--- base_model: facebook/opt-350m datasets: - HuggingFaceH4/ultrachat_200k library_name: peft license: other tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: opt350m-qlora results: [] --- # opt350m-qlora This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.7868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8281 | 0.9999 | 8068 | 1.7868 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.0 - Pytorch 2.1.2 - Datasets 3.1.0 - Tokenizers 0.20.3