+ "grad_norm": 0.016554079949855804,
700
+ "learning_rate": 5.462010119384665e-07,
701
+ "loss": 0.0001,
702
+ "step": 495
703
+ },
704
+ {
705
+ "epoch": 0.9140767824497258,
706
+ "grad_norm": 0.005938609596341848,
707
+ "learning_rate": 4.4696465344245874e-07,
708
+ "loss": 0.0001,
709
+ "step": 500
710
+ },
711
+ {
712
+ "epoch": 0.923217550274223,
713
+ "grad_norm": 0.01982252486050129,
714
+ "learning_rate": 3.574650454685902e-07,
715
+ "loss": 0.0001,
716
+ "step": 505
717
+ },
718
+ {
719
+ "epoch": 0.9323583180987203,
720
+ "grad_norm": 0.02185707353055477,
721
+ "learning_rate": 2.777934087988532e-07,
722
+ "loss": 0.0001,
723
+ "step": 510
724
+ },
725
+ {
726
+ "epoch": 0.9414990859232175,
727
+ "grad_norm": 0.007851045578718185,
728
+ "learning_rate": 2.0803094724143879e-07,
729
+ "loss": 0.0001,
730
+ "step": 515
731
+ },
732
+ {
733
+ "epoch": 0.9506398537477148,
734
+ "grad_norm": 0.018694985657930374,
735
+ "learning_rate": 1.482487648653008e-07,
736
+ "loss": 0.0001,
737
+ "step": 520
738
+ },
739
+ {
740
+ "epoch": 0.9597806215722121,
741
+ "grad_norm": 0.02687523327767849,
742
+ "learning_rate": 9.85077935286749e-08,
743
+ "loss": 0.0002,
744
+ "step": 525
745
+ },
746
+ {
747
+ "epoch": 0.9689213893967094,
748
+ "grad_norm": 0.007271461188793182,
749
+ "learning_rate": 5.8858730775438465e-08,
750
+ "loss": 0.0001,
751
+ "step": 530
752
+ },
753
+ {
754
+ "epoch": 0.9780621572212066,
755
+ "grad_norm": 0.022476373240351677,
756
+ "learning_rate": 2.9341988162595593e-08,
757
+ "loss": 0.0004,
758
+ "step": 535
759
+ },
760
+ {
761
+ "epoch": 0.9872029250457038,
762
+ "grad_norm": 0.009166369214653969,
763
+ "learning_rate": 9.987650071561217e-09,
764
+ "loss": 0.0001,
765
+ "step": 540
766
+ },
767
+ {
768
+ "epoch": 0.9963436928702011,
769
+ "grad_norm": 0.00787508673965931,
770
+ "learning_rate": 8.154430452267381e-10,
771
+ "loss": 0.0001,
772
+ "step": 545
773
+ },
774
+ {
775
+ "epoch": 1.0,
776
+ "step": 547,
777
+ "total_flos": 2.567967004866642e+17,
778
+ "train_loss": 0.07939198961997766,
779
+ "train_runtime": 7762.1038,
780
+ "train_samples_per_second": 9.018,
781
+ "train_steps_per_second": 0.07
782
+ }
783
+ ],
784
+ "logging_steps": 5,
785
+ "max_steps": 547,
786
+ "num_input_tokens_seen": 0,
787
+ "num_train_epochs": 1,
788
+ "save_steps": 500,
789
+ "stateful_callbacks": {
790
+ "TrainerControl": {
791
+ "args": {
792
+ "should_epoch_stop": false,
793
+ "should_evaluate": false,
794
+ "should_log": false,
795
+ "should_save": false,
796
+ "should_training_stop": false
797
+ },
798
+ "attributes": {}
799
+ }
800
+ },
801
+ "total_flos": 2.567967004866642e+17,
802
+ "train_batch_size": 4,
803
+ "trial_name": null,
804
+ "trial_params": null
805
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5065bc78a4c19982c53a7c0de4461526f133fbaad4ab54b5e31c340284f8081a
3
+ size 7160