Add NT v2 100m model for sequence conservation prediction
Browse files- README.md +62 -3
- config.json +45 -0
- esm_config.py +379 -0
- model.safetensors +3 -0
- modeling_esm.py +1446 -0
- special_tokens_map.json +6 -0
- tokenizer_config.json +44 -0
- vocab.txt +4107 -0
README.md
CHANGED
@@ -1,3 +1,62 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-sa-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
widget:
|
4 |
+
- text: ATTTTGGAAATCGGAAATCTTCTGTGTTTATCCGTACCAATCCCTGGATCAGTAGTTGGTACACACATACATAGTTGGATCACAACATATCACGAATGAATTTAGGCTAAAAGAGTTAAATACTTACATTAGGGCCAGGTAGGCCAACAACTATCAGAGAACAACAGCGGAAGACAAAATAATATAAGGGCCCGGTTAACATGCCACAAGCAGTCGACTGGGGAACGAGACCTAGAACAAGACCGCACTCCGATCATCTTGTGGGATACGCAAGCGTACCGACAAGGGCTTCTCTTCAACACTCTCCTAAAAGATATATAAATAGCAAGGGTGAGTACCAACCGTACTCAGCAAGCCACCACAACAACAATGCGTATGATAGAGGGTATTTCAAGGAATGGCTTCAGGTTCTTTTGCATAAAGCTAATTTTACAATTCTTTTCACAAGCCTAAAACCTAGCATAGACTGATCAAATTTTAGTACCAGTGTTCACTTTAAACAACGACGGTTCTGTCCACCATCCATTGTGATCCCAAGGATAGCTTCCCGCCATTGAATCGTCATGGTTTTCTAAGGATGTCCACCTTCCCTCCTCTCGGGAAGTGGCTCCATCAGCATAAAATTCATCATGCAATATCCCATCCCCCACAAGTTAAAAATTTAGAGTCTAGCCAAGTGTAATACATGTCCCGGTGCTCAATAACCGCGAGCACGGCTATTCGAATAGATTTGGTTTACTCACACTGCAGTGGATGTACACTTTACCCGCACTCCGCAACTGCCCAACACATGAGCCTCGTCCGAACACATGGGACGCGTCACGGCAAAGCTTTTCGATAACCTCGCATTGGTAGTACCCGCTCCATGAACTTAAATCCTCATGCACTCTAGGCGTCCATGTTTCTAGCAGTGAGAGGAGTTCTGGCGCTCCCGGGAAAGAGAAGTCTCACACGCATATTAAATTATGGTTCAAGTTAAGTTCTCTCTCTCACACACTCA
|
5 |
+
tags:
|
6 |
+
- DNA
|
7 |
+
- biology
|
8 |
+
- genomics
|
9 |
+
---
|
10 |
+
# Plant foundation DNA large language models
|
11 |
+
|
12 |
+
The plant DNA large language models (LLMs) contain a series of foundation models based on different model architectures, which are pre-trained on various plant reference genomes.
|
13 |
+
All the models have a comparable model size between 90 MB and 150 MB, BPE tokenizer is used for tokenization and 8000 tokens are included in the vocabulary.
|
14 |
+
|
15 |
+
|
16 |
+
**Developed by:** zhangtaolab
|
17 |
+
|
18 |
+
### Model Sources
|
19 |
+
|
20 |
+
- **Repository:** [Plant DNA LLMs](https://github.com/zhangtaolab/plant_DNA_LLMs)
|
21 |
+
- **Manuscript:** [Versatile applications of foundation DNA large language models in plant genomes]()
|
22 |
+
|
23 |
+
### Architecture
|
24 |
+
|
25 |
+
The model is trained based on the InstaDeepAI/nucleotide-transformer-v2-100m-multi-species model with modified tokenizer that replaces k-mer to BPE.
|
26 |
+
|
27 |
+
This model is fine-tuned for predicting sequence conservation.
|
28 |
+
|
29 |
+
### How to use
|
30 |
+
|
31 |
+
Install the runtime library first:
|
32 |
+
```bash
|
33 |
+
pip install transformers
|
34 |
+
```
|
35 |
+
|
36 |
+
Here is a simple code for inference:
|
37 |
+
```python
|
38 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
39 |
+
|
40 |
+
model_name = 'nucleotide-transformer-v2-100m-conservation'
|
41 |
+
# load model and tokenizer
|
42 |
+
model = AutoModelForSequenceClassification.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
44 |
+
|
45 |
+
# inference
|
46 |
+
sequences = ['ACATGCTAAATTAGTTGGCAATTTTTTCTCAGGTAGCTGGGCACAATTTGGTAGTCCAGTTGAACAAAATCCATTAGCTTCTTTTAGCAAGTCCCCTGGTTTGGGCCCTGCCAGTCCCATTAATACCAACCATTTGTCTGGATTGGCTGCAATTCTTTCCCCACAAGCAACAACCTCTACCAAGATTGCACCGATTGGCAAGGACCCTGGAAGGGCTGCAAATCAGATGTTTTCTAACTCTGGATCAACACAAGGAGCAGCTTTTCAGCATTCTATATCCTTTCCTGAGCAAAATGTAAAGGCAAGTCCTAGGCCTATATCTACTTTTGGTGAATCAAGTTCTAGTGCATCAAGTATTGGAACACTGTCCGGTCCTCAATTTCTTTGGGGAAGCCCAACTCCTTACTCTGAGCATTCAAACACTTCTGCCTGGTCTTCATCTTCGGTGGGGCTTCCATTTACATCTAGTGTCCAAAGGCAGGGTTTCCCATATACTAGTAATCACAGTCCTTTTCTTGGCTCCCACTCTCATCATCATGTTGGATCTGCTCCATCTGGCCTTCCGCTTGATAGGCATTTTAGCTACTTCCCTGAGTCACCTGAAGCTTCTCTCATGAGCCCGGTTGCATTTGGGAATTTAAATCACGGTGATGGGAATTTTATGATGAACAACATTAGTGCTCGTGCATCTGTAGGAGCCGGTGTTGGTCTTTCTGGAAATACCCCTGAAATTAGTTCACCCAATTTCAGAATGATGTCTCTGCCTAGGCATGGTTCCTTGTTCCATGGAAATAGTTTGTATTCTGGACCTGGAGCAACTAACATTGAGGGATTAGCTGAACGTGGACGAAGTAGACGACCTGAAAATGGTGGGAACCAAATTGATAGTAAGAAGCTGTACCAGCTTGATCTTGACAAAATCGTCTGTGGTGAAGATACAAGGACTACTTTAATGATTAAAAACATTCCTAACAAGTAAGAATAACTAAACATCTATCCT',
|
47 |
+
'GTCGCAAAAATTGGGCCACTTGCAGTTCAATCTGTTTAATCAAAATTGCATGTGTATCAACTTTTTGCCCAATACTAGCTATATCACACCTCAACTCTTTAATGTGTTCATCACTAGTGTCGAACCTCCTCATCATTTTGTCCAACATATCCTCAACTCGCGCCATACTATCTCCACCATCCCTAGGAGTAACTTCACGATTTTGAGGAGGGACATAGGGCCCATTCCTGTCGTTTCTATTAGCATAGTTACTCCTGTTAAAGTTGTTGTCGCGGTTGTAGTTTCCATCACGTACATAATGACTCTCACGGTTGTAGTTACCATAGTTCCGACCTGGGTTCCCTTGAACTTGGCGCCAGTTATCCTGATTTGAGCCTTGGGCGCTTGGTCGGAAACCCCCTGTCTGCTCATTTACTGCATAAGTGTCCTCCGCGTAACATCATTAGGAGGTGGTGGTTTAGCAAAGTAGTTGACTGCATTTATCTTTTCTGCACCCCCTGTGACATTTTTTAGTACCAACCCAAGCTCAGTTCTCATCTGAGACATTTCTTCTCGAATCTCATCTGTGGCTCGGTTGTGAGTGGACTGCACTACGAAGGTGTTTTTCCCTGTATCAAACTTCCTAGTACTCCAAGCTTTGTTATTTCGGGAGATTTTCTCTAGTTTTTCTGCAATCTCAACATAAGTGCATTCTCCATAAGATCCACCTGCTATAGTGTCCAACACCGCTTTATTGTTATCATCCTGTCCCCGATAGAAGTATTCCTTCAGTGACTCATCATCTATACGGTGATTTAGAACACTTCTCAAGAATGAGGTGAATCTATCCCAAGAACTACTAACTAACTCTCCTGGTAGTGCCACAAAGCTGTTCACCCTTTCTTTGTGGTTTAACTTCTTGGAGATCGGATAGTAGCGTGCTAAGAAGACATCCCTTAGTTGGTTCCAAGTGAATATGGAGTTGTATGCGAGCTTAGTGAACCACATTGCAGCCTCTCCC']
|
48 |
+
pipe = pipeline('text-classification', model=model, tokenizer=tokenizer,
|
49 |
+
trust_remote_code=True, top_k=None)
|
50 |
+
results = pipe(sequences)
|
51 |
+
print(results)
|
52 |
+
|
53 |
+
```
|
54 |
+
|
55 |
+
|
56 |
+
### Training data
|
57 |
+
We use EsmForSequenceClassification to fine-tune the model.
|
58 |
+
Detailed training procedure can be found in our manuscript.
|
59 |
+
|
60 |
+
|
61 |
+
#### Hardware
|
62 |
+
Model was trained on a NVIDIA GTX1080Ti GPU (11 GB).
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "NT_v2_100m_conservation",
|
3 |
+
"add_bias_fnn": false,
|
4 |
+
"architectures": [
|
5 |
+
"EsmForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "esm_config.EsmConfig",
|
10 |
+
"AutoModel": "modeling_esm.EsmModel",
|
11 |
+
"AutoModelForMaskedLM": "modeling_esm.EsmForMaskedLM",
|
12 |
+
"AutoModelForSequenceClassification": "modeling_esm.EsmForSequenceClassification"
|
13 |
+
},
|
14 |
+
"emb_layer_norm_before": false,
|
15 |
+
"esmfold_config": null,
|
16 |
+
"hidden_dropout_prob": 0.0,
|
17 |
+
"hidden_size": 512,
|
18 |
+
"id2label": {
|
19 |
+
"0": "Not conserved",
|
20 |
+
"1": "Conserved"
|
21 |
+
},
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"intermediate_size": 2048,
|
24 |
+
"is_folding_model": false,
|
25 |
+
"label2id": {
|
26 |
+
"Not conserved": 0,
|
27 |
+
"Conserved": 1
|
28 |
+
},
|
29 |
+
"layer_norm_eps": 1e-12,
|
30 |
+
"mask_token_id": 2,
|
31 |
+
"max_position_embeddings": 2050,
|
32 |
+
"model_type": "esm",
|
33 |
+
"num_attention_heads": 16,
|
34 |
+
"num_hidden_layers": 22,
|
35 |
+
"pad_token_id": 1,
|
36 |
+
"position_embedding_type": "rotary",
|
37 |
+
"problem_type": "single_label_classification",
|
38 |
+
"tie_word_embeddings": false,
|
39 |
+
"token_dropout": false,
|
40 |
+
"torch_dtype": "float32",
|
41 |
+
"transformers_version": "4.39.1",
|
42 |
+
"use_cache": false,
|
43 |
+
"vocab_list": null,
|
44 |
+
"vocab_size": 4107
|
45 |
+
}
|
esm_config.py
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" ESM model configuration"""
|
16 |
+
|
17 |
+
from dataclasses import asdict, dataclass
|
18 |
+
from typing import Optional
|
19 |
+
|
20 |
+
from transformers import PretrainedConfig, logging
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
# TODO Update this
|
25 |
+
ESM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json",
|
27 |
+
# See all ESM models at https://huggingface.co/models?filter=esm
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class EsmConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model
|
34 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the ESM
|
36 |
+
[facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture.
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*):
|
44 |
+
Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the
|
45 |
+
`inputs_ids` passed when calling [`ESMModel`].
|
46 |
+
mask_token_id (`int`, *optional*):
|
47 |
+
The index of the mask token in the vocabulary. This must be included in the config because of the
|
48 |
+
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
|
49 |
+
pad_token_id (`int`, *optional*):
|
50 |
+
The index of the padding token in the vocabulary. This must be included in the config because certain parts
|
51 |
+
of the ESM code use this instead of the attention mask.
|
52 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
53 |
+
Dimensionality of the encoder layers and the pooler layer.
|
54 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
55 |
+
Number of hidden layers in the Transformer encoder.
|
56 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
57 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
58 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
59 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
62 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout ratio for the attention probabilities.
|
64 |
+
max_position_embeddings (`int`, *optional*, defaults to 1026):
|
65 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
66 |
+
just in case (e.g., 512 or 1024 or 2048).
|
67 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
70 |
+
The epsilon used by the layer normalization layers.
|
71 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
72 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`.
|
73 |
+
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
74 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
75 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
76 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
77 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
78 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
79 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
80 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
81 |
+
relevant if `config.is_decoder=True`.
|
82 |
+
emb_layer_norm_before (`bool`, *optional*):
|
83 |
+
Whether to apply layer normalization after embeddings but before the main stem of the network.
|
84 |
+
token_dropout (`bool`, defaults to `False`):
|
85 |
+
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
|
86 |
+
|
87 |
+
Examples:
|
88 |
+
|
89 |
+
```python
|
90 |
+
>>> from transformers import EsmModel, EsmConfig
|
91 |
+
|
92 |
+
>>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig()
|
93 |
+
|
94 |
+
>>> # Initializing a model from the configuration >>> model = ESMModel(configuration)
|
95 |
+
|
96 |
+
>>> # Accessing the model configuration >>> configuration = model.config
|
97 |
+
```"""
|
98 |
+
model_type = "esm"
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
vocab_size=None,
|
103 |
+
mask_token_id=None,
|
104 |
+
pad_token_id=None,
|
105 |
+
hidden_size=768,
|
106 |
+
num_hidden_layers=12,
|
107 |
+
num_attention_heads=12,
|
108 |
+
intermediate_size=3072,
|
109 |
+
hidden_dropout_prob=0.1,
|
110 |
+
attention_probs_dropout_prob=0.1,
|
111 |
+
max_position_embeddings=1026,
|
112 |
+
initializer_range=0.02,
|
113 |
+
layer_norm_eps=1e-12,
|
114 |
+
position_embedding_type="absolute",
|
115 |
+
use_cache=True,
|
116 |
+
emb_layer_norm_before=None,
|
117 |
+
token_dropout=False,
|
118 |
+
is_folding_model=False,
|
119 |
+
esmfold_config=None,
|
120 |
+
vocab_list=None,
|
121 |
+
add_bias_fnn=True,
|
122 |
+
**kwargs,
|
123 |
+
):
|
124 |
+
super().__init__(
|
125 |
+
pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs
|
126 |
+
)
|
127 |
+
|
128 |
+
self.vocab_size = vocab_size
|
129 |
+
self.hidden_size = hidden_size
|
130 |
+
self.num_hidden_layers = num_hidden_layers
|
131 |
+
self.num_attention_heads = num_attention_heads
|
132 |
+
self.intermediate_size = intermediate_size
|
133 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
134 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
135 |
+
self.max_position_embeddings = max_position_embeddings
|
136 |
+
self.initializer_range = initializer_range
|
137 |
+
self.layer_norm_eps = layer_norm_eps
|
138 |
+
self.position_embedding_type = position_embedding_type
|
139 |
+
self.use_cache = use_cache
|
140 |
+
self.emb_layer_norm_before = emb_layer_norm_before
|
141 |
+
self.token_dropout = token_dropout
|
142 |
+
self.is_folding_model = is_folding_model
|
143 |
+
# Arguments needed for Dalmatian
|
144 |
+
self.add_bias_fnn = add_bias_fnn
|
145 |
+
if is_folding_model:
|
146 |
+
if esmfold_config is None:
|
147 |
+
logger.info(
|
148 |
+
"No esmfold_config supplied for folding model, using default values."
|
149 |
+
)
|
150 |
+
esmfold_config = EsmFoldConfig()
|
151 |
+
elif isinstance(esmfold_config, dict):
|
152 |
+
esmfold_config = EsmFoldConfig(**esmfold_config)
|
153 |
+
self.esmfold_config = esmfold_config
|
154 |
+
if vocab_list is None:
|
155 |
+
logger.warning(
|
156 |
+
"No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!"
|
157 |
+
)
|
158 |
+
self.vocab_list = get_default_vocab_list()
|
159 |
+
else:
|
160 |
+
self.vocab_list = vocab_list
|
161 |
+
else:
|
162 |
+
self.esmfold_config = None
|
163 |
+
self.vocab_list = None
|
164 |
+
if self.esmfold_config is not None and getattr(
|
165 |
+
self.esmfold_config, "use_esm_attn_map", False
|
166 |
+
):
|
167 |
+
raise ValueError(
|
168 |
+
"The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!"
|
169 |
+
)
|
170 |
+
|
171 |
+
def to_dict(self):
|
172 |
+
"""
|
173 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
177 |
+
"""
|
178 |
+
output = super().to_dict()
|
179 |
+
if isinstance(self.esmfold_config, EsmFoldConfig):
|
180 |
+
output["esmfold_config"] = self.esmfold_config.to_dict()
|
181 |
+
return output
|
182 |
+
|
183 |
+
|
184 |
+
@dataclass
|
185 |
+
class EsmFoldConfig:
|
186 |
+
esm_type: str = None
|
187 |
+
fp16_esm: bool = True
|
188 |
+
use_esm_attn_map: bool = False
|
189 |
+
esm_ablate_pairwise: bool = False
|
190 |
+
esm_ablate_sequence: bool = False
|
191 |
+
esm_input_dropout: float = 0
|
192 |
+
|
193 |
+
embed_aa: bool = True
|
194 |
+
bypass_lm: bool = False
|
195 |
+
|
196 |
+
lddt_head_hid_dim: int = 128
|
197 |
+
trunk: "TrunkConfig" = None
|
198 |
+
|
199 |
+
def __post_init__(self):
|
200 |
+
if self.trunk is None:
|
201 |
+
self.trunk = TrunkConfig()
|
202 |
+
elif isinstance(self.trunk, dict):
|
203 |
+
self.trunk = TrunkConfig(**self.trunk)
|
204 |
+
|
205 |
+
def to_dict(self):
|
206 |
+
"""
|
207 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
211 |
+
"""
|
212 |
+
output = asdict(self)
|
213 |
+
output["trunk"] = self.trunk.to_dict()
|
214 |
+
return output
|
215 |
+
|
216 |
+
|
217 |
+
@dataclass
|
218 |
+
class TrunkConfig:
|
219 |
+
num_blocks: int = 48
|
220 |
+
sequence_state_dim: int = 1024
|
221 |
+
pairwise_state_dim: int = 128
|
222 |
+
sequence_head_width: int = 32
|
223 |
+
pairwise_head_width: int = 32
|
224 |
+
position_bins: int = 32
|
225 |
+
dropout: float = 0
|
226 |
+
layer_drop: float = 0
|
227 |
+
cpu_grad_checkpoint: bool = False
|
228 |
+
max_recycles: int = 4
|
229 |
+
chunk_size: Optional[int] = 128
|
230 |
+
structure_module: "StructureModuleConfig" = None
|
231 |
+
|
232 |
+
def __post_init__(self):
|
233 |
+
if self.structure_module is None:
|
234 |
+
self.structure_module = StructureModuleConfig()
|
235 |
+
elif isinstance(self.structure_module, dict):
|
236 |
+
self.structure_module = StructureModuleConfig(**self.structure_module)
|
237 |
+
|
238 |
+
if self.max_recycles <= 0:
|
239 |
+
raise ValueError(
|
240 |
+
f"`max_recycles` should be positive, got {self.max_recycles}."
|
241 |
+
)
|
242 |
+
if self.sequence_state_dim % self.sequence_state_dim != 0:
|
243 |
+
raise ValueError(
|
244 |
+
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
|
245 |
+
f" {self.sequence_state_dim} and {self.sequence_state_dim}."
|
246 |
+
)
|
247 |
+
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
|
248 |
+
raise ValueError(
|
249 |
+
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
|
250 |
+
f" {self.pairwise_state_dim} and {self.pairwise_state_dim}."
|
251 |
+
)
|
252 |
+
|
253 |
+
sequence_num_heads = self.sequence_state_dim // self.sequence_head_width
|
254 |
+
pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width
|
255 |
+
|
256 |
+
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
|
257 |
+
raise ValueError(
|
258 |
+
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
|
259 |
+
f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}."
|
260 |
+
)
|
261 |
+
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
|
262 |
+
raise ValueError(
|
263 |
+
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
|
264 |
+
f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}."
|
265 |
+
)
|
266 |
+
if self.pairwise_state_dim % 2 != 0:
|
267 |
+
raise ValueError(
|
268 |
+
f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}."
|
269 |
+
)
|
270 |
+
|
271 |
+
if self.dropout >= 0.4:
|
272 |
+
raise ValueError(
|
273 |
+
f"`dropout` should not be greater than 0.4, got {self.dropout}."
|
274 |
+
)
|
275 |
+
|
276 |
+
def to_dict(self):
|
277 |
+
"""
|
278 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
279 |
+
|
280 |
+
Returns:
|
281 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
282 |
+
"""
|
283 |
+
output = asdict(self)
|
284 |
+
output["structure_module"] = self.structure_module.to_dict()
|
285 |
+
return output
|
286 |
+
|
287 |
+
|
288 |
+
@dataclass
|
289 |
+
class StructureModuleConfig:
|
290 |
+
"""
|
291 |
+
Args:
|
292 |
+
sequence_dim:
|
293 |
+
Single representation channel dimension
|
294 |
+
pairwise_dim:
|
295 |
+
Pair representation channel dimension
|
296 |
+
ipa_dim:
|
297 |
+
IPA hidden channel dimension
|
298 |
+
resnet_dim:
|
299 |
+
Angle resnet (Alg. 23 lines 11-14) hidden channel dimension
|
300 |
+
num_heads_ipa:
|
301 |
+
Number of IPA heads
|
302 |
+
num_qk_points:
|
303 |
+
Number of query/key points to generate during IPA
|
304 |
+
num_v_points:
|
305 |
+
Number of value points to generate during IPA
|
306 |
+
dropout_rate:
|
307 |
+
Dropout rate used throughout the layer
|
308 |
+
num_blocks:
|
309 |
+
Number of structure module blocks
|
310 |
+
num_transition_layers:
|
311 |
+
Number of layers in the single representation transition (Alg. 23 lines 8-9)
|
312 |
+
num_resnet_blocks:
|
313 |
+
Number of blocks in the angle resnet
|
314 |
+
num_angles:
|
315 |
+
Number of angles to generate in the angle resnet
|
316 |
+
trans_scale_factor:
|
317 |
+
Scale of single representation transition hidden dimension
|
318 |
+
epsilon:
|
319 |
+
Small number used in angle resnet normalization
|
320 |
+
inf:
|
321 |
+
Large number used for attention masking
|
322 |
+
"""
|
323 |
+
|
324 |
+
sequence_dim: int = 384
|
325 |
+
pairwise_dim: int = 128
|
326 |
+
ipa_dim: int = 16
|
327 |
+
resnet_dim: int = 128
|
328 |
+
num_heads_ipa: int = 12
|
329 |
+
num_qk_points: int = 4
|
330 |
+
num_v_points: int = 8
|
331 |
+
dropout_rate: float = 0.1
|
332 |
+
num_blocks: int = 8
|
333 |
+
num_transition_layers: int = 1
|
334 |
+
num_resnet_blocks: int = 2
|
335 |
+
num_angles: int = 7
|
336 |
+
trans_scale_factor: int = 10
|
337 |
+
epsilon: float = 1e-8
|
338 |
+
inf: float = 1e5
|
339 |
+
|
340 |
+
def to_dict(self):
|
341 |
+
return asdict(self)
|
342 |
+
|
343 |
+
|
344 |
+
def get_default_vocab_list():
|
345 |
+
return (
|
346 |
+
"<cls>",
|
347 |
+
"<pad>",
|
348 |
+
"<eos>",
|
349 |
+
"<unk>",
|
350 |
+
"L",
|
351 |
+
"A",
|
352 |
+
"G",
|
353 |
+
"V",
|
354 |
+
"S",
|
355 |
+
"E",
|
356 |
+
"R",
|
357 |
+
"T",
|
358 |
+
"I",
|
359 |
+
"D",
|
360 |
+
"P",
|
361 |
+
"K",
|
362 |
+
"Q",
|
363 |
+
"N",
|
364 |
+
"F",
|
365 |
+
"Y",
|
366 |
+
"M",
|
367 |
+
"H",
|
368 |
+
"W",
|
369 |
+
"C",
|
370 |
+
"X",
|
371 |
+
"B",
|
372 |
+
"U",
|
373 |
+
"Z",
|
374 |
+
"O",
|
375 |
+
".",
|
376 |
+
"-",
|
377 |
+
"<null_1>",
|
378 |
+
"<mask>",
|
379 |
+
)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67e4303c7a98bbd8b0a4963ec1c398950a981e4ff703f87653f948247ea38198
|
3 |
+
size 383169868
|
modeling_esm.py
ADDED
@@ -0,0 +1,1446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ESM model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss, SiLU
|
24 |
+
from transformers.file_utils import (
|
25 |
+
add_code_sample_docstrings,
|
26 |
+
add_start_docstrings,
|
27 |
+
add_start_docstrings_to_model_forward,
|
28 |
+
)
|
29 |
+
from transformers.modeling_outputs import (
|
30 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
31 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
32 |
+
MaskedLMOutput,
|
33 |
+
SequenceClassifierOutput,
|
34 |
+
TokenClassifierOutput,
|
35 |
+
)
|
36 |
+
from transformers.modeling_utils import (
|
37 |
+
PreTrainedModel,
|
38 |
+
find_pruneable_heads_and_indices,
|
39 |
+
prune_linear_layer,
|
40 |
+
)
|
41 |
+
from transformers.utils import logging
|
42 |
+
|
43 |
+
from .esm_config import EsmConfig
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
|
48 |
+
_CONFIG_FOR_DOC = "EsmConfig"
|
49 |
+
|
50 |
+
ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
51 |
+
"facebook/esm2_t6_8M_UR50D",
|
52 |
+
"facebook/esm2_t12_35M_UR50D",
|
53 |
+
# This is not a complete list of all ESM models!
|
54 |
+
# See all ESM models at https://huggingface.co/models?filter=esm
|
55 |
+
]
|
56 |
+
|
57 |
+
|
58 |
+
def rotate_half(x):
|
59 |
+
x1, x2 = x.chunk(2, dim=-1)
|
60 |
+
return torch.cat((-x2, x1), dim=-1)
|
61 |
+
|
62 |
+
|
63 |
+
def apply_rotary_pos_emb(x, cos, sin):
|
64 |
+
cos = cos[:, :, : x.shape[-2], :]
|
65 |
+
sin = sin[:, :, : x.shape[-2], :]
|
66 |
+
|
67 |
+
return (x * cos) + (rotate_half(x) * sin)
|
68 |
+
|
69 |
+
|
70 |
+
def gelu(x):
|
71 |
+
"""
|
72 |
+
This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results.
|
73 |
+
"""
|
74 |
+
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
75 |
+
|
76 |
+
|
77 |
+
def symmetrize(x):
|
78 |
+
"Make layer symmetric in final two dimensions, used for contact prediction."
|
79 |
+
return x + x.transpose(-1, -2)
|
80 |
+
|
81 |
+
|
82 |
+
def average_product_correct(x):
|
83 |
+
"Perform average product correct, used for contact prediction."
|
84 |
+
a1 = x.sum(-1, keepdims=True)
|
85 |
+
a2 = x.sum(-2, keepdims=True)
|
86 |
+
a12 = x.sum((-1, -2), keepdims=True)
|
87 |
+
|
88 |
+
avg = a1 * a2
|
89 |
+
avg.div_(a12) # in-place to reduce memory
|
90 |
+
normalized = x - avg
|
91 |
+
return normalized
|
92 |
+
|
93 |
+
|
94 |
+
class RotaryEmbedding(torch.nn.Module):
|
95 |
+
"""
|
96 |
+
Rotary position embeddings based on those in
|
97 |
+
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
|
98 |
+
matrices which depend on their relative positions.
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(self, dim: int):
|
102 |
+
super().__init__()
|
103 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
104 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
105 |
+
inv_freq = inv_freq
|
106 |
+
self.register_buffer("inv_freq", inv_freq)
|
107 |
+
|
108 |
+
self._seq_len_cached = None
|
109 |
+
self._cos_cached = None
|
110 |
+
self._sin_cached = None
|
111 |
+
|
112 |
+
def _update_cos_sin_tables(self, x, seq_dimension=2):
|
113 |
+
seq_len = x.shape[seq_dimension]
|
114 |
+
|
115 |
+
# Reset the tables if the sequence length has changed,
|
116 |
+
# or if we're on a new device (possibly due to tracing for instance)
|
117 |
+
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
|
118 |
+
self._seq_len_cached = seq_len
|
119 |
+
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(
|
120 |
+
self.inv_freq
|
121 |
+
)
|
122 |
+
freqs = torch.outer(t, self.inv_freq)
|
123 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
124 |
+
|
125 |
+
self._cos_cached = emb.cos()[None, None, :, :]
|
126 |
+
self._sin_cached = emb.sin()[None, None, :, :]
|
127 |
+
|
128 |
+
return self._cos_cached, self._sin_cached
|
129 |
+
|
130 |
+
def forward(
|
131 |
+
self, q: torch.Tensor, k: torch.Tensor
|
132 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
133 |
+
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
|
134 |
+
k, seq_dimension=-2
|
135 |
+
)
|
136 |
+
|
137 |
+
return (
|
138 |
+
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
139 |
+
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
140 |
+
)
|
141 |
+
|
142 |
+
|
143 |
+
class EsmContactPredictionHead(nn.Module):
|
144 |
+
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
|
145 |
+
|
146 |
+
def __init__(
|
147 |
+
self,
|
148 |
+
in_features: int,
|
149 |
+
bias=True,
|
150 |
+
eos_idx: int = 2,
|
151 |
+
):
|
152 |
+
super().__init__()
|
153 |
+
self.in_features = in_features
|
154 |
+
self.eos_idx = eos_idx
|
155 |
+
self.regression = nn.Linear(in_features, 1, bias)
|
156 |
+
self.activation = nn.Sigmoid()
|
157 |
+
|
158 |
+
def forward(self, tokens, attentions):
|
159 |
+
# remove eos token attentions
|
160 |
+
eos_mask = tokens.ne(self.eos_idx).to(attentions)
|
161 |
+
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
|
162 |
+
attentions = attentions * eos_mask[:, None, None, :, :]
|
163 |
+
attentions = attentions[..., :-1, :-1]
|
164 |
+
# remove cls token attentions
|
165 |
+
attentions = attentions[..., 1:, 1:]
|
166 |
+
batch_size, layers, heads, seqlen, _ = attentions.size()
|
167 |
+
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
|
168 |
+
|
169 |
+
# features: batch x channels x tokens x tokens (symmetric)
|
170 |
+
attentions = attentions.to(
|
171 |
+
self.regression.weight.device
|
172 |
+
) # attentions always float32, may need to convert to float16
|
173 |
+
attentions = average_product_correct(symmetrize(attentions))
|
174 |
+
attentions = attentions.permute(0, 2, 3, 1)
|
175 |
+
return self.activation(self.regression(attentions).squeeze(3))
|
176 |
+
|
177 |
+
|
178 |
+
class EsmEmbeddings(nn.Module):
|
179 |
+
"""
|
180 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, config):
|
184 |
+
super().__init__()
|
185 |
+
self.word_embeddings = nn.Embedding(
|
186 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
187 |
+
)
|
188 |
+
|
189 |
+
if config.emb_layer_norm_before:
|
190 |
+
self.layer_norm = nn.LayerNorm(
|
191 |
+
config.hidden_size, eps=config.layer_norm_eps
|
192 |
+
)
|
193 |
+
else:
|
194 |
+
self.layer_norm = None
|
195 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
196 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
197 |
+
self.position_embedding_type = getattr(
|
198 |
+
config, "position_embedding_type", "absolute"
|
199 |
+
)
|
200 |
+
self.register_buffer(
|
201 |
+
"position_ids",
|
202 |
+
torch.arange(config.max_position_embeddings).expand((1, -1)),
|
203 |
+
persistent=False,
|
204 |
+
)
|
205 |
+
|
206 |
+
self.padding_idx = config.pad_token_id
|
207 |
+
self.position_embeddings = nn.Embedding(
|
208 |
+
config.max_position_embeddings,
|
209 |
+
config.hidden_size,
|
210 |
+
padding_idx=self.padding_idx,
|
211 |
+
)
|
212 |
+
self.token_dropout = config.token_dropout
|
213 |
+
self.mask_token_id = config.mask_token_id
|
214 |
+
|
215 |
+
def forward(
|
216 |
+
self,
|
217 |
+
input_ids=None,
|
218 |
+
attention_mask=None,
|
219 |
+
position_ids=None,
|
220 |
+
inputs_embeds=None,
|
221 |
+
past_key_values_length=0,
|
222 |
+
):
|
223 |
+
if position_ids is None:
|
224 |
+
if input_ids is not None:
|
225 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
226 |
+
position_ids = create_position_ids_from_input_ids(
|
227 |
+
input_ids, self.padding_idx, past_key_values_length
|
228 |
+
)
|
229 |
+
else:
|
230 |
+
position_ids = self.create_position_ids_from_inputs_embeds(
|
231 |
+
inputs_embeds
|
232 |
+
)
|
233 |
+
|
234 |
+
if inputs_embeds is None:
|
235 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
236 |
+
|
237 |
+
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
|
238 |
+
# embedding_scale factor here.
|
239 |
+
embeddings = inputs_embeds
|
240 |
+
|
241 |
+
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
|
242 |
+
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
|
243 |
+
# masked tokens are treated as if they were selected for input dropout and zeroed out.
|
244 |
+
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
|
245 |
+
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
|
246 |
+
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
|
247 |
+
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
|
248 |
+
if self.token_dropout:
|
249 |
+
embeddings.masked_fill_(
|
250 |
+
(input_ids == self.mask_token_id).unsqueeze(-1), 0.0
|
251 |
+
)
|
252 |
+
mask_ratio_train = (
|
253 |
+
0.15 * 0.8
|
254 |
+
) # Hardcoded as the ratio used in all ESM model training runs
|
255 |
+
src_lengths = attention_mask.sum(-1)
|
256 |
+
mask_ratio_observed = (input_ids == self.mask_token_id).sum(
|
257 |
+
-1
|
258 |
+
).float() / src_lengths
|
259 |
+
embeddings = (
|
260 |
+
embeddings
|
261 |
+
* (1 - mask_ratio_train)
|
262 |
+
/ (1 - mask_ratio_observed)[:, None, None]
|
263 |
+
).to(embeddings.dtype)
|
264 |
+
|
265 |
+
if self.position_embedding_type == "absolute":
|
266 |
+
position_embeddings = self.position_embeddings(position_ids)
|
267 |
+
embeddings += position_embeddings
|
268 |
+
|
269 |
+
if self.layer_norm is not None:
|
270 |
+
embeddings = self.layer_norm(embeddings)
|
271 |
+
if attention_mask is not None:
|
272 |
+
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(
|
273 |
+
embeddings.dtype
|
274 |
+
)
|
275 |
+
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
|
276 |
+
# embeddings = self.dropout(embeddings)
|
277 |
+
return embeddings
|
278 |
+
|
279 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
280 |
+
"""
|
281 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
282 |
+
|
283 |
+
Args:
|
284 |
+
inputs_embeds: torch.Tensor
|
285 |
+
|
286 |
+
Returns: torch.Tensor
|
287 |
+
"""
|
288 |
+
input_shape = inputs_embeds.size()[:-1]
|
289 |
+
sequence_length = input_shape[1]
|
290 |
+
|
291 |
+
position_ids = torch.arange(
|
292 |
+
self.padding_idx + 1,
|
293 |
+
sequence_length + self.padding_idx + 1,
|
294 |
+
dtype=torch.long,
|
295 |
+
device=inputs_embeds.device,
|
296 |
+
)
|
297 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
298 |
+
|
299 |
+
|
300 |
+
class EsmSelfAttention(nn.Module):
|
301 |
+
def __init__(self, config, position_embedding_type=None):
|
302 |
+
super().__init__()
|
303 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
304 |
+
config, "embedding_size"
|
305 |
+
):
|
306 |
+
raise ValueError(
|
307 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
308 |
+
f"heads ({config.num_attention_heads})"
|
309 |
+
)
|
310 |
+
|
311 |
+
self.num_attention_heads = config.num_attention_heads
|
312 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
313 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
314 |
+
|
315 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
316 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
317 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
318 |
+
|
319 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
320 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
321 |
+
config, "position_embedding_type", "absolute"
|
322 |
+
)
|
323 |
+
self.rotary_embeddings = None
|
324 |
+
if (
|
325 |
+
self.position_embedding_type == "relative_key"
|
326 |
+
or self.position_embedding_type == "relative_key_query"
|
327 |
+
):
|
328 |
+
self.max_position_embeddings = config.max_position_embeddings
|
329 |
+
self.distance_embedding = nn.Embedding(
|
330 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
331 |
+
)
|
332 |
+
elif self.position_embedding_type == "rotary":
|
333 |
+
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
|
334 |
+
|
335 |
+
self.is_decoder = config.is_decoder
|
336 |
+
|
337 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
338 |
+
new_x_shape = x.size()[:-1] + (
|
339 |
+
self.num_attention_heads,
|
340 |
+
self.attention_head_size,
|
341 |
+
)
|
342 |
+
x = x.view(new_x_shape)
|
343 |
+
return x.permute(0, 2, 1, 3)
|
344 |
+
|
345 |
+
def forward(
|
346 |
+
self,
|
347 |
+
hidden_states: torch.Tensor,
|
348 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
349 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
350 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
351 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
352 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
353 |
+
output_attentions: Optional[bool] = False,
|
354 |
+
) -> Tuple[torch.Tensor]:
|
355 |
+
mixed_query_layer = self.query(hidden_states)
|
356 |
+
|
357 |
+
# If this is instantiated as a cross-attention module, the keys
|
358 |
+
# and values come from an encoder; the attention mask needs to be
|
359 |
+
# such that the encoder's padding tokens are not attended to.
|
360 |
+
is_cross_attention = encoder_hidden_states is not None
|
361 |
+
|
362 |
+
if is_cross_attention and past_key_value is not None:
|
363 |
+
# reuse k,v, cross_attentions
|
364 |
+
key_layer = past_key_value[0]
|
365 |
+
value_layer = past_key_value[1]
|
366 |
+
attention_mask = encoder_attention_mask
|
367 |
+
elif is_cross_attention:
|
368 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
369 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
370 |
+
attention_mask = encoder_attention_mask
|
371 |
+
elif past_key_value is not None:
|
372 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
373 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
374 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
375 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
376 |
+
else:
|
377 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
378 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
379 |
+
|
380 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
381 |
+
|
382 |
+
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
|
383 |
+
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
|
384 |
+
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
|
385 |
+
# ESM code and fix rotary embeddings.
|
386 |
+
query_layer = query_layer * self.attention_head_size**-0.5
|
387 |
+
|
388 |
+
if self.is_decoder:
|
389 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
390 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
391 |
+
# key/value_states (first "if" case)
|
392 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
393 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
394 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
395 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
396 |
+
past_key_value = (key_layer, value_layer)
|
397 |
+
|
398 |
+
if self.position_embedding_type == "rotary":
|
399 |
+
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
|
400 |
+
|
401 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
402 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
403 |
+
|
404 |
+
if (
|
405 |
+
self.position_embedding_type == "relative_key"
|
406 |
+
or self.position_embedding_type == "relative_key_query"
|
407 |
+
):
|
408 |
+
seq_length = hidden_states.size()[1]
|
409 |
+
position_ids_l = torch.arange(
|
410 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
411 |
+
).view(-1, 1)
|
412 |
+
position_ids_r = torch.arange(
|
413 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
414 |
+
).view(1, -1)
|
415 |
+
distance = position_ids_l - position_ids_r
|
416 |
+
positional_embedding = self.distance_embedding(
|
417 |
+
distance + self.max_position_embeddings - 1
|
418 |
+
)
|
419 |
+
positional_embedding = positional_embedding.to(
|
420 |
+
dtype=query_layer.dtype
|
421 |
+
) # fp16 compatibility
|
422 |
+
|
423 |
+
if self.position_embedding_type == "relative_key":
|
424 |
+
relative_position_scores = torch.einsum(
|
425 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
426 |
+
)
|
427 |
+
attention_scores = attention_scores + relative_position_scores
|
428 |
+
elif self.position_embedding_type == "relative_key_query":
|
429 |
+
relative_position_scores_query = torch.einsum(
|
430 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
431 |
+
)
|
432 |
+
relative_position_scores_key = torch.einsum(
|
433 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
434 |
+
)
|
435 |
+
attention_scores = (
|
436 |
+
attention_scores
|
437 |
+
+ relative_position_scores_query
|
438 |
+
+ relative_position_scores_key
|
439 |
+
)
|
440 |
+
|
441 |
+
if attention_mask is not None:
|
442 |
+
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
|
443 |
+
attention_scores = attention_scores + attention_mask
|
444 |
+
|
445 |
+
# Normalize the attention scores to probabilities.
|
446 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
447 |
+
|
448 |
+
# This is actually dropping out entire tokens to attend to, which might
|
449 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
450 |
+
attention_probs = self.dropout(attention_probs)
|
451 |
+
|
452 |
+
# Mask heads if we want to
|
453 |
+
if head_mask is not None:
|
454 |
+
attention_probs = attention_probs * head_mask
|
455 |
+
|
456 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
457 |
+
|
458 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
459 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
460 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
461 |
+
|
462 |
+
outputs = (
|
463 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
464 |
+
)
|
465 |
+
|
466 |
+
if self.is_decoder:
|
467 |
+
outputs = outputs + (past_key_value,)
|
468 |
+
return outputs
|
469 |
+
|
470 |
+
|
471 |
+
class EsmSelfOutput(nn.Module):
|
472 |
+
def __init__(self, config):
|
473 |
+
super().__init__()
|
474 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
475 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
476 |
+
|
477 |
+
def forward(self, hidden_states, input_tensor):
|
478 |
+
hidden_states = self.dense(hidden_states)
|
479 |
+
hidden_states = self.dropout(hidden_states)
|
480 |
+
hidden_states += input_tensor
|
481 |
+
return hidden_states
|
482 |
+
|
483 |
+
|
484 |
+
class EsmAttention(nn.Module):
|
485 |
+
def __init__(self, config):
|
486 |
+
super().__init__()
|
487 |
+
self.self = EsmSelfAttention(config)
|
488 |
+
self.output = EsmSelfOutput(config)
|
489 |
+
self.pruned_heads = set()
|
490 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
491 |
+
|
492 |
+
def prune_heads(self, heads):
|
493 |
+
if len(heads) == 0:
|
494 |
+
return
|
495 |
+
heads, index = find_pruneable_heads_and_indices(
|
496 |
+
heads,
|
497 |
+
self.self.num_attention_heads,
|
498 |
+
self.self.attention_head_size,
|
499 |
+
self.pruned_heads,
|
500 |
+
)
|
501 |
+
|
502 |
+
# Prune linear layers
|
503 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
504 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
505 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
506 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
507 |
+
|
508 |
+
# Update hyper params and store pruned heads
|
509 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
510 |
+
self.self.all_head_size = (
|
511 |
+
self.self.attention_head_size * self.self.num_attention_heads
|
512 |
+
)
|
513 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
514 |
+
|
515 |
+
def forward(
|
516 |
+
self,
|
517 |
+
hidden_states,
|
518 |
+
attention_mask=None,
|
519 |
+
head_mask=None,
|
520 |
+
encoder_hidden_states=None,
|
521 |
+
encoder_attention_mask=None,
|
522 |
+
past_key_value=None,
|
523 |
+
output_attentions=False,
|
524 |
+
):
|
525 |
+
hidden_states_ln = self.LayerNorm(hidden_states)
|
526 |
+
self_outputs = self.self(
|
527 |
+
hidden_states_ln,
|
528 |
+
attention_mask,
|
529 |
+
head_mask,
|
530 |
+
encoder_hidden_states,
|
531 |
+
encoder_attention_mask,
|
532 |
+
past_key_value,
|
533 |
+
output_attentions,
|
534 |
+
)
|
535 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
536 |
+
outputs = (attention_output,) + self_outputs[
|
537 |
+
1:
|
538 |
+
] # add attentions if we output them
|
539 |
+
return outputs
|
540 |
+
|
541 |
+
|
542 |
+
class EsmIntermediate(nn.Module):
|
543 |
+
def __init__(self, config):
|
544 |
+
super().__init__()
|
545 |
+
|
546 |
+
self.dense = nn.Linear(
|
547 |
+
config.hidden_size,
|
548 |
+
int(config.intermediate_size * 2),
|
549 |
+
bias=config.add_bias_fnn,
|
550 |
+
)
|
551 |
+
self.activation_fn = SiLU()
|
552 |
+
|
553 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
554 |
+
hidden_states = self.dense(hidden_states)
|
555 |
+
|
556 |
+
# GLU
|
557 |
+
x1, x2 = hidden_states.split(int(hidden_states.size(-1) / 2), -1)
|
558 |
+
hidden_states = self.activation_fn(x1) * x2
|
559 |
+
|
560 |
+
return hidden_states
|
561 |
+
|
562 |
+
|
563 |
+
class EsmOutput(nn.Module):
|
564 |
+
def __init__(self, config):
|
565 |
+
super().__init__()
|
566 |
+
self.dense = nn.Linear(
|
567 |
+
config.intermediate_size, config.hidden_size, bias=config.add_bias_fnn
|
568 |
+
)
|
569 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
570 |
+
|
571 |
+
def forward(self, hidden_states, input_tensor):
|
572 |
+
hidden_states = self.dense(hidden_states)
|
573 |
+
hidden_states = self.dropout(hidden_states)
|
574 |
+
hidden_states += input_tensor
|
575 |
+
return hidden_states
|
576 |
+
|
577 |
+
|
578 |
+
class EsmLayer(nn.Module):
|
579 |
+
def __init__(self, config):
|
580 |
+
super().__init__()
|
581 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
582 |
+
self.seq_len_dim = 1
|
583 |
+
self.attention = EsmAttention(config)
|
584 |
+
self.is_decoder = config.is_decoder
|
585 |
+
self.add_cross_attention = config.add_cross_attention
|
586 |
+
if self.add_cross_attention:
|
587 |
+
if not self.is_decoder:
|
588 |
+
raise RuntimeError(
|
589 |
+
f"{self} should be used as a decoder model if cross attention is added"
|
590 |
+
)
|
591 |
+
self.crossattention = EsmAttention(config)
|
592 |
+
self.intermediate = EsmIntermediate(config)
|
593 |
+
self.output = EsmOutput(config)
|
594 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
595 |
+
|
596 |
+
def forward(
|
597 |
+
self,
|
598 |
+
hidden_states,
|
599 |
+
attention_mask=None,
|
600 |
+
head_mask=None,
|
601 |
+
encoder_hidden_states=None,
|
602 |
+
encoder_attention_mask=None,
|
603 |
+
past_key_value=None,
|
604 |
+
output_attentions=False,
|
605 |
+
):
|
606 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
607 |
+
self_attn_past_key_value = (
|
608 |
+
past_key_value[:2] if past_key_value is not None else None
|
609 |
+
)
|
610 |
+
self_attention_outputs = self.attention(
|
611 |
+
hidden_states,
|
612 |
+
attention_mask,
|
613 |
+
head_mask,
|
614 |
+
output_attentions=output_attentions,
|
615 |
+
past_key_value=self_attn_past_key_value,
|
616 |
+
)
|
617 |
+
attention_output = self_attention_outputs[0]
|
618 |
+
|
619 |
+
# if decoder, the last output is tuple of self-attn cache
|
620 |
+
if self.is_decoder:
|
621 |
+
outputs = self_attention_outputs[1:-1]
|
622 |
+
present_key_value = self_attention_outputs[-1]
|
623 |
+
else:
|
624 |
+
outputs = self_attention_outputs[
|
625 |
+
1:
|
626 |
+
] # add self attentions if we output attention weights
|
627 |
+
|
628 |
+
cross_attn_present_key_value = None
|
629 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
630 |
+
if not hasattr(self, "crossattention"):
|
631 |
+
raise AttributeError(
|
632 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
|
633 |
+
" with cross-attention layers by setting `config.add_cross_attention=True`"
|
634 |
+
)
|
635 |
+
|
636 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
637 |
+
cross_attn_past_key_value = (
|
638 |
+
past_key_value[-2:] if past_key_value is not None else None
|
639 |
+
)
|
640 |
+
cross_attention_outputs = self.crossattention(
|
641 |
+
attention_output,
|
642 |
+
attention_mask,
|
643 |
+
head_mask,
|
644 |
+
encoder_hidden_states,
|
645 |
+
encoder_attention_mask,
|
646 |
+
cross_attn_past_key_value,
|
647 |
+
output_attentions,
|
648 |
+
)
|
649 |
+
attention_output = cross_attention_outputs[0]
|
650 |
+
outputs = (
|
651 |
+
outputs + cross_attention_outputs[1:-1]
|
652 |
+
) # add cross attentions if we output attention weights
|
653 |
+
|
654 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
655 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
656 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
657 |
+
|
658 |
+
layer_output = self.feed_forward_chunk(attention_output)
|
659 |
+
|
660 |
+
outputs = (layer_output,) + outputs
|
661 |
+
|
662 |
+
# if decoder, return the attn key/values as the last output
|
663 |
+
if self.is_decoder:
|
664 |
+
outputs = outputs + (present_key_value,)
|
665 |
+
return outputs
|
666 |
+
|
667 |
+
def feed_forward_chunk(self, attention_output):
|
668 |
+
attention_output_ln = self.LayerNorm(attention_output)
|
669 |
+
intermediate_output = self.intermediate(attention_output_ln)
|
670 |
+
layer_output = self.output(intermediate_output, attention_output)
|
671 |
+
return layer_output
|
672 |
+
|
673 |
+
|
674 |
+
class EsmEncoder(nn.Module):
|
675 |
+
def __init__(self, config):
|
676 |
+
super().__init__()
|
677 |
+
self.config = config
|
678 |
+
self.layer = nn.ModuleList(
|
679 |
+
[EsmLayer(config) for _ in range(config.num_hidden_layers)]
|
680 |
+
)
|
681 |
+
self.emb_layer_norm_after = nn.LayerNorm(
|
682 |
+
config.hidden_size, eps=config.layer_norm_eps
|
683 |
+
)
|
684 |
+
self.gradient_checkpointing = False
|
685 |
+
|
686 |
+
def forward(
|
687 |
+
self,
|
688 |
+
hidden_states,
|
689 |
+
attention_mask=None,
|
690 |
+
head_mask=None,
|
691 |
+
encoder_hidden_states=None,
|
692 |
+
encoder_attention_mask=None,
|
693 |
+
past_key_values=None,
|
694 |
+
use_cache=None,
|
695 |
+
output_attentions=False,
|
696 |
+
output_hidden_states=False,
|
697 |
+
return_dict=True,
|
698 |
+
):
|
699 |
+
if self.gradient_checkpointing and self.training:
|
700 |
+
if use_cache:
|
701 |
+
logger.warning_once(
|
702 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
703 |
+
"`use_cache=False`..."
|
704 |
+
)
|
705 |
+
use_cache = False
|
706 |
+
all_hidden_states = () if output_hidden_states else None
|
707 |
+
all_self_attentions = () if output_attentions else None
|
708 |
+
all_cross_attentions = (
|
709 |
+
() if output_attentions and self.config.add_cross_attention else None
|
710 |
+
)
|
711 |
+
|
712 |
+
next_decoder_cache = () if use_cache else None
|
713 |
+
for i, layer_module in enumerate(self.layer):
|
714 |
+
if output_hidden_states:
|
715 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
716 |
+
|
717 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
718 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
719 |
+
|
720 |
+
if self.gradient_checkpointing and self.training:
|
721 |
+
|
722 |
+
def create_custom_forward(module):
|
723 |
+
def custom_forward(*inputs):
|
724 |
+
return module(*inputs, past_key_value, output_attentions)
|
725 |
+
|
726 |
+
return custom_forward
|
727 |
+
|
728 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
729 |
+
create_custom_forward(layer_module),
|
730 |
+
hidden_states,
|
731 |
+
attention_mask,
|
732 |
+
layer_head_mask,
|
733 |
+
encoder_hidden_states,
|
734 |
+
encoder_attention_mask,
|
735 |
+
)
|
736 |
+
else:
|
737 |
+
layer_outputs = layer_module(
|
738 |
+
hidden_states,
|
739 |
+
attention_mask,
|
740 |
+
layer_head_mask,
|
741 |
+
encoder_hidden_states,
|
742 |
+
encoder_attention_mask,
|
743 |
+
past_key_value,
|
744 |
+
output_attentions,
|
745 |
+
)
|
746 |
+
|
747 |
+
hidden_states = layer_outputs[0]
|
748 |
+
if use_cache:
|
749 |
+
next_decoder_cache += (layer_outputs[-1],)
|
750 |
+
if output_attentions:
|
751 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
752 |
+
if self.config.add_cross_attention:
|
753 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
754 |
+
|
755 |
+
if self.emb_layer_norm_after:
|
756 |
+
hidden_states = self.emb_layer_norm_after(hidden_states)
|
757 |
+
|
758 |
+
if output_hidden_states:
|
759 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
760 |
+
|
761 |
+
if not return_dict:
|
762 |
+
return tuple(
|
763 |
+
v
|
764 |
+
for v in [
|
765 |
+
hidden_states,
|
766 |
+
next_decoder_cache,
|
767 |
+
all_hidden_states,
|
768 |
+
all_self_attentions,
|
769 |
+
all_cross_attentions,
|
770 |
+
]
|
771 |
+
if v is not None
|
772 |
+
)
|
773 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
774 |
+
last_hidden_state=hidden_states,
|
775 |
+
past_key_values=next_decoder_cache,
|
776 |
+
hidden_states=all_hidden_states,
|
777 |
+
attentions=all_self_attentions,
|
778 |
+
cross_attentions=all_cross_attentions,
|
779 |
+
)
|
780 |
+
|
781 |
+
|
782 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
783 |
+
class EsmPooler(nn.Module):
|
784 |
+
def __init__(self, config):
|
785 |
+
super().__init__()
|
786 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
787 |
+
self.activation = nn.Tanh()
|
788 |
+
|
789 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
790 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
791 |
+
# to the first token.
|
792 |
+
first_token_tensor = hidden_states[:, 0]
|
793 |
+
pooled_output = self.dense(first_token_tensor)
|
794 |
+
pooled_output = self.activation(pooled_output)
|
795 |
+
return pooled_output
|
796 |
+
|
797 |
+
|
798 |
+
class EsmPreTrainedModel(PreTrainedModel):
|
799 |
+
"""
|
800 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
801 |
+
models.
|
802 |
+
"""
|
803 |
+
|
804 |
+
config_class = EsmConfig
|
805 |
+
base_model_prefix = "esm"
|
806 |
+
_no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock"]
|
807 |
+
|
808 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
809 |
+
def _init_weights(self, module):
|
810 |
+
"""Initialize the weights"""
|
811 |
+
if isinstance(module, nn.Linear):
|
812 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
813 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
814 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
815 |
+
if module.bias is not None:
|
816 |
+
module.bias.data.zero_()
|
817 |
+
elif isinstance(module, nn.Embedding):
|
818 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
819 |
+
if module.padding_idx is not None:
|
820 |
+
module.weight.data[module.padding_idx].zero_()
|
821 |
+
elif isinstance(module, nn.LayerNorm):
|
822 |
+
module.bias.data.zero_()
|
823 |
+
module.weight.data.fill_(1.0)
|
824 |
+
|
825 |
+
|
826 |
+
ESM_START_DOCSTRING = r"""
|
827 |
+
|
828 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
829 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
830 |
+
etc.)
|
831 |
+
|
832 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
833 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
834 |
+
and behavior.
|
835 |
+
|
836 |
+
Parameters:
|
837 |
+
config ([`EsmConfig`]): Model configuration class with all the parameters of the
|
838 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
839 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
840 |
+
"""
|
841 |
+
|
842 |
+
ESM_INPUTS_DOCSTRING = r"""
|
843 |
+
Args:
|
844 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
845 |
+
Indices of input sequence tokens in the vocabulary.
|
846 |
+
|
847 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
848 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
849 |
+
|
850 |
+
[What are input IDs?](../glossary#input-ids)
|
851 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
852 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
853 |
+
|
854 |
+
- 1 for tokens that are **not masked**,
|
855 |
+
- 0 for tokens that are **masked**.
|
856 |
+
|
857 |
+
[What are attention masks?](../glossary#attention-mask)
|
858 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
859 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
860 |
+
config.max_position_embeddings - 1]`.
|
861 |
+
|
862 |
+
[What are position IDs?](../glossary#position-ids)
|
863 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
864 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
865 |
+
|
866 |
+
- 1 indicates the head is **not masked**,
|
867 |
+
- 0 indicates the head is **masked**.
|
868 |
+
|
869 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
870 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
871 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
872 |
+
model's internal embedding lookup matrix.
|
873 |
+
output_attentions (`bool`, *optional*):
|
874 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
875 |
+
tensors for more detail.
|
876 |
+
output_hidden_states (`bool`, *optional*):
|
877 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
878 |
+
more detail.
|
879 |
+
return_dict (`bool`, *optional*):
|
880 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
881 |
+
"""
|
882 |
+
|
883 |
+
|
884 |
+
@add_start_docstrings(
|
885 |
+
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
|
886 |
+
ESM_START_DOCSTRING,
|
887 |
+
)
|
888 |
+
class EsmModel(EsmPreTrainedModel):
|
889 |
+
"""
|
890 |
+
|
891 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
892 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
893 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
894 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
895 |
+
|
896 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
897 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
898 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
899 |
+
"""
|
900 |
+
|
901 |
+
supports_gradient_checkpointing = False
|
902 |
+
|
903 |
+
def __init__(self, config, add_pooling_layer=True):
|
904 |
+
super().__init__(config)
|
905 |
+
self.config = config
|
906 |
+
|
907 |
+
self.embeddings = EsmEmbeddings(config)
|
908 |
+
self.encoder = EsmEncoder(config)
|
909 |
+
|
910 |
+
self.pooler = EsmPooler(config) if add_pooling_layer else None
|
911 |
+
|
912 |
+
self.contact_head = EsmContactPredictionHead(
|
913 |
+
in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
|
914 |
+
)
|
915 |
+
|
916 |
+
# Initialize weights and apply final processing
|
917 |
+
self.post_init()
|
918 |
+
|
919 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
920 |
+
if isinstance(module, EsmEncoder):
|
921 |
+
module.gradient_checkpointing = value
|
922 |
+
|
923 |
+
def get_input_embeddings(self):
|
924 |
+
return self.embeddings.word_embeddings
|
925 |
+
|
926 |
+
def set_input_embeddings(self, value):
|
927 |
+
self.embeddings.word_embeddings = value
|
928 |
+
|
929 |
+
def _prune_heads(self, heads_to_prune):
|
930 |
+
"""
|
931 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
932 |
+
class PreTrainedModel
|
933 |
+
"""
|
934 |
+
for layer, heads in heads_to_prune.items():
|
935 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
936 |
+
|
937 |
+
@add_start_docstrings_to_model_forward(
|
938 |
+
ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")
|
939 |
+
)
|
940 |
+
@add_code_sample_docstrings(
|
941 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
942 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
943 |
+
config_class=_CONFIG_FOR_DOC,
|
944 |
+
)
|
945 |
+
def forward(
|
946 |
+
self,
|
947 |
+
input_ids: Optional[torch.Tensor] = None,
|
948 |
+
attention_mask: Optional[torch.Tensor] = None,
|
949 |
+
position_ids: Optional[torch.Tensor] = None,
|
950 |
+
head_mask: Optional[torch.Tensor] = None,
|
951 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
952 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
953 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
954 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
955 |
+
use_cache: Optional[bool] = None,
|
956 |
+
output_attentions: Optional[bool] = None,
|
957 |
+
output_hidden_states: Optional[bool] = None,
|
958 |
+
return_dict: Optional[bool] = None,
|
959 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
960 |
+
r"""
|
961 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
962 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
963 |
+
the model is configured as a decoder.
|
964 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
965 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
966 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
967 |
+
|
968 |
+
- 1 for tokens that are **not masked**,
|
969 |
+
- 0 for tokens that are **masked**.
|
970 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
971 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
972 |
+
|
973 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
974 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
975 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
976 |
+
use_cache (`bool`, *optional*):
|
977 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
978 |
+
`past_key_values`).
|
979 |
+
"""
|
980 |
+
output_attentions = (
|
981 |
+
output_attentions
|
982 |
+
if output_attentions is not None
|
983 |
+
else self.config.output_attentions
|
984 |
+
)
|
985 |
+
output_hidden_states = (
|
986 |
+
output_hidden_states
|
987 |
+
if output_hidden_states is not None
|
988 |
+
else self.config.output_hidden_states
|
989 |
+
)
|
990 |
+
return_dict = (
|
991 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
992 |
+
)
|
993 |
+
|
994 |
+
if self.config.is_decoder:
|
995 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
996 |
+
else:
|
997 |
+
use_cache = False
|
998 |
+
|
999 |
+
if input_ids is not None and inputs_embeds is not None:
|
1000 |
+
raise ValueError(
|
1001 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
1002 |
+
)
|
1003 |
+
elif input_ids is not None:
|
1004 |
+
input_shape = input_ids.size()
|
1005 |
+
elif inputs_embeds is not None:
|
1006 |
+
input_shape = inputs_embeds.size()[:-1]
|
1007 |
+
else:
|
1008 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1009 |
+
|
1010 |
+
batch_size, seq_length = input_shape
|
1011 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1012 |
+
|
1013 |
+
# past_key_values_length
|
1014 |
+
past_key_values_length = (
|
1015 |
+
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
if attention_mask is None:
|
1019 |
+
attention_mask = torch.ones(
|
1020 |
+
((batch_size, seq_length + past_key_values_length)), device=device
|
1021 |
+
)
|
1022 |
+
|
1023 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1024 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1025 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
1026 |
+
attention_mask, input_shape
|
1027 |
+
)
|
1028 |
+
|
1029 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1030 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1031 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
1032 |
+
(
|
1033 |
+
encoder_batch_size,
|
1034 |
+
encoder_sequence_length,
|
1035 |
+
_,
|
1036 |
+
) = encoder_hidden_states.size()
|
1037 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1038 |
+
if encoder_attention_mask is None:
|
1039 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1040 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
1041 |
+
encoder_attention_mask
|
1042 |
+
)
|
1043 |
+
else:
|
1044 |
+
encoder_extended_attention_mask = None
|
1045 |
+
|
1046 |
+
# Prepare head mask if needed
|
1047 |
+
# 1.0 in head_mask indicate we keep the head
|
1048 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1049 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1050 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1051 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1052 |
+
|
1053 |
+
embedding_output = self.embeddings(
|
1054 |
+
input_ids=input_ids,
|
1055 |
+
position_ids=position_ids,
|
1056 |
+
attention_mask=attention_mask,
|
1057 |
+
inputs_embeds=inputs_embeds,
|
1058 |
+
past_key_values_length=past_key_values_length,
|
1059 |
+
)
|
1060 |
+
encoder_outputs = self.encoder(
|
1061 |
+
embedding_output,
|
1062 |
+
attention_mask=extended_attention_mask,
|
1063 |
+
head_mask=head_mask,
|
1064 |
+
encoder_hidden_states=encoder_hidden_states,
|
1065 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1066 |
+
past_key_values=past_key_values,
|
1067 |
+
use_cache=use_cache,
|
1068 |
+
output_attentions=output_attentions,
|
1069 |
+
output_hidden_states=output_hidden_states,
|
1070 |
+
return_dict=return_dict,
|
1071 |
+
)
|
1072 |
+
sequence_output = encoder_outputs[0]
|
1073 |
+
pooled_output = (
|
1074 |
+
self.pooler(sequence_output) if self.pooler is not None else None
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
if not return_dict:
|
1078 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1079 |
+
|
1080 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1081 |
+
last_hidden_state=sequence_output,
|
1082 |
+
pooler_output=pooled_output,
|
1083 |
+
past_key_values=encoder_outputs.past_key_values,
|
1084 |
+
hidden_states=encoder_outputs.hidden_states,
|
1085 |
+
attentions=encoder_outputs.attentions,
|
1086 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
def predict_contacts(self, tokens, attention_mask):
|
1090 |
+
attns = self(
|
1091 |
+
tokens,
|
1092 |
+
attention_mask=attention_mask,
|
1093 |
+
return_dict=True,
|
1094 |
+
output_attentions=True,
|
1095 |
+
).attentions
|
1096 |
+
attns = torch.stack(attns, dim=1) # Matches the original model layout
|
1097 |
+
# In the original model, attentions for padding tokens are completely zeroed out.
|
1098 |
+
# This makes no difference most of the time because the other tokens won't attend to them,
|
1099 |
+
# but it does for the contact prediction task, which takes attentions as input,
|
1100 |
+
# so we have to mimic that here.
|
1101 |
+
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
|
1102 |
+
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
|
1103 |
+
return self.contact_head(tokens, attns)
|
1104 |
+
|
1105 |
+
|
1106 |
+
@add_start_docstrings(
|
1107 |
+
"""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING
|
1108 |
+
)
|
1109 |
+
class EsmForMaskedLM(EsmPreTrainedModel):
|
1110 |
+
_tied_weights_keys = ["lm_head.decoder.weight"]
|
1111 |
+
|
1112 |
+
def __init__(self, config):
|
1113 |
+
super().__init__(config)
|
1114 |
+
|
1115 |
+
if config.is_decoder:
|
1116 |
+
logger.warning(
|
1117 |
+
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
|
1118 |
+
"bi-directional self-attention."
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
1122 |
+
self.lm_head = EsmLMHead(config)
|
1123 |
+
|
1124 |
+
self.init_weights()
|
1125 |
+
|
1126 |
+
def get_output_embeddings(self):
|
1127 |
+
return self.lm_head.decoder
|
1128 |
+
|
1129 |
+
def set_output_embeddings(self, new_embeddings):
|
1130 |
+
self.lm_head.decoder = new_embeddings
|
1131 |
+
|
1132 |
+
@add_start_docstrings_to_model_forward(
|
1133 |
+
ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1134 |
+
)
|
1135 |
+
@add_code_sample_docstrings(
|
1136 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1137 |
+
output_type=MaskedLMOutput,
|
1138 |
+
config_class=_CONFIG_FOR_DOC,
|
1139 |
+
mask="<mask>",
|
1140 |
+
)
|
1141 |
+
def forward(
|
1142 |
+
self,
|
1143 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1144 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1145 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1146 |
+
head_mask: Optional[torch.Tensor] = None,
|
1147 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1148 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1149 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1150 |
+
labels: Optional[torch.LongTensor] = None,
|
1151 |
+
output_attentions: Optional[bool] = None,
|
1152 |
+
output_hidden_states: Optional[bool] = None,
|
1153 |
+
return_dict: Optional[bool] = None,
|
1154 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1155 |
+
r"""
|
1156 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1157 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1158 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1159 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1160 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1161 |
+
Used to hide legacy arguments that have been deprecated.
|
1162 |
+
"""
|
1163 |
+
return_dict = (
|
1164 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
outputs = self.esm(
|
1168 |
+
input_ids,
|
1169 |
+
attention_mask=attention_mask,
|
1170 |
+
position_ids=position_ids,
|
1171 |
+
head_mask=head_mask,
|
1172 |
+
inputs_embeds=inputs_embeds,
|
1173 |
+
encoder_hidden_states=encoder_hidden_states,
|
1174 |
+
encoder_attention_mask=encoder_attention_mask,
|
1175 |
+
output_attentions=output_attentions,
|
1176 |
+
output_hidden_states=output_hidden_states,
|
1177 |
+
return_dict=return_dict,
|
1178 |
+
)
|
1179 |
+
sequence_output = outputs[0]
|
1180 |
+
prediction_scores = self.lm_head(sequence_output)
|
1181 |
+
|
1182 |
+
masked_lm_loss = None
|
1183 |
+
if labels is not None:
|
1184 |
+
loss_fct = CrossEntropyLoss()
|
1185 |
+
|
1186 |
+
labels = labels.to(prediction_scores.device)
|
1187 |
+
masked_lm_loss = loss_fct(
|
1188 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
if not return_dict:
|
1192 |
+
output = (prediction_scores,) + outputs[2:]
|
1193 |
+
return (
|
1194 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1195 |
+
)
|
1196 |
+
|
1197 |
+
return MaskedLMOutput(
|
1198 |
+
loss=masked_lm_loss,
|
1199 |
+
logits=prediction_scores,
|
1200 |
+
hidden_states=outputs.hidden_states,
|
1201 |
+
attentions=outputs.attentions,
|
1202 |
+
)
|
1203 |
+
|
1204 |
+
def predict_contacts(self, tokens, attention_mask):
|
1205 |
+
return self.esm.predict_contacts(tokens, attention_mask=attention_mask)
|
1206 |
+
|
1207 |
+
|
1208 |
+
class EsmLMHead(nn.Module):
|
1209 |
+
"""ESM Head for masked language modeling."""
|
1210 |
+
|
1211 |
+
def __init__(self, config):
|
1212 |
+
super().__init__()
|
1213 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1214 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1215 |
+
|
1216 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1217 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1218 |
+
|
1219 |
+
def forward(self, features, **kwargs):
|
1220 |
+
x = self.dense(features)
|
1221 |
+
x = gelu(x)
|
1222 |
+
x = self.layer_norm(x)
|
1223 |
+
|
1224 |
+
# project back to size of vocabulary with bias
|
1225 |
+
x = self.decoder(x) + self.bias
|
1226 |
+
return x
|
1227 |
+
|
1228 |
+
|
1229 |
+
@add_start_docstrings(
|
1230 |
+
"""
|
1231 |
+
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1232 |
+
output) e.g. for GLUE tasks.
|
1233 |
+
""",
|
1234 |
+
ESM_START_DOCSTRING,
|
1235 |
+
)
|
1236 |
+
class EsmForSequenceClassification(EsmPreTrainedModel):
|
1237 |
+
def __init__(self, config):
|
1238 |
+
super().__init__(config)
|
1239 |
+
self.num_labels = config.num_labels
|
1240 |
+
self.config = config
|
1241 |
+
|
1242 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
1243 |
+
self.classifier = EsmClassificationHead(config)
|
1244 |
+
|
1245 |
+
self.init_weights()
|
1246 |
+
|
1247 |
+
@add_start_docstrings_to_model_forward(
|
1248 |
+
ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1249 |
+
)
|
1250 |
+
@add_code_sample_docstrings(
|
1251 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1252 |
+
output_type=SequenceClassifierOutput,
|
1253 |
+
config_class=_CONFIG_FOR_DOC,
|
1254 |
+
)
|
1255 |
+
def forward(
|
1256 |
+
self,
|
1257 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1258 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1259 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1260 |
+
head_mask: Optional[torch.Tensor] = None,
|
1261 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1262 |
+
labels: Optional[torch.LongTensor] = None,
|
1263 |
+
output_attentions: Optional[bool] = None,
|
1264 |
+
output_hidden_states: Optional[bool] = None,
|
1265 |
+
return_dict: Optional[bool] = None,
|
1266 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1267 |
+
r"""
|
1268 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1269 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1270 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1271 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1272 |
+
"""
|
1273 |
+
return_dict = (
|
1274 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1275 |
+
)
|
1276 |
+
|
1277 |
+
outputs = self.esm(
|
1278 |
+
input_ids,
|
1279 |
+
attention_mask=attention_mask,
|
1280 |
+
position_ids=position_ids,
|
1281 |
+
head_mask=head_mask,
|
1282 |
+
inputs_embeds=inputs_embeds,
|
1283 |
+
output_attentions=output_attentions,
|
1284 |
+
output_hidden_states=output_hidden_states,
|
1285 |
+
return_dict=return_dict,
|
1286 |
+
)
|
1287 |
+
sequence_output = outputs[0]
|
1288 |
+
logits = self.classifier(sequence_output)
|
1289 |
+
|
1290 |
+
loss = None
|
1291 |
+
if labels is not None:
|
1292 |
+
labels = labels.to(logits.device)
|
1293 |
+
|
1294 |
+
if self.config.problem_type is None:
|
1295 |
+
if self.num_labels == 1:
|
1296 |
+
self.config.problem_type = "regression"
|
1297 |
+
elif self.num_labels > 1 and (
|
1298 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1299 |
+
):
|
1300 |
+
self.config.problem_type = "single_label_classification"
|
1301 |
+
else:
|
1302 |
+
self.config.problem_type = "multi_label_classification"
|
1303 |
+
|
1304 |
+
if self.config.problem_type == "regression":
|
1305 |
+
loss_fct = MSELoss()
|
1306 |
+
if self.num_labels == 1:
|
1307 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1308 |
+
else:
|
1309 |
+
loss = loss_fct(logits, labels)
|
1310 |
+
elif self.config.problem_type == "single_label_classification":
|
1311 |
+
loss_fct = CrossEntropyLoss()
|
1312 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1313 |
+
elif self.config.problem_type == "multi_label_classification":
|
1314 |
+
loss_fct = BCEWithLogitsLoss()
|
1315 |
+
loss = loss_fct(logits, labels)
|
1316 |
+
|
1317 |
+
if not return_dict:
|
1318 |
+
output = (logits,) + outputs[2:]
|
1319 |
+
return ((loss,) + output) if loss is not None else output
|
1320 |
+
|
1321 |
+
return SequenceClassifierOutput(
|
1322 |
+
loss=loss,
|
1323 |
+
logits=logits,
|
1324 |
+
hidden_states=outputs.hidden_states,
|
1325 |
+
attentions=outputs.attentions,
|
1326 |
+
)
|
1327 |
+
|
1328 |
+
|
1329 |
+
@add_start_docstrings(
|
1330 |
+
"""
|
1331 |
+
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1332 |
+
Named-Entity-Recognition (NER) tasks.
|
1333 |
+
""",
|
1334 |
+
ESM_START_DOCSTRING,
|
1335 |
+
)
|
1336 |
+
class EsmForTokenClassification(EsmPreTrainedModel):
|
1337 |
+
def __init__(self, config):
|
1338 |
+
super().__init__(config)
|
1339 |
+
self.num_labels = config.num_labels
|
1340 |
+
|
1341 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
1342 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1343 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1344 |
+
|
1345 |
+
self.init_weights()
|
1346 |
+
|
1347 |
+
@add_start_docstrings_to_model_forward(
|
1348 |
+
ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1349 |
+
)
|
1350 |
+
@add_code_sample_docstrings(
|
1351 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1352 |
+
output_type=TokenClassifierOutput,
|
1353 |
+
config_class=_CONFIG_FOR_DOC,
|
1354 |
+
)
|
1355 |
+
def forward(
|
1356 |
+
self,
|
1357 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1358 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1359 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1360 |
+
head_mask: Optional[torch.Tensor] = None,
|
1361 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1362 |
+
labels: Optional[torch.LongTensor] = None,
|
1363 |
+
output_attentions: Optional[bool] = None,
|
1364 |
+
output_hidden_states: Optional[bool] = None,
|
1365 |
+
return_dict: Optional[bool] = None,
|
1366 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1367 |
+
r"""
|
1368 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1369 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1370 |
+
"""
|
1371 |
+
return_dict = (
|
1372 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1373 |
+
)
|
1374 |
+
|
1375 |
+
outputs = self.esm(
|
1376 |
+
input_ids,
|
1377 |
+
attention_mask=attention_mask,
|
1378 |
+
position_ids=position_ids,
|
1379 |
+
head_mask=head_mask,
|
1380 |
+
inputs_embeds=inputs_embeds,
|
1381 |
+
output_attentions=output_attentions,
|
1382 |
+
output_hidden_states=output_hidden_states,
|
1383 |
+
return_dict=return_dict,
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
sequence_output = outputs[0]
|
1387 |
+
|
1388 |
+
sequence_output = self.dropout(sequence_output)
|
1389 |
+
logits = self.classifier(sequence_output)
|
1390 |
+
|
1391 |
+
loss = None
|
1392 |
+
if labels is not None:
|
1393 |
+
loss_fct = CrossEntropyLoss()
|
1394 |
+
|
1395 |
+
labels = labels.to(logits.device)
|
1396 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1397 |
+
|
1398 |
+
if not return_dict:
|
1399 |
+
output = (logits,) + outputs[2:]
|
1400 |
+
return ((loss,) + output) if loss is not None else output
|
1401 |
+
|
1402 |
+
return TokenClassifierOutput(
|
1403 |
+
loss=loss,
|
1404 |
+
logits=logits,
|
1405 |
+
hidden_states=outputs.hidden_states,
|
1406 |
+
attentions=outputs.attentions,
|
1407 |
+
)
|
1408 |
+
|
1409 |
+
|
1410 |
+
class EsmClassificationHead(nn.Module):
|
1411 |
+
"""Head for sentence-level classification tasks."""
|
1412 |
+
|
1413 |
+
def __init__(self, config):
|
1414 |
+
super().__init__()
|
1415 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1416 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1417 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1418 |
+
|
1419 |
+
def forward(self, features, **kwargs):
|
1420 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1421 |
+
x = self.dropout(x)
|
1422 |
+
x = self.dense(x)
|
1423 |
+
x = torch.tanh(x)
|
1424 |
+
x = self.dropout(x)
|
1425 |
+
x = self.out_proj(x)
|
1426 |
+
return x
|
1427 |
+
|
1428 |
+
|
1429 |
+
def create_position_ids_from_input_ids(
|
1430 |
+
input_ids, padding_idx, past_key_values_length=0
|
1431 |
+
):
|
1432 |
+
"""
|
1433 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1434 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1435 |
+
|
1436 |
+
Args:
|
1437 |
+
x: torch.Tensor x:
|
1438 |
+
|
1439 |
+
Returns: torch.Tensor
|
1440 |
+
"""
|
1441 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1442 |
+
mask = input_ids.ne(padding_idx).int()
|
1443 |
+
incremental_indices = (
|
1444 |
+
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
1445 |
+
) * mask
|
1446 |
+
return incremental_indices.long() + padding_idx
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "<cls>",
|
3 |
+
"mask_token": "<mask>",
|
4 |
+
"pad_token": "<pad>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "<mask>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<cls>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"clean_up_tokenization_spaces": true,
|
37 |
+
"cls_token": "<cls>",
|
38 |
+
"eos_token": null,
|
39 |
+
"mask_token": "<mask>",
|
40 |
+
"model_max_length": 512,
|
41 |
+
"pad_token": "<pad>",
|
42 |
+
"tokenizer_class": "EsmTokenizer",
|
43 |
+
"unk_token": "<unk>"
|
44 |
+
}
|
vocab.txt
ADDED
@@ -0,0 +1,4107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<unk>
|
2 |
+
<pad>
|
3 |
+
<mask>
|
4 |
+
<cls>
|
5 |
+
<eos>
|
6 |
+
<bos>
|
7 |
+
AAAAAA
|
8 |
+
AAAAAT
|
9 |
+
AAAAAC
|
10 |
+
AAAAAG
|
11 |
+
AAAATA
|
12 |
+
AAAATT
|
13 |
+
AAAATC
|
14 |
+
AAAATG
|
15 |
+
AAAACA
|
16 |
+
AAAACT
|
17 |
+
AAAACC
|
18 |
+
AAAACG
|
19 |
+
AAAAGA
|
20 |
+
AAAAGT
|
21 |
+
AAAAGC
|
22 |
+
AAAAGG
|
23 |
+
AAATAA
|
24 |
+
AAATAT
|
25 |
+
AAATAC
|
26 |
+
AAATAG
|
27 |
+
AAATTA
|
28 |
+
AAATTT
|
29 |
+
AAATTC
|
30 |
+
AAATTG
|
31 |
+
AAATCA
|
32 |
+
AAATCT
|
33 |
+
AAATCC
|
34 |
+
AAATCG
|
35 |
+
AAATGA
|
36 |
+
AAATGT
|
37 |
+
AAATGC
|
38 |
+
AAATGG
|
39 |
+
AAACAA
|
40 |
+
AAACAT
|
41 |
+
AAACAC
|
42 |
+
AAACAG
|
43 |
+
AAACTA
|
44 |
+
AAACTT
|
45 |
+
AAACTC
|
46 |
+
AAACTG
|
47 |
+
AAACCA
|
48 |
+
AAACCT
|
49 |
+
AAACCC
|
50 |
+
AAACCG
|
51 |
+
AAACGA
|
52 |
+
AAACGT
|
53 |
+
AAACGC
|
54 |
+
AAACGG
|
55 |
+
AAAGAA
|
56 |
+
AAAGAT
|
57 |
+
AAAGAC
|
58 |
+
AAAGAG
|
59 |
+
AAAGTA
|
60 |
+
AAAGTT
|
61 |
+
AAAGTC
|
62 |
+
AAAGTG
|
63 |
+
AAAGCA
|
64 |
+
AAAGCT
|
65 |
+
AAAGCC
|
66 |
+
AAAGCG
|
67 |
+
AAAGGA
|
68 |
+
AAAGGT
|
69 |
+
AAAGGC
|
70 |
+
AAAGGG
|
71 |
+
AATAAA
|
72 |
+
AATAAT
|
73 |
+
AATAAC
|
74 |
+
AATAAG
|
75 |
+
AATATA
|
76 |
+
AATATT
|
77 |
+
AATATC
|
78 |
+
AATATG
|
79 |
+
AATACA
|
80 |
+
AATACT
|
81 |
+
AATACC
|
82 |
+
AATACG
|
83 |
+
AATAGA
|
84 |
+
AATAGT
|
85 |
+
AATAGC
|
86 |
+
AATAGG
|
87 |
+
AATTAA
|
88 |
+
AATTAT
|
89 |
+
AATTAC
|
90 |
+
AATTAG
|
91 |
+
AATTTA
|
92 |
+
AATTTT
|
93 |
+
AATTTC
|
94 |
+
AATTTG
|
95 |
+
AATTCA
|
96 |
+
AATTCT
|
97 |
+
AATTCC
|
98 |
+
AATTCG
|
99 |
+
AATTGA
|
100 |
+
AATTGT
|
101 |
+
AATTGC
|
102 |
+
AATTGG
|
103 |
+
AATCAA
|
104 |
+
AATCAT
|
105 |
+
AATCAC
|
106 |
+
AATCAG
|
107 |
+
AATCTA
|
108 |
+
AATCTT
|
109 |
+
AATCTC
|
110 |
+
AATCTG
|
111 |
+
AATCCA
|
112 |
+
AATCCT
|
113 |
+
AATCCC
|
114 |
+
AATCCG
|
115 |
+
AATCGA
|
116 |
+
AATCGT
|
117 |
+
AATCGC
|
118 |
+
AATCGG
|
119 |
+
AATGAA
|
120 |
+
AATGAT
|
121 |
+
AATGAC
|
122 |
+
AATGAG
|
123 |
+
AATGTA
|
124 |
+
AATGTT
|
125 |
+
AATGTC
|
126 |
+
AATGTG
|
127 |
+
AATGCA
|
128 |
+
AATGCT
|
129 |
+
AATGCC
|
130 |
+
AATGCG
|
131 |
+
AATGGA
|
132 |
+
AATGGT
|
133 |
+
AATGGC
|
134 |
+
AATGGG
|
135 |
+
AACAAA
|
136 |
+
AACAAT
|
137 |
+
AACAAC
|
138 |
+
AACAAG
|
139 |
+
AACATA
|
140 |
+
AACATT
|
141 |
+
AACATC
|
142 |
+
AACATG
|
143 |
+
AACACA
|
144 |
+
AACACT
|
145 |
+
AACACC
|
146 |
+
AACACG
|
147 |
+
AACAGA
|
148 |
+
AACAGT
|
149 |
+
AACAGC
|
150 |
+
AACAGG
|
151 |
+
AACTAA
|
152 |
+
AACTAT
|
153 |
+
AACTAC
|
154 |
+
AACTAG
|
155 |
+
AACTTA
|
156 |
+
AACTTT
|
157 |
+
AACTTC
|
158 |
+
AACTTG
|
159 |
+
AACTCA
|
160 |
+
AACTCT
|
161 |
+
AACTCC
|
162 |
+
AACTCG
|
163 |
+
AACTGA
|
164 |
+
AACTGT
|
165 |
+
AACTGC
|
166 |
+
AACTGG
|
167 |
+
AACCAA
|
168 |
+
AACCAT
|
169 |
+
AACCAC
|
170 |
+
AACCAG
|
171 |
+
AACCTA
|
172 |
+
AACCTT
|
173 |
+
AACCTC
|
174 |
+
AACCTG
|
175 |
+
AACCCA
|
176 |
+
AACCCT
|
177 |
+
AACCCC
|
178 |
+
AACCCG
|
179 |
+
AACCGA
|
180 |
+
AACCGT
|
181 |
+
AACCGC
|
182 |
+
AACCGG
|
183 |
+
AACGAA
|
184 |
+
AACGAT
|
185 |
+
AACGAC
|
186 |
+
AACGAG
|
187 |
+
AACGTA
|
188 |
+
AACGTT
|
189 |
+
AACGTC
|
190 |
+
AACGTG
|
191 |
+
AACGCA
|
192 |
+
AACGCT
|
193 |
+
AACGCC
|
194 |
+
AACGCG
|
195 |
+
AACGGA
|
196 |
+
AACGGT
|
197 |
+
AACGGC
|
198 |
+
AACGGG
|
199 |
+
AAGAAA
|
200 |
+
AAGAAT
|
201 |
+
AAGAAC
|
202 |
+
AAGAAG
|
203 |
+
AAGATA
|
204 |
+
AAGATT
|
205 |
+
AAGATC
|
206 |
+
AAGATG
|
207 |
+
AAGACA
|
208 |
+
AAGACT
|
209 |
+
AAGACC
|
210 |
+
AAGACG
|
211 |
+
AAGAGA
|
212 |
+
AAGAGT
|
213 |
+
AAGAGC
|
214 |
+
AAGAGG
|
215 |
+
AAGTAA
|
216 |
+
AAGTAT
|
217 |
+
AAGTAC
|
218 |
+
AAGTAG
|
219 |
+
AAGTTA
|
220 |
+
AAGTTT
|
221 |
+
AAGTTC
|
222 |
+
AAGTTG
|
223 |
+
AAGTCA
|
224 |
+
AAGTCT
|
225 |
+
AAGTCC
|
226 |
+
AAGTCG
|
227 |
+
AAGTGA
|
228 |
+
AAGTGT
|
229 |
+
AAGTGC
|
230 |
+
AAGTGG
|
231 |
+
AAGCAA
|
232 |
+
AAGCAT
|
233 |
+
AAGCAC
|
234 |
+
AAGCAG
|
235 |
+
AAGCTA
|
236 |
+
AAGCTT
|
237 |
+
AAGCTC
|
238 |
+
AAGCTG
|
239 |
+
AAGCCA
|
240 |
+
AAGCCT
|
241 |
+
AAGCCC
|
242 |
+
AAGCCG
|
243 |
+
AAGCGA
|
244 |
+
AAGCGT
|
245 |
+
AAGCGC
|
246 |
+
AAGCGG
|
247 |
+
AAGGAA
|
248 |
+
AAGGAT
|
249 |
+
AAGGAC
|
250 |
+
AAGGAG
|
251 |
+
AAGGTA
|
252 |
+
AAGGTT
|
253 |
+
AAGGTC
|
254 |
+
AAGGTG
|
255 |
+
AAGGCA
|
256 |
+
AAGGCT
|
257 |
+
AAGGCC
|
258 |
+
AAGGCG
|
259 |
+
AAGGGA
|
260 |
+
AAGGGT
|
261 |
+
AAGGGC
|
262 |
+
AAGGGG
|
263 |
+
ATAAAA
|
264 |
+
ATAAAT
|
265 |
+
ATAAAC
|
266 |
+
ATAAAG
|
267 |
+
ATAATA
|
268 |
+
ATAATT
|
269 |
+
ATAATC
|
270 |
+
ATAATG
|
271 |
+
ATAACA
|
272 |
+
ATAACT
|
273 |
+
ATAACC
|
274 |
+
ATAACG
|
275 |
+
ATAAGA
|
276 |
+
ATAAGT
|
277 |
+
ATAAGC
|
278 |
+
ATAAGG
|
279 |
+
ATATAA
|
280 |
+
ATATAT
|
281 |
+
ATATAC
|
282 |
+
ATATAG
|
283 |
+
ATATTA
|
284 |
+
ATATTT
|
285 |
+
ATATTC
|
286 |
+
ATATTG
|
287 |
+
ATATCA
|
288 |
+
ATATCT
|
289 |
+
ATATCC
|
290 |
+
ATATCG
|
291 |
+
ATATGA
|
292 |
+
ATATGT
|
293 |
+
ATATGC
|
294 |
+
ATATGG
|
295 |
+
ATACAA
|
296 |
+
ATACAT
|
297 |
+
ATACAC
|
298 |
+
ATACAG
|
299 |
+
ATACTA
|
300 |
+
ATACTT
|
301 |
+
ATACTC
|
302 |
+
ATACTG
|
303 |
+
ATACCA
|
304 |
+
ATACCT
|
305 |
+
ATACCC
|
306 |
+
ATACCG
|
307 |
+
ATACGA
|
308 |
+
ATACGT
|
309 |
+
ATACGC
|
310 |
+
ATACGG
|
311 |
+
ATAGAA
|
312 |
+
ATAGAT
|
313 |
+
ATAGAC
|
314 |
+
ATAGAG
|
315 |
+
ATAGTA
|
316 |
+
ATAGTT
|
317 |
+
ATAGTC
|
318 |
+
ATAGTG
|
319 |
+
ATAGCA
|
320 |
+
ATAGCT
|
321 |
+
ATAGCC
|
322 |
+
ATAGCG
|
323 |
+
ATAGGA
|
324 |
+
ATAGGT
|
325 |
+
ATAGGC
|
326 |
+
ATAGGG
|
327 |
+
ATTAAA
|
328 |
+
ATTAAT
|
329 |
+
ATTAAC
|
330 |
+
ATTAAG
|
331 |
+
ATTATA
|
332 |
+
ATTATT
|
333 |
+
ATTATC
|
334 |
+
ATTATG
|
335 |
+
ATTACA
|
336 |
+
ATTACT
|
337 |
+
ATTACC
|
338 |
+
ATTACG
|
339 |
+
ATTAGA
|
340 |
+
ATTAGT
|
341 |
+
ATTAGC
|
342 |
+
ATTAGG
|
343 |
+
ATTTAA
|
344 |
+
ATTTAT
|
345 |
+
ATTTAC
|
346 |
+
ATTTAG
|
347 |
+
ATTTTA
|
348 |
+
ATTTTT
|
349 |
+
ATTTTC
|
350 |
+
ATTTTG
|
351 |
+
ATTTCA
|
352 |
+
ATTTCT
|
353 |
+
ATTTCC
|
354 |
+
ATTTCG
|
355 |
+
ATTTGA
|
356 |
+
ATTTGT
|
357 |
+
ATTTGC
|
358 |
+
ATTTGG
|
359 |
+
ATTCAA
|
360 |
+
ATTCAT
|
361 |
+
ATTCAC
|
362 |
+
ATTCAG
|
363 |
+
ATTCTA
|
364 |
+
ATTCTT
|
365 |
+
ATTCTC
|
366 |
+
ATTCTG
|
367 |
+
ATTCCA
|
368 |
+
ATTCCT
|
369 |
+
ATTCCC
|
370 |
+
ATTCCG
|
371 |
+
ATTCGA
|
372 |
+
ATTCGT
|
373 |
+
ATTCGC
|
374 |
+
ATTCGG
|
375 |
+
ATTGAA
|
376 |
+
ATTGAT
|
377 |
+
ATTGAC
|
378 |
+
ATTGAG
|
379 |
+
ATTGTA
|
380 |
+
ATTGTT
|
381 |
+
ATTGTC
|
382 |
+
ATTGTG
|
383 |
+
ATTGCA
|
384 |
+
ATTGCT
|
385 |
+
ATTGCC
|
386 |
+
ATTGCG
|
387 |
+
ATTGGA
|
388 |
+
ATTGGT
|
389 |
+
ATTGGC
|
390 |
+
ATTGGG
|
391 |
+
ATCAAA
|
392 |
+
ATCAAT
|
393 |
+
ATCAAC
|
394 |
+
ATCAAG
|
395 |
+
ATCATA
|
396 |
+
ATCATT
|
397 |
+
ATCATC
|
398 |
+
ATCATG
|
399 |
+
ATCACA
|
400 |
+
ATCACT
|
401 |
+
ATCACC
|
402 |
+
ATCACG
|
403 |
+
ATCAGA
|
404 |
+
ATCAGT
|
405 |
+
ATCAGC
|
406 |
+
ATCAGG
|
407 |
+
ATCTAA
|
408 |
+
ATCTAT
|
409 |
+
ATCTAC
|
410 |
+
ATCTAG
|
411 |
+
ATCTTA
|
412 |
+
ATCTTT
|
413 |
+
ATCTTC
|
414 |
+
ATCTTG
|
415 |
+
ATCTCA
|
416 |
+
ATCTCT
|
417 |
+
ATCTCC
|
418 |
+
ATCTCG
|
419 |
+
ATCTGA
|
420 |
+
ATCTGT
|
421 |
+
ATCTGC
|
422 |
+
ATCTGG
|
423 |
+
ATCCAA
|
424 |
+
ATCCAT
|
425 |
+
ATCCAC
|
426 |
+
ATCCAG
|
427 |
+
ATCCTA
|
428 |
+
ATCCTT
|
429 |
+
ATCCTC
|
430 |
+
ATCCTG
|
431 |
+
ATCCCA
|
432 |
+
ATCCCT
|
433 |
+
ATCCCC
|
434 |
+
ATCCCG
|
435 |
+
ATCCGA
|
436 |
+
ATCCGT
|
437 |
+
ATCCGC
|
438 |
+
ATCCGG
|
439 |
+
ATCGAA
|
440 |
+
ATCGAT
|
441 |
+
ATCGAC
|
442 |
+
ATCGAG
|
443 |
+
ATCGTA
|
444 |
+
ATCGTT
|
445 |
+
ATCGTC
|
446 |
+
ATCGTG
|
447 |
+
ATCGCA
|
448 |
+
ATCGCT
|
449 |
+
ATCGCC
|
450 |
+
ATCGCG
|
451 |
+
ATCGGA
|
452 |
+
ATCGGT
|
453 |
+
ATCGGC
|
454 |
+
ATCGGG
|
455 |
+
ATGAAA
|
456 |
+
ATGAAT
|
457 |
+
ATGAAC
|
458 |
+
ATGAAG
|
459 |
+
ATGATA
|
460 |
+
ATGATT
|
461 |
+
ATGATC
|
462 |
+
ATGATG
|
463 |
+
ATGACA
|
464 |
+
ATGACT
|
465 |
+
ATGACC
|
466 |
+
ATGACG
|
467 |
+
ATGAGA
|
468 |
+
ATGAGT
|
469 |
+
ATGAGC
|
470 |
+
ATGAGG
|
471 |
+
ATGTAA
|
472 |
+
ATGTAT
|
473 |
+
ATGTAC
|
474 |
+
ATGTAG
|
475 |
+
ATGTTA
|
476 |
+
ATGTTT
|
477 |
+
ATGTTC
|
478 |
+
ATGTTG
|
479 |
+
ATGTCA
|
480 |
+
ATGTCT
|
481 |
+
ATGTCC
|
482 |
+
ATGTCG
|
483 |
+
ATGTGA
|
484 |
+
ATGTGT
|
485 |
+
ATGTGC
|
486 |
+
ATGTGG
|
487 |
+
ATGCAA
|
488 |
+
ATGCAT
|
489 |
+
ATGCAC
|
490 |
+
ATGCAG
|
491 |
+
ATGCTA
|
492 |
+
ATGCTT
|
493 |
+
ATGCTC
|
494 |
+
ATGCTG
|
495 |
+
ATGCCA
|
496 |
+
ATGCCT
|
497 |
+
ATGCCC
|
498 |
+
ATGCCG
|
499 |
+
ATGCGA
|
500 |
+
ATGCGT
|
501 |
+
ATGCGC
|
502 |
+
ATGCGG
|
503 |
+
ATGGAA
|
504 |
+
ATGGAT
|
505 |
+
ATGGAC
|
506 |
+
ATGGAG
|
507 |
+
ATGGTA
|
508 |
+
ATGGTT
|
509 |
+
ATGGTC
|
510 |
+
ATGGTG
|
511 |
+
ATGGCA
|
512 |
+
ATGGCT
|
513 |
+
ATGGCC
|
514 |
+
ATGGCG
|
515 |
+
ATGGGA
|
516 |
+
ATGGGT
|
517 |
+
ATGGGC
|
518 |
+
ATGGGG
|
519 |
+
ACAAAA
|
520 |
+
ACAAAT
|
521 |
+
ACAAAC
|
522 |
+
ACAAAG
|
523 |
+
ACAATA
|
524 |
+
ACAATT
|
525 |
+
ACAATC
|
526 |
+
ACAATG
|
527 |
+
ACAACA
|
528 |
+
ACAACT
|
529 |
+
ACAACC
|
530 |
+
ACAACG
|
531 |
+
ACAAGA
|
532 |
+
ACAAGT
|
533 |
+
ACAAGC
|
534 |
+
ACAAGG
|
535 |
+
ACATAA
|
536 |
+
ACATAT
|
537 |
+
ACATAC
|
538 |
+
ACATAG
|
539 |
+
ACATTA
|
540 |
+
ACATTT
|
541 |
+
ACATTC
|
542 |
+
ACATTG
|
543 |
+
ACATCA
|
544 |
+
ACATCT
|
545 |
+
ACATCC
|
546 |
+
ACATCG
|
547 |
+
ACATGA
|
548 |
+
ACATGT
|
549 |
+
ACATGC
|
550 |
+
ACATGG
|
551 |
+
ACACAA
|
552 |
+
ACACAT
|
553 |
+
ACACAC
|
554 |
+
ACACAG
|
555 |
+
ACACTA
|
556 |
+
ACACTT
|
557 |
+
ACACTC
|
558 |
+
ACACTG
|
559 |
+
ACACCA
|
560 |
+
ACACCT
|
561 |
+
ACACCC
|
562 |
+
ACACCG
|
563 |
+
ACACGA
|
564 |
+
ACACGT
|
565 |
+
ACACGC
|
566 |
+
ACACGG
|
567 |
+
ACAGAA
|
568 |
+
ACAGAT
|
569 |
+
ACAGAC
|
570 |
+
ACAGAG
|
571 |
+
ACAGTA
|
572 |
+
ACAGTT
|
573 |
+
ACAGTC
|
574 |
+
ACAGTG
|
575 |
+
ACAGCA
|
576 |
+
ACAGCT
|
577 |
+
ACAGCC
|
578 |
+
ACAGCG
|
579 |
+
ACAGGA
|
580 |
+
ACAGGT
|
581 |
+
ACAGGC
|
582 |
+
ACAGGG
|
583 |
+
ACTAAA
|
584 |
+
ACTAAT
|
585 |
+
ACTAAC
|
586 |
+
ACTAAG
|
587 |
+
ACTATA
|
588 |
+
ACTATT
|
589 |
+
ACTATC
|
590 |
+
ACTATG
|
591 |
+
ACTACA
|
592 |
+
ACTACT
|
593 |
+
ACTACC
|
594 |
+
ACTACG
|
595 |
+
ACTAGA
|
596 |
+
ACTAGT
|
597 |
+
ACTAGC
|
598 |
+
ACTAGG
|
599 |
+
ACTTAA
|
600 |
+
ACTTAT
|
601 |
+
ACTTAC
|
602 |
+
ACTTAG
|
603 |
+
ACTTTA
|
604 |
+
ACTTTT
|
605 |
+
ACTTTC
|
606 |
+
ACTTTG
|
607 |
+
ACTTCA
|
608 |
+
ACTTCT
|
609 |
+
ACTTCC
|
610 |
+
ACTTCG
|
611 |
+
ACTTGA
|
612 |
+
ACTTGT
|
613 |
+
ACTTGC
|
614 |
+
ACTTGG
|
615 |
+
ACTCAA
|
616 |
+
ACTCAT
|
617 |
+
ACTCAC
|
618 |
+
ACTCAG
|
619 |
+
ACTCTA
|
620 |
+
ACTCTT
|
621 |
+
ACTCTC
|
622 |
+
ACTCTG
|
623 |
+
ACTCCA
|
624 |
+
ACTCCT
|
625 |
+
ACTCCC
|
626 |
+
ACTCCG
|
627 |
+
ACTCGA
|
628 |
+
ACTCGT
|
629 |
+
ACTCGC
|
630 |
+
ACTCGG
|
631 |
+
ACTGAA
|
632 |
+
ACTGAT
|
633 |
+
ACTGAC
|
634 |
+
ACTGAG
|
635 |
+
ACTGTA
|
636 |
+
ACTGTT
|
637 |
+
ACTGTC
|
638 |
+
ACTGTG
|
639 |
+
ACTGCA
|
640 |
+
ACTGCT
|
641 |
+
ACTGCC
|
642 |
+
ACTGCG
|
643 |
+
ACTGGA
|
644 |
+
ACTGGT
|
645 |
+
ACTGGC
|
646 |
+
ACTGGG
|
647 |
+
ACCAAA
|
648 |
+
ACCAAT
|
649 |
+
ACCAAC
|
650 |
+
ACCAAG
|
651 |
+
ACCATA
|
652 |
+
ACCATT
|
653 |
+
ACCATC
|
654 |
+
ACCATG
|
655 |
+
ACCACA
|
656 |
+
ACCACT
|
657 |
+
ACCACC
|
658 |
+
ACCACG
|
659 |
+
ACCAGA
|
660 |
+
ACCAGT
|
661 |
+
ACCAGC
|
662 |
+
ACCAGG
|
663 |
+
ACCTAA
|
664 |
+
ACCTAT
|
665 |
+
ACCTAC
|
666 |
+
ACCTAG
|
667 |
+
ACCTTA
|
668 |
+
ACCTTT
|
669 |
+
ACCTTC
|
670 |
+
ACCTTG
|
671 |
+
ACCTCA
|
672 |
+
ACCTCT
|
673 |
+
ACCTCC
|
674 |
+
ACCTCG
|
675 |
+
ACCTGA
|
676 |
+
ACCTGT
|
677 |
+
ACCTGC
|
678 |
+
ACCTGG
|
679 |
+
ACCCAA
|
680 |
+
ACCCAT
|
681 |
+
ACCCAC
|
682 |
+
ACCCAG
|
683 |
+
ACCCTA
|
684 |
+
ACCCTT
|
685 |
+
ACCCTC
|
686 |
+
ACCCTG
|
687 |
+
ACCCCA
|
688 |
+
ACCCCT
|
689 |
+
ACCCCC
|
690 |
+
ACCCCG
|
691 |
+
ACCCGA
|
692 |
+
ACCCGT
|
693 |
+
ACCCGC
|
694 |
+
ACCCGG
|
695 |
+
ACCGAA
|
696 |
+
ACCGAT
|
697 |
+
ACCGAC
|
698 |
+
ACCGAG
|
699 |
+
ACCGTA
|
700 |
+
ACCGTT
|
701 |
+
ACCGTC
|
702 |
+
ACCGTG
|
703 |
+
ACCGCA
|
704 |
+
ACCGCT
|
705 |
+
ACCGCC
|
706 |
+
ACCGCG
|
707 |
+
ACCGGA
|
708 |
+
ACCGGT
|
709 |
+
ACCGGC
|
710 |
+
ACCGGG
|
711 |
+
ACGAAA
|
712 |
+
ACGAAT
|
713 |
+
ACGAAC
|
714 |
+
ACGAAG
|
715 |
+
ACGATA
|
716 |
+
ACGATT
|
717 |
+
ACGATC
|
718 |
+
ACGATG
|
719 |
+
ACGACA
|
720 |
+
ACGACT
|
721 |
+
ACGACC
|
722 |
+
ACGACG
|
723 |
+
ACGAGA
|
724 |
+
ACGAGT
|
725 |
+
ACGAGC
|
726 |
+
ACGAGG
|
727 |
+
ACGTAA
|
728 |
+
ACGTAT
|
729 |
+
ACGTAC
|
730 |
+
ACGTAG
|
731 |
+
ACGTTA
|
732 |
+
ACGTTT
|
733 |
+
ACGTTC
|
734 |
+
ACGTTG
|
735 |
+
ACGTCA
|
736 |
+
ACGTCT
|
737 |
+
ACGTCC
|
738 |
+
ACGTCG
|
739 |
+
ACGTGA
|
740 |
+
ACGTGT
|
741 |
+
ACGTGC
|
742 |
+
ACGTGG
|
743 |
+
ACGCAA
|
744 |
+
ACGCAT
|
745 |
+
ACGCAC
|
746 |
+
ACGCAG
|
747 |
+
ACGCTA
|
748 |
+
ACGCTT
|
749 |
+
ACGCTC
|
750 |
+
ACGCTG
|
751 |
+
ACGCCA
|
752 |
+
ACGCCT
|
753 |
+
ACGCCC
|
754 |
+
ACGCCG
|
755 |
+
ACGCGA
|
756 |
+
ACGCGT
|
757 |
+
ACGCGC
|
758 |
+
ACGCGG
|
759 |
+
ACGGAA
|
760 |
+
ACGGAT
|
761 |
+
ACGGAC
|
762 |
+
ACGGAG
|
763 |
+
ACGGTA
|
764 |
+
ACGGTT
|
765 |
+
ACGGTC
|
766 |
+
ACGGTG
|
767 |
+
ACGGCA
|
768 |
+
ACGGCT
|
769 |
+
ACGGCC
|
770 |
+
ACGGCG
|
771 |
+
ACGGGA
|
772 |
+
ACGGGT
|
773 |
+
ACGGGC
|
774 |
+
ACGGGG
|
775 |
+
AGAAAA
|
776 |
+
AGAAAT
|
777 |
+
AGAAAC
|
778 |
+
AGAAAG
|
779 |
+
AGAATA
|
780 |
+
AGAATT
|
781 |
+
AGAATC
|
782 |
+
AGAATG
|
783 |
+
AGAACA
|
784 |
+
AGAACT
|
785 |
+
AGAACC
|
786 |
+
AGAACG
|
787 |
+
AGAAGA
|
788 |
+
AGAAGT
|
789 |
+
AGAAGC
|
790 |
+
AGAAGG
|
791 |
+
AGATAA
|
792 |
+
AGATAT
|
793 |
+
AGATAC
|
794 |
+
AGATAG
|
795 |
+
AGATTA
|
796 |
+
AGATTT
|
797 |
+
AGATTC
|
798 |
+
AGATTG
|
799 |
+
AGATCA
|
800 |
+
AGATCT
|
801 |
+
AGATCC
|
802 |
+
AGATCG
|
803 |
+
AGATGA
|
804 |
+
AGATGT
|
805 |
+
AGATGC
|
806 |
+
AGATGG
|
807 |
+
AGACAA
|
808 |
+
AGACAT
|
809 |
+
AGACAC
|
810 |
+
AGACAG
|
811 |
+
AGACTA
|
812 |
+
AGACTT
|
813 |
+
AGACTC
|
814 |
+
AGACTG
|
815 |
+
AGACCA
|
816 |
+
AGACCT
|
817 |
+
AGACCC
|
818 |
+
AGACCG
|
819 |
+
AGACGA
|
820 |
+
AGACGT
|
821 |
+
AGACGC
|
822 |
+
AGACGG
|
823 |
+
AGAGAA
|
824 |
+
AGAGAT
|
825 |
+
AGAGAC
|
826 |
+
AGAGAG
|
827 |
+
AGAGTA
|
828 |
+
AGAGTT
|
829 |
+
AGAGTC
|
830 |
+
AGAGTG
|
831 |
+
AGAGCA
|
832 |
+
AGAGCT
|
833 |
+
AGAGCC
|
834 |
+
AGAGCG
|
835 |
+
AGAGGA
|
836 |
+
AGAGGT
|
837 |
+
AGAGGC
|
838 |
+
AGAGGG
|
839 |
+
AGTAAA
|
840 |
+
AGTAAT
|
841 |
+
AGTAAC
|
842 |
+
AGTAAG
|
843 |
+
AGTATA
|
844 |
+
AGTATT
|
845 |
+
AGTATC
|
846 |
+
AGTATG
|
847 |
+
AGTACA
|
848 |
+
AGTACT
|
849 |
+
AGTACC
|
850 |
+
AGTACG
|
851 |
+
AGTAGA
|
852 |
+
AGTAGT
|
853 |
+
AGTAGC
|
854 |
+
AGTAGG
|
855 |
+
AGTTAA
|
856 |
+
AGTTAT
|
857 |
+
AGTTAC
|
858 |
+
AGTTAG
|
859 |
+
AGTTTA
|
860 |
+
AGTTTT
|
861 |
+
AGTTTC
|
862 |
+
AGTTTG
|
863 |
+
AGTTCA
|
864 |
+
AGTTCT
|
865 |
+
AGTTCC
|
866 |
+
AGTTCG
|
867 |
+
AGTTGA
|
868 |
+
AGTTGT
|
869 |
+
AGTTGC
|
870 |
+
AGTTGG
|
871 |
+
AGTCAA
|
872 |
+
AGTCAT
|
873 |
+
AGTCAC
|
874 |
+
AGTCAG
|
875 |
+
AGTCTA
|
876 |
+
AGTCTT
|
877 |
+
AGTCTC
|
878 |
+
AGTCTG
|
879 |
+
AGTCCA
|
880 |
+
AGTCCT
|
881 |
+
AGTCCC
|
882 |
+
AGTCCG
|
883 |
+
AGTCGA
|
884 |
+
AGTCGT
|
885 |
+
AGTCGC
|
886 |
+
AGTCGG
|
887 |
+
AGTGAA
|
888 |
+
AGTGAT
|
889 |
+
AGTGAC
|
890 |
+
AGTGAG
|
891 |
+
AGTGTA
|
892 |
+
AGTGTT
|
893 |
+
AGTGTC
|
894 |
+
AGTGTG
|
895 |
+
AGTGCA
|
896 |
+
AGTGCT
|
897 |
+
AGTGCC
|
898 |
+
AGTGCG
|
899 |
+
AGTGGA
|
900 |
+
AGTGGT
|
901 |
+
AGTGGC
|
902 |
+
AGTGGG
|
903 |
+
AGCAAA
|
904 |
+
AGCAAT
|
905 |
+
AGCAAC
|
906 |
+
AGCAAG
|
907 |
+
AGCATA
|
908 |
+
AGCATT
|
909 |
+
AGCATC
|
910 |
+
AGCATG
|
911 |
+
AGCACA
|
912 |
+
AGCACT
|
913 |
+
AGCACC
|
914 |
+
AGCACG
|
915 |
+
AGCAGA
|
916 |
+
AGCAGT
|
917 |
+
AGCAGC
|
918 |
+
AGCAGG
|
919 |
+
AGCTAA
|
920 |
+
AGCTAT
|
921 |
+
AGCTAC
|
922 |
+
AGCTAG
|
923 |
+
AGCTTA
|
924 |
+
AGCTTT
|
925 |
+
AGCTTC
|
926 |
+
AGCTTG
|
927 |
+
AGCTCA
|
928 |
+
AGCTCT
|
929 |
+
AGCTCC
|
930 |
+
AGCTCG
|
931 |
+
AGCTGA
|
932 |
+
AGCTGT
|
933 |
+
AGCTGC
|
934 |
+
AGCTGG
|
935 |
+
AGCCAA
|
936 |
+
AGCCAT
|
937 |
+
AGCCAC
|
938 |
+
AGCCAG
|
939 |
+
AGCCTA
|
940 |
+
AGCCTT
|
941 |
+
AGCCTC
|
942 |
+
AGCCTG
|
943 |
+
AGCCCA
|
944 |
+
AGCCCT
|
945 |
+
AGCCCC
|
946 |
+
AGCCCG
|
947 |
+
AGCCGA
|
948 |
+
AGCCGT
|
949 |
+
AGCCGC
|
950 |
+
AGCCGG
|
951 |
+
AGCGAA
|
952 |
+
AGCGAT
|
953 |
+
AGCGAC
|
954 |
+
AGCGAG
|
955 |
+
AGCGTA
|
956 |
+
AGCGTT
|
957 |
+
AGCGTC
|
958 |
+
AGCGTG
|
959 |
+
AGCGCA
|
960 |
+
AGCGCT
|
961 |
+
AGCGCC
|
962 |
+
AGCGCG
|
963 |
+
AGCGGA
|
964 |
+
AGCGGT
|
965 |
+
AGCGGC
|
966 |
+
AGCGGG
|
967 |
+
AGGAAA
|
968 |
+
AGGAAT
|
969 |
+
AGGAAC
|
970 |
+
AGGAAG
|
971 |
+
AGGATA
|
972 |
+
AGGATT
|
973 |
+
AGGATC
|
974 |
+
AGGATG
|
975 |
+
AGGACA
|
976 |
+
AGGACT
|
977 |
+
AGGACC
|
978 |
+
AGGACG
|
979 |
+
AGGAGA
|
980 |
+
AGGAGT
|
981 |
+
AGGAGC
|
982 |
+
AGGAGG
|
983 |
+
AGGTAA
|
984 |
+
AGGTAT
|
985 |
+
AGGTAC
|
986 |
+
AGGTAG
|
987 |
+
AGGTTA
|
988 |
+
AGGTTT
|
989 |
+
AGGTTC
|
990 |
+
AGGTTG
|
991 |
+
AGGTCA
|
992 |
+
AGGTCT
|
993 |
+
AGGTCC
|
994 |
+
AGGTCG
|
995 |
+
AGGTGA
|
996 |
+
AGGTGT
|
997 |
+
AGGTGC
|
998 |
+
AGGTGG
|
999 |
+
AGGCAA
|
1000 |
+
AGGCAT
|
1001 |
+
AGGCAC
|
1002 |
+
AGGCAG
|
1003 |
+
AGGCTA
|
1004 |
+
AGGCTT
|
1005 |
+
AGGCTC
|
1006 |
+
AGGCTG
|
1007 |
+
AGGCCA
|
1008 |
+
AGGCCT
|
1009 |
+
AGGCCC
|
1010 |
+
AGGCCG
|
1011 |
+
AGGCGA
|
1012 |
+
AGGCGT
|
1013 |
+
AGGCGC
|
1014 |
+
AGGCGG
|
1015 |
+
AGGGAA
|
1016 |
+
AGGGAT
|
1017 |
+
AGGGAC
|
1018 |
+
AGGGAG
|
1019 |
+
AGGGTA
|
1020 |
+
AGGGTT
|
1021 |
+
AGGGTC
|
1022 |
+
AGGGTG
|
1023 |
+
AGGGCA
|
1024 |
+
AGGGCT
|
1025 |
+
AGGGCC
|
1026 |
+
AGGGCG
|
1027 |
+
AGGGGA
|
1028 |
+
AGGGGT
|
1029 |
+
AGGGGC
|
1030 |
+
AGGGGG
|
1031 |
+
TAAAAA
|
1032 |
+
TAAAAT
|
1033 |
+
TAAAAC
|
1034 |
+
TAAAAG
|
1035 |
+
TAAATA
|
1036 |
+
TAAATT
|
1037 |
+
TAAATC
|
1038 |
+
TAAATG
|
1039 |
+
TAAACA
|
1040 |
+
TAAACT
|
1041 |
+
TAAACC
|
1042 |
+
TAAACG
|
1043 |
+
TAAAGA
|
1044 |
+
TAAAGT
|
1045 |
+
TAAAGC
|
1046 |
+
TAAAGG
|
1047 |
+
TAATAA
|
1048 |
+
TAATAT
|
1049 |
+
TAATAC
|
1050 |
+
TAATAG
|
1051 |
+
TAATTA
|
1052 |
+
TAATTT
|
1053 |
+
TAATTC
|
1054 |
+
TAATTG
|
1055 |
+
TAATCA
|
1056 |
+
TAATCT
|
1057 |
+
TAATCC
|
1058 |
+
TAATCG
|
1059 |
+
TAATGA
|
1060 |
+
TAATGT
|
1061 |
+
TAATGC
|
1062 |
+
TAATGG
|
1063 |
+
TAACAA
|
1064 |
+
TAACAT
|
1065 |
+
TAACAC
|
1066 |
+
TAACAG
|
1067 |
+
TAACTA
|
1068 |
+
TAACTT
|
1069 |
+
TAACTC
|
1070 |
+
TAACTG
|
1071 |
+
TAACCA
|
1072 |
+
TAACCT
|
1073 |
+
TAACCC
|
1074 |
+
TAACCG
|
1075 |
+
TAACGA
|
1076 |
+
TAACGT
|
1077 |
+
TAACGC
|
1078 |
+
TAACGG
|
1079 |
+
TAAGAA
|
1080 |
+
TAAGAT
|
1081 |
+
TAAGAC
|
1082 |
+
TAAGAG
|
1083 |
+
TAAGTA
|
1084 |
+
TAAGTT
|
1085 |
+
TAAGTC
|
1086 |
+
TAAGTG
|
1087 |
+
TAAGCA
|
1088 |
+
TAAGCT
|
1089 |
+
TAAGCC
|
1090 |
+
TAAGCG
|
1091 |
+
TAAGGA
|
1092 |
+
TAAGGT
|
1093 |
+
TAAGGC
|
1094 |
+
TAAGGG
|
1095 |
+
TATAAA
|
1096 |
+
TATAAT
|
1097 |
+
TATAAC
|
1098 |
+
TATAAG
|
1099 |
+
TATATA
|
1100 |
+
TATATT
|
1101 |
+
TATATC
|
1102 |
+
TATATG
|
1103 |
+
TATACA
|
1104 |
+
TATACT
|
1105 |
+
TATACC
|
1106 |
+
TATACG
|
1107 |
+
TATAGA
|
1108 |
+
TATAGT
|
1109 |
+
TATAGC
|
1110 |
+
TATAGG
|
1111 |
+
TATTAA
|
1112 |
+
TATTAT
|
1113 |
+
TATTAC
|
1114 |
+
TATTAG
|
1115 |
+
TATTTA
|
1116 |
+
TATTTT
|
1117 |
+
TATTTC
|
1118 |
+
TATTTG
|
1119 |
+
TATTCA
|
1120 |
+
TATTCT
|
1121 |
+
TATTCC
|
1122 |
+
TATTCG
|
1123 |
+
TATTGA
|
1124 |
+
TATTGT
|
1125 |
+
TATTGC
|
1126 |
+
TATTGG
|
1127 |
+
TATCAA
|
1128 |
+
TATCAT
|
1129 |
+
TATCAC
|
1130 |
+
TATCAG
|
1131 |
+
TATCTA
|
1132 |
+
TATCTT
|
1133 |
+
TATCTC
|
1134 |
+
TATCTG
|
1135 |
+
TATCCA
|
1136 |
+
TATCCT
|
1137 |
+
TATCCC
|
1138 |
+
TATCCG
|
1139 |
+
TATCGA
|
1140 |
+
TATCGT
|
1141 |
+
TATCGC
|
1142 |
+
TATCGG
|
1143 |
+
TATGAA
|
1144 |
+
TATGAT
|
1145 |
+
TATGAC
|
1146 |
+
TATGAG
|
1147 |
+
TATGTA
|
1148 |
+
TATGTT
|
1149 |
+
TATGTC
|
1150 |
+
TATGTG
|
1151 |
+
TATGCA
|
1152 |
+
TATGCT
|
1153 |
+
TATGCC
|
1154 |
+
TATGCG
|
1155 |
+
TATGGA
|
1156 |
+
TATGGT
|
1157 |
+
TATGGC
|
1158 |
+
TATGGG
|
1159 |
+
TACAAA
|
1160 |
+
TACAAT
|
1161 |
+
TACAAC
|
1162 |
+
TACAAG
|
1163 |
+
TACATA
|
1164 |
+
TACATT
|
1165 |
+
TACATC
|
1166 |
+
TACATG
|
1167 |
+
TACACA
|
1168 |
+
TACACT
|
1169 |
+
TACACC
|
1170 |
+
TACACG
|
1171 |
+
TACAGA
|
1172 |
+
TACAGT
|
1173 |
+
TACAGC
|
1174 |
+
TACAGG
|
1175 |
+
TACTAA
|
1176 |
+
TACTAT
|
1177 |
+
TACTAC
|
1178 |
+
TACTAG
|
1179 |
+
TACTTA
|
1180 |
+
TACTTT
|
1181 |
+
TACTTC
|
1182 |
+
TACTTG
|
1183 |
+
TACTCA
|
1184 |
+
TACTCT
|
1185 |
+
TACTCC
|
1186 |
+
TACTCG
|
1187 |
+
TACTGA
|
1188 |
+
TACTGT
|
1189 |
+
TACTGC
|
1190 |
+
TACTGG
|
1191 |
+
TACCAA
|
1192 |
+
TACCAT
|
1193 |
+
TACCAC
|
1194 |
+
TACCAG
|
1195 |
+
TACCTA
|
1196 |
+
TACCTT
|
1197 |
+
TACCTC
|
1198 |
+
TACCTG
|
1199 |
+
TACCCA
|
1200 |
+
TACCCT
|
1201 |
+
TACCCC
|
1202 |
+
TACCCG
|
1203 |
+
TACCGA
|
1204 |
+
TACCGT
|
1205 |
+
TACCGC
|
1206 |
+
TACCGG
|
1207 |
+
TACGAA
|
1208 |
+
TACGAT
|
1209 |
+
TACGAC
|
1210 |
+
TACGAG
|
1211 |
+
TACGTA
|
1212 |
+
TACGTT
|
1213 |
+
TACGTC
|
1214 |
+
TACGTG
|
1215 |
+
TACGCA
|
1216 |
+
TACGCT
|
1217 |
+
TACGCC
|
1218 |
+
TACGCG
|
1219 |
+
TACGGA
|
1220 |
+
TACGGT
|
1221 |
+
TACGGC
|
1222 |
+
TACGGG
|
1223 |
+
TAGAAA
|
1224 |
+
TAGAAT
|
1225 |
+
TAGAAC
|
1226 |
+
TAGAAG
|
1227 |
+
TAGATA
|
1228 |
+
TAGATT
|
1229 |
+
TAGATC
|
1230 |
+
TAGATG
|
1231 |
+
TAGACA
|
1232 |
+
TAGACT
|
1233 |
+
TAGACC
|
1234 |
+
TAGACG
|
1235 |
+
TAGAGA
|
1236 |
+
TAGAGT
|
1237 |
+
TAGAGC
|
1238 |
+
TAGAGG
|
1239 |
+
TAGTAA
|
1240 |
+
TAGTAT
|
1241 |
+
TAGTAC
|
1242 |
+
TAGTAG
|
1243 |
+
TAGTTA
|
1244 |
+
TAGTTT
|
1245 |
+
TAGTTC
|
1246 |
+
TAGTTG
|
1247 |
+
TAGTCA
|
1248 |
+
TAGTCT
|
1249 |
+
TAGTCC
|
1250 |
+
TAGTCG
|
1251 |
+
TAGTGA
|
1252 |
+
TAGTGT
|
1253 |
+
TAGTGC
|
1254 |
+
TAGTGG
|
1255 |
+
TAGCAA
|
1256 |
+
TAGCAT
|
1257 |
+
TAGCAC
|
1258 |
+
TAGCAG
|
1259 |
+
TAGCTA
|
1260 |
+
TAGCTT
|
1261 |
+
TAGCTC
|
1262 |
+
TAGCTG
|
1263 |
+
TAGCCA
|
1264 |
+
TAGCCT
|
1265 |
+
TAGCCC
|
1266 |
+
TAGCCG
|
1267 |
+
TAGCGA
|
1268 |
+
TAGCGT
|
1269 |
+
TAGCGC
|
1270 |
+
TAGCGG
|
1271 |
+
TAGGAA
|
1272 |
+
TAGGAT
|
1273 |
+
TAGGAC
|
1274 |
+
TAGGAG
|
1275 |
+
TAGGTA
|
1276 |
+
TAGGTT
|
1277 |
+
TAGGTC
|
1278 |
+
TAGGTG
|
1279 |
+
TAGGCA
|
1280 |
+
TAGGCT
|
1281 |
+
TAGGCC
|
1282 |
+
TAGGCG
|
1283 |
+
TAGGGA
|
1284 |
+
TAGGGT
|
1285 |
+
TAGGGC
|
1286 |
+
TAGGGG
|
1287 |
+
TTAAAA
|
1288 |
+
TTAAAT
|
1289 |
+
TTAAAC
|
1290 |
+
TTAAAG
|
1291 |
+
TTAATA
|
1292 |
+
TTAATT
|
1293 |
+
TTAATC
|
1294 |
+
TTAATG
|
1295 |
+
TTAACA
|
1296 |
+
TTAACT
|
1297 |
+
TTAACC
|
1298 |
+
TTAACG
|
1299 |
+
TTAAGA
|
1300 |
+
TTAAGT
|
1301 |
+
TTAAGC
|
1302 |
+
TTAAGG
|
1303 |
+
TTATAA
|
1304 |
+
TTATAT
|
1305 |
+
TTATAC
|
1306 |
+
TTATAG
|
1307 |
+
TTATTA
|
1308 |
+
TTATTT
|
1309 |
+
TTATTC
|
1310 |
+
TTATTG
|
1311 |
+
TTATCA
|
1312 |
+
TTATCT
|
1313 |
+
TTATCC
|
1314 |
+
TTATCG
|
1315 |
+
TTATGA
|
1316 |
+
TTATGT
|
1317 |
+
TTATGC
|
1318 |
+
TTATGG
|
1319 |
+
TTACAA
|
1320 |
+
TTACAT
|
1321 |
+
TTACAC
|
1322 |
+
TTACAG
|
1323 |
+
TTACTA
|
1324 |
+
TTACTT
|
1325 |
+
TTACTC
|
1326 |
+
TTACTG
|
1327 |
+
TTACCA
|
1328 |
+
TTACCT
|
1329 |
+
TTACCC
|
1330 |
+
TTACCG
|
1331 |
+
TTACGA
|
1332 |
+
TTACGT
|
1333 |
+
TTACGC
|
1334 |
+
TTACGG
|
1335 |
+
TTAGAA
|
1336 |
+
TTAGAT
|
1337 |
+
TTAGAC
|
1338 |
+
TTAGAG
|
1339 |
+
TTAGTA
|
1340 |
+
TTAGTT
|
1341 |
+
TTAGTC
|
1342 |
+
TTAGTG
|
1343 |
+
TTAGCA
|
1344 |
+
TTAGCT
|
1345 |
+
TTAGCC
|
1346 |
+
TTAGCG
|
1347 |
+
TTAGGA
|
1348 |
+
TTAGGT
|
1349 |
+
TTAGGC
|
1350 |
+
TTAGGG
|
1351 |
+
TTTAAA
|
1352 |
+
TTTAAT
|
1353 |
+
TTTAAC
|
1354 |
+
TTTAAG
|
1355 |
+
TTTATA
|
1356 |
+
TTTATT
|
1357 |
+
TTTATC
|
1358 |
+
TTTATG
|
1359 |
+
TTTACA
|
1360 |
+
TTTACT
|
1361 |
+
TTTACC
|
1362 |
+
TTTACG
|
1363 |
+
TTTAGA
|
1364 |
+
TTTAGT
|
1365 |
+
TTTAGC
|
1366 |
+
TTTAGG
|
1367 |
+
TTTTAA
|
1368 |
+
TTTTAT
|
1369 |
+
TTTTAC
|
1370 |
+
TTTTAG
|
1371 |
+
TTTTTA
|
1372 |
+
TTTTTT
|
1373 |
+
TTTTTC
|
1374 |
+
TTTTTG
|
1375 |
+
TTTTCA
|
1376 |
+
TTTTCT
|
1377 |
+
TTTTCC
|
1378 |
+
TTTTCG
|
1379 |
+
TTTTGA
|
1380 |
+
TTTTGT
|
1381 |
+
TTTTGC
|
1382 |
+
TTTTGG
|
1383 |
+
TTTCAA
|
1384 |
+
TTTCAT
|
1385 |
+
TTTCAC
|
1386 |
+
TTTCAG
|
1387 |
+
TTTCTA
|
1388 |
+
TTTCTT
|
1389 |
+
TTTCTC
|
1390 |
+
TTTCTG
|
1391 |
+
TTTCCA
|
1392 |
+
TTTCCT
|
1393 |
+
TTTCCC
|
1394 |
+
TTTCCG
|
1395 |
+
TTTCGA
|
1396 |
+
TTTCGT
|
1397 |
+
TTTCGC
|
1398 |
+
TTTCGG
|
1399 |
+
TTTGAA
|
1400 |
+
TTTGAT
|
1401 |
+
TTTGAC
|
1402 |
+
TTTGAG
|
1403 |
+
TTTGTA
|
1404 |
+
TTTGTT
|
1405 |
+
TTTGTC
|
1406 |
+
TTTGTG
|
1407 |
+
TTTGCA
|
1408 |
+
TTTGCT
|
1409 |
+
TTTGCC
|
1410 |
+
TTTGCG
|
1411 |
+
TTTGGA
|
1412 |
+
TTTGGT
|
1413 |
+
TTTGGC
|
1414 |
+
TTTGGG
|
1415 |
+
TTCAAA
|
1416 |
+
TTCAAT
|
1417 |
+
TTCAAC
|
1418 |
+
TTCAAG
|
1419 |
+
TTCATA
|
1420 |
+
TTCATT
|
1421 |
+
TTCATC
|
1422 |
+
TTCATG
|
1423 |
+
TTCACA
|
1424 |
+
TTCACT
|
1425 |
+
TTCACC
|
1426 |
+
TTCACG
|
1427 |
+
TTCAGA
|
1428 |
+
TTCAGT
|
1429 |
+
TTCAGC
|
1430 |
+
TTCAGG
|
1431 |
+
TTCTAA
|
1432 |
+
TTCTAT
|
1433 |
+
TTCTAC
|
1434 |
+
TTCTAG
|
1435 |
+
TTCTTA
|
1436 |
+
TTCTTT
|
1437 |
+
TTCTTC
|
1438 |
+
TTCTTG
|
1439 |
+
TTCTCA
|
1440 |
+
TTCTCT
|
1441 |
+
TTCTCC
|
1442 |
+
TTCTCG
|
1443 |
+
TTCTGA
|
1444 |
+
TTCTGT
|
1445 |
+
TTCTGC
|
1446 |
+
TTCTGG
|
1447 |
+
TTCCAA
|
1448 |
+
TTCCAT
|
1449 |
+
TTCCAC
|
1450 |
+
TTCCAG
|
1451 |
+
TTCCTA
|
1452 |
+
TTCCTT
|
1453 |
+
TTCCTC
|
1454 |
+
TTCCTG
|
1455 |
+
TTCCCA
|
1456 |
+
TTCCCT
|
1457 |
+
TTCCCC
|
1458 |
+
TTCCCG
|
1459 |
+
TTCCGA
|
1460 |
+
TTCCGT
|
1461 |
+
TTCCGC
|
1462 |
+
TTCCGG
|
1463 |
+
TTCGAA
|
1464 |
+
TTCGAT
|
1465 |
+
TTCGAC
|
1466 |
+
TTCGAG
|
1467 |
+
TTCGTA
|
1468 |
+
TTCGTT
|
1469 |
+
TTCGTC
|
1470 |
+
TTCGTG
|
1471 |
+
TTCGCA
|
1472 |
+
TTCGCT
|
1473 |
+
TTCGCC
|
1474 |
+
TTCGCG
|
1475 |
+
TTCGGA
|
1476 |
+
TTCGGT
|
1477 |
+
TTCGGC
|
1478 |
+
TTCGGG
|
1479 |
+
TTGAAA
|
1480 |
+
TTGAAT
|
1481 |
+
TTGAAC
|
1482 |
+
TTGAAG
|
1483 |
+
TTGATA
|
1484 |
+
TTGATT
|
1485 |
+
TTGATC
|
1486 |
+
TTGATG
|
1487 |
+
TTGACA
|
1488 |
+
TTGACT
|
1489 |
+
TTGACC
|
1490 |
+
TTGACG
|
1491 |
+
TTGAGA
|
1492 |
+
TTGAGT
|
1493 |
+
TTGAGC
|
1494 |
+
TTGAGG
|
1495 |
+
TTGTAA
|
1496 |
+
TTGTAT
|
1497 |
+
TTGTAC
|
1498 |
+
TTGTAG
|
1499 |
+
TTGTTA
|
1500 |
+
TTGTTT
|
1501 |
+
TTGTTC
|
1502 |
+
TTGTTG
|
1503 |
+
TTGTCA
|
1504 |
+
TTGTCT
|
1505 |
+
TTGTCC
|
1506 |
+
TTGTCG
|
1507 |
+
TTGTGA
|
1508 |
+
TTGTGT
|
1509 |
+
TTGTGC
|
1510 |
+
TTGTGG
|
1511 |
+
TTGCAA
|
1512 |
+
TTGCAT
|
1513 |
+
TTGCAC
|
1514 |
+
TTGCAG
|
1515 |
+
TTGCTA
|
1516 |
+
TTGCTT
|
1517 |
+
TTGCTC
|
1518 |
+
TTGCTG
|
1519 |
+
TTGCCA
|
1520 |
+
TTGCCT
|
1521 |
+
TTGCCC
|
1522 |
+
TTGCCG
|
1523 |
+
TTGCGA
|
1524 |
+
TTGCGT
|
1525 |
+
TTGCGC
|
1526 |
+
TTGCGG
|
1527 |
+
TTGGAA
|
1528 |
+
TTGGAT
|
1529 |
+
TTGGAC
|
1530 |
+
TTGGAG
|
1531 |
+
TTGGTA
|
1532 |
+
TTGGTT
|
1533 |
+
TTGGTC
|
1534 |
+
TTGGTG
|
1535 |
+
TTGGCA
|
1536 |
+
TTGGCT
|
1537 |
+
TTGGCC
|
1538 |
+
TTGGCG
|
1539 |
+
TTGGGA
|
1540 |
+
TTGGGT
|
1541 |
+
TTGGGC
|
1542 |
+
TTGGGG
|
1543 |
+
TCAAAA
|
1544 |
+
TCAAAT
|
1545 |
+
TCAAAC
|
1546 |
+
TCAAAG
|
1547 |
+
TCAATA
|
1548 |
+
TCAATT
|
1549 |
+
TCAATC
|
1550 |
+
TCAATG
|
1551 |
+
TCAACA
|
1552 |
+
TCAACT
|
1553 |
+
TCAACC
|
1554 |
+
TCAACG
|
1555 |
+
TCAAGA
|
1556 |
+
TCAAGT
|
1557 |
+
TCAAGC
|
1558 |
+
TCAAGG
|
1559 |
+
TCATAA
|
1560 |
+
TCATAT
|
1561 |
+
TCATAC
|
1562 |
+
TCATAG
|
1563 |
+
TCATTA
|
1564 |
+
TCATTT
|
1565 |
+
TCATTC
|
1566 |
+
TCATTG
|
1567 |
+
TCATCA
|
1568 |
+
TCATCT
|
1569 |
+
TCATCC
|
1570 |
+
TCATCG
|
1571 |
+
TCATGA
|
1572 |
+
TCATGT
|
1573 |
+
TCATGC
|
1574 |
+
TCATGG
|
1575 |
+
TCACAA
|
1576 |
+
TCACAT
|
1577 |
+
TCACAC
|
1578 |
+
TCACAG
|
1579 |
+
TCACTA
|
1580 |
+
TCACTT
|
1581 |
+
TCACTC
|
1582 |
+
TCACTG
|
1583 |
+
TCACCA
|
1584 |
+
TCACCT
|
1585 |
+
TCACCC
|
1586 |
+
TCACCG
|
1587 |
+
TCACGA
|
1588 |
+
TCACGT
|
1589 |
+
TCACGC
|
1590 |
+
TCACGG
|
1591 |
+
TCAGAA
|
1592 |
+
TCAGAT
|
1593 |
+
TCAGAC
|
1594 |
+
TCAGAG
|
1595 |
+
TCAGTA
|
1596 |
+
TCAGTT
|
1597 |
+
TCAGTC
|
1598 |
+
TCAGTG
|
1599 |
+
TCAGCA
|
1600 |
+
TCAGCT
|
1601 |
+
TCAGCC
|
1602 |
+
TCAGCG
|
1603 |
+
TCAGGA
|
1604 |
+
TCAGGT
|
1605 |
+
TCAGGC
|
1606 |
+
TCAGGG
|
1607 |
+
TCTAAA
|
1608 |
+
TCTAAT
|
1609 |
+
TCTAAC
|
1610 |
+
TCTAAG
|
1611 |
+
TCTATA
|
1612 |
+
TCTATT
|
1613 |
+
TCTATC
|
1614 |
+
TCTATG
|
1615 |
+
TCTACA
|
1616 |
+
TCTACT
|
1617 |
+
TCTACC
|
1618 |
+
TCTACG
|
1619 |
+
TCTAGA
|
1620 |
+
TCTAGT
|
1621 |
+
TCTAGC
|
1622 |
+
TCTAGG
|
1623 |
+
TCTTAA
|
1624 |
+
TCTTAT
|
1625 |
+
TCTTAC
|
1626 |
+
TCTTAG
|
1627 |
+
TCTTTA
|
1628 |
+
TCTTTT
|
1629 |
+
TCTTTC
|
1630 |
+
TCTTTG
|
1631 |
+
TCTTCA
|
1632 |
+
TCTTCT
|
1633 |
+
TCTTCC
|
1634 |
+
TCTTCG
|
1635 |
+
TCTTGA
|
1636 |
+
TCTTGT
|
1637 |
+
TCTTGC
|
1638 |
+
TCTTGG
|
1639 |
+
TCTCAA
|
1640 |
+
TCTCAT
|
1641 |
+
TCTCAC
|
1642 |
+
TCTCAG
|
1643 |
+
TCTCTA
|
1644 |
+
TCTCTT
|
1645 |
+
TCTCTC
|
1646 |
+
TCTCTG
|
1647 |
+
TCTCCA
|
1648 |
+
TCTCCT
|
1649 |
+
TCTCCC
|
1650 |
+
TCTCCG
|
1651 |
+
TCTCGA
|
1652 |
+
TCTCGT
|
1653 |
+
TCTCGC
|
1654 |
+
TCTCGG
|
1655 |
+
TCTGAA
|
1656 |
+
TCTGAT
|
1657 |
+
TCTGAC
|
1658 |
+
TCTGAG
|
1659 |
+
TCTGTA
|
1660 |
+
TCTGTT
|
1661 |
+
TCTGTC
|
1662 |
+
TCTGTG
|
1663 |
+
TCTGCA
|
1664 |
+
TCTGCT
|
1665 |
+
TCTGCC
|
1666 |
+
TCTGCG
|
1667 |
+
TCTGGA
|
1668 |
+
TCTGGT
|
1669 |
+
TCTGGC
|
1670 |
+
TCTGGG
|
1671 |
+
TCCAAA
|
1672 |
+
TCCAAT
|
1673 |
+
TCCAAC
|
1674 |
+
TCCAAG
|
1675 |
+
TCCATA
|
1676 |
+
TCCATT
|
1677 |
+
TCCATC
|
1678 |
+
TCCATG
|
1679 |
+
TCCACA
|
1680 |
+
TCCACT
|
1681 |
+
TCCACC
|
1682 |
+
TCCACG
|
1683 |
+
TCCAGA
|
1684 |
+
TCCAGT
|
1685 |
+
TCCAGC
|
1686 |
+
TCCAGG
|
1687 |
+
TCCTAA
|
1688 |
+
TCCTAT
|
1689 |
+
TCCTAC
|
1690 |
+
TCCTAG
|
1691 |
+
TCCTTA
|
1692 |
+
TCCTTT
|
1693 |
+
TCCTTC
|
1694 |
+
TCCTTG
|
1695 |
+
TCCTCA
|
1696 |
+
TCCTCT
|
1697 |
+
TCCTCC
|
1698 |
+
TCCTCG
|
1699 |
+
TCCTGA
|
1700 |
+
TCCTGT
|
1701 |
+
TCCTGC
|
1702 |
+
TCCTGG
|
1703 |
+
TCCCAA
|
1704 |
+
TCCCAT
|
1705 |
+
TCCCAC
|
1706 |
+
TCCCAG
|
1707 |
+
TCCCTA
|
1708 |
+
TCCCTT
|
1709 |
+
TCCCTC
|
1710 |
+
TCCCTG
|
1711 |
+
TCCCCA
|
1712 |
+
TCCCCT
|
1713 |
+
TCCCCC
|
1714 |
+
TCCCCG
|
1715 |
+
TCCCGA
|
1716 |
+
TCCCGT
|
1717 |
+
TCCCGC
|
1718 |
+
TCCCGG
|
1719 |
+
TCCGAA
|
1720 |
+
TCCGAT
|
1721 |
+
TCCGAC
|
1722 |
+
TCCGAG
|
1723 |
+
TCCGTA
|
1724 |
+
TCCGTT
|
1725 |
+
TCCGTC
|
1726 |
+
TCCGTG
|
1727 |
+
TCCGCA
|
1728 |
+
TCCGCT
|
1729 |
+
TCCGCC
|
1730 |
+
TCCGCG
|
1731 |
+
TCCGGA
|
1732 |
+
TCCGGT
|
1733 |
+
TCCGGC
|
1734 |
+
TCCGGG
|
1735 |
+
TCGAAA
|
1736 |
+
TCGAAT
|
1737 |
+
TCGAAC
|
1738 |
+
TCGAAG
|
1739 |
+
TCGATA
|
1740 |
+
TCGATT
|
1741 |
+
TCGATC
|
1742 |
+
TCGATG
|
1743 |
+
TCGACA
|
1744 |
+
TCGACT
|
1745 |
+
TCGACC
|
1746 |
+
TCGACG
|
1747 |
+
TCGAGA
|
1748 |
+
TCGAGT
|
1749 |
+
TCGAGC
|
1750 |
+
TCGAGG
|
1751 |
+
TCGTAA
|
1752 |
+
TCGTAT
|
1753 |
+
TCGTAC
|
1754 |
+
TCGTAG
|
1755 |
+
TCGTTA
|
1756 |
+
TCGTTT
|
1757 |
+
TCGTTC
|
1758 |
+
TCGTTG
|
1759 |
+
TCGTCA
|
1760 |
+
TCGTCT
|
1761 |
+
TCGTCC
|
1762 |
+
TCGTCG
|
1763 |
+
TCGTGA
|
1764 |
+
TCGTGT
|
1765 |
+
TCGTGC
|
1766 |
+
TCGTGG
|
1767 |
+
TCGCAA
|
1768 |
+
TCGCAT
|
1769 |
+
TCGCAC
|
1770 |
+
TCGCAG
|
1771 |
+
TCGCTA
|
1772 |
+
TCGCTT
|
1773 |
+
TCGCTC
|
1774 |
+
TCGCTG
|
1775 |
+
TCGCCA
|
1776 |
+
TCGCCT
|
1777 |
+
TCGCCC
|
1778 |
+
TCGCCG
|
1779 |
+
TCGCGA
|
1780 |
+
TCGCGT
|
1781 |
+
TCGCGC
|
1782 |
+
TCGCGG
|
1783 |
+
TCGGAA
|
1784 |
+
TCGGAT
|
1785 |
+
TCGGAC
|
1786 |
+
TCGGAG
|
1787 |
+
TCGGTA
|
1788 |
+
TCGGTT
|
1789 |
+
TCGGTC
|
1790 |
+
TCGGTG
|
1791 |
+
TCGGCA
|
1792 |
+
TCGGCT
|
1793 |
+
TCGGCC
|
1794 |
+
TCGGCG
|
1795 |
+
TCGGGA
|
1796 |
+
TCGGGT
|
1797 |
+
TCGGGC
|
1798 |
+
TCGGGG
|
1799 |
+
TGAAAA
|
1800 |
+
TGAAAT
|
1801 |
+
TGAAAC
|
1802 |
+
TGAAAG
|
1803 |
+
TGAATA
|
1804 |
+
TGAATT
|
1805 |
+
TGAATC
|
1806 |
+
TGAATG
|
1807 |
+
TGAACA
|
1808 |
+
TGAACT
|
1809 |
+
TGAACC
|
1810 |
+
TGAACG
|
1811 |
+
TGAAGA
|
1812 |
+
TGAAGT
|
1813 |
+
TGAAGC
|
1814 |
+
TGAAGG
|
1815 |
+
TGATAA
|
1816 |
+
TGATAT
|
1817 |
+
TGATAC
|
1818 |
+
TGATAG
|
1819 |
+
TGATTA
|
1820 |
+
TGATTT
|
1821 |
+
TGATTC
|
1822 |
+
TGATTG
|
1823 |
+
TGATCA
|
1824 |
+
TGATCT
|
1825 |
+
TGATCC
|
1826 |
+
TGATCG
|
1827 |
+
TGATGA
|
1828 |
+
TGATGT
|
1829 |
+
TGATGC
|
1830 |
+
TGATGG
|
1831 |
+
TGACAA
|
1832 |
+
TGACAT
|
1833 |
+
TGACAC
|
1834 |
+
TGACAG
|
1835 |
+
TGACTA
|
1836 |
+
TGACTT
|
1837 |
+
TGACTC
|
1838 |
+
TGACTG
|
1839 |
+
TGACCA
|
1840 |
+
TGACCT
|
1841 |
+
TGACCC
|
1842 |
+
TGACCG
|
1843 |
+
TGACGA
|
1844 |
+
TGACGT
|
1845 |
+
TGACGC
|
1846 |
+
TGACGG
|
1847 |
+
TGAGAA
|
1848 |
+
TGAGAT
|
1849 |
+
TGAGAC
|
1850 |
+
TGAGAG
|
1851 |
+
TGAGTA
|
1852 |
+
TGAGTT
|
1853 |
+
TGAGTC
|
1854 |
+
TGAGTG
|
1855 |
+
TGAGCA
|
1856 |
+
TGAGCT
|
1857 |
+
TGAGCC
|
1858 |
+
TGAGCG
|
1859 |
+
TGAGGA
|
1860 |
+
TGAGGT
|
1861 |
+
TGAGGC
|
1862 |
+
TGAGGG
|
1863 |
+
TGTAAA
|
1864 |
+
TGTAAT
|
1865 |
+
TGTAAC
|
1866 |
+
TGTAAG
|
1867 |
+
TGTATA
|
1868 |
+
TGTATT
|
1869 |
+
TGTATC
|
1870 |
+
TGTATG
|
1871 |
+
TGTACA
|
1872 |
+
TGTACT
|
1873 |
+
TGTACC
|
1874 |
+
TGTACG
|
1875 |
+
TGTAGA
|
1876 |
+
TGTAGT
|
1877 |
+
TGTAGC
|
1878 |
+
TGTAGG
|
1879 |
+
TGTTAA
|
1880 |
+
TGTTAT
|
1881 |
+
TGTTAC
|
1882 |
+
TGTTAG
|
1883 |
+
TGTTTA
|
1884 |
+
TGTTTT
|
1885 |
+
TGTTTC
|
1886 |
+
TGTTTG
|
1887 |
+
TGTTCA
|
1888 |
+
TGTTCT
|
1889 |
+
TGTTCC
|
1890 |
+
TGTTCG
|
1891 |
+
TGTTGA
|
1892 |
+
TGTTGT
|
1893 |
+
TGTTGC
|
1894 |
+
TGTTGG
|
1895 |
+
TGTCAA
|
1896 |
+
TGTCAT
|
1897 |
+
TGTCAC
|
1898 |
+
TGTCAG
|
1899 |
+
TGTCTA
|
1900 |
+
TGTCTT
|
1901 |
+
TGTCTC
|
1902 |
+
TGTCTG
|
1903 |
+
TGTCCA
|
1904 |
+
TGTCCT
|
1905 |
+
TGTCCC
|
1906 |
+
TGTCCG
|
1907 |
+
TGTCGA
|
1908 |
+
TGTCGT
|
1909 |
+
TGTCGC
|
1910 |
+
TGTCGG
|
1911 |
+
TGTGAA
|
1912 |
+
TGTGAT
|
1913 |
+
TGTGAC
|
1914 |
+
TGTGAG
|
1915 |
+
TGTGTA
|
1916 |
+
TGTGTT
|
1917 |
+
TGTGTC
|
1918 |
+
TGTGTG
|
1919 |
+
TGTGCA
|
1920 |
+
TGTGCT
|
1921 |
+
TGTGCC
|
1922 |
+
TGTGCG
|
1923 |
+
TGTGGA
|
1924 |
+
TGTGGT
|
1925 |
+
TGTGGC
|
1926 |
+
TGTGGG
|
1927 |
+
TGCAAA
|
1928 |
+
TGCAAT
|
1929 |
+
TGCAAC
|
1930 |
+
TGCAAG
|
1931 |
+
TGCATA
|
1932 |
+
TGCATT
|
1933 |
+
TGCATC
|
1934 |
+
TGCATG
|
1935 |
+
TGCACA
|
1936 |
+
TGCACT
|
1937 |
+
TGCACC
|
1938 |
+
TGCACG
|
1939 |
+
TGCAGA
|
1940 |
+
TGCAGT
|
1941 |
+
TGCAGC
|
1942 |
+
TGCAGG
|
1943 |
+
TGCTAA
|
1944 |
+
TGCTAT
|
1945 |
+
TGCTAC
|
1946 |
+
TGCTAG
|
1947 |
+
TGCTTA
|
1948 |
+
TGCTTT
|
1949 |
+
TGCTTC
|
1950 |
+
TGCTTG
|
1951 |
+
TGCTCA
|
1952 |
+
TGCTCT
|
1953 |
+
TGCTCC
|
1954 |
+
TGCTCG
|
1955 |
+
TGCTGA
|
1956 |
+
TGCTGT
|
1957 |
+
TGCTGC
|
1958 |
+
TGCTGG
|
1959 |
+
TGCCAA
|
1960 |
+
TGCCAT
|
1961 |
+
TGCCAC
|
1962 |
+
TGCCAG
|
1963 |
+
TGCCTA
|
1964 |
+
TGCCTT
|
1965 |
+
TGCCTC
|
1966 |
+
TGCCTG
|
1967 |
+
TGCCCA
|
1968 |
+
TGCCCT
|
1969 |
+
TGCCCC
|
1970 |
+
TGCCCG
|
1971 |
+
TGCCGA
|
1972 |
+
TGCCGT
|
1973 |
+
TGCCGC
|
1974 |
+
TGCCGG
|
1975 |
+
TGCGAA
|
1976 |
+
TGCGAT
|
1977 |
+
TGCGAC
|
1978 |
+
TGCGAG
|
1979 |
+
TGCGTA
|
1980 |
+
TGCGTT
|
1981 |
+
TGCGTC
|
1982 |
+
TGCGTG
|
1983 |
+
TGCGCA
|
1984 |
+
TGCGCT
|
1985 |
+
TGCGCC
|
1986 |
+
TGCGCG
|
1987 |
+
TGCGGA
|
1988 |
+
TGCGGT
|
1989 |
+
TGCGGC
|
1990 |
+
TGCGGG
|
1991 |
+
TGGAAA
|
1992 |
+
TGGAAT
|
1993 |
+
TGGAAC
|
1994 |
+
TGGAAG
|
1995 |
+
TGGATA
|
1996 |
+
TGGATT
|
1997 |
+
TGGATC
|
1998 |
+
TGGATG
|
1999 |
+
TGGACA
|
2000 |
+
TGGACT
|
2001 |
+
TGGACC
|
2002 |
+
TGGACG
|
2003 |
+
TGGAGA
|
2004 |
+
TGGAGT
|
2005 |
+
TGGAGC
|
2006 |
+
TGGAGG
|
2007 |
+
TGGTAA
|
2008 |
+
TGGTAT
|
2009 |
+
TGGTAC
|
2010 |
+
TGGTAG
|
2011 |
+
TGGTTA
|
2012 |
+
TGGTTT
|
2013 |
+
TGGTTC
|
2014 |
+
TGGTTG
|
2015 |
+
TGGTCA
|
2016 |
+
TGGTCT
|
2017 |
+
TGGTCC
|
2018 |
+
TGGTCG
|
2019 |
+
TGGTGA
|
2020 |
+
TGGTGT
|
2021 |
+
TGGTGC
|
2022 |
+
TGGTGG
|
2023 |
+
TGGCAA
|
2024 |
+
TGGCAT
|
2025 |
+
TGGCAC
|
2026 |
+
TGGCAG
|
2027 |
+
TGGCTA
|
2028 |
+
TGGCTT
|
2029 |
+
TGGCTC
|
2030 |
+
TGGCTG
|
2031 |
+
TGGCCA
|
2032 |
+
TGGCCT
|
2033 |
+
TGGCCC
|
2034 |
+
TGGCCG
|
2035 |
+
TGGCGA
|
2036 |
+
TGGCGT
|
2037 |
+
TGGCGC
|
2038 |
+
TGGCGG
|
2039 |
+
TGGGAA
|
2040 |
+
TGGGAT
|
2041 |
+
TGGGAC
|
2042 |
+
TGGGAG
|
2043 |
+
TGGGTA
|
2044 |
+
TGGGTT
|
2045 |
+
TGGGTC
|
2046 |
+
TGGGTG
|
2047 |
+
TGGGCA
|
2048 |
+
TGGGCT
|
2049 |
+
TGGGCC
|
2050 |
+
TGGGCG
|
2051 |
+
TGGGGA
|
2052 |
+
TGGGGT
|
2053 |
+
TGGGGC
|
2054 |
+
TGGGGG
|
2055 |
+
CAAAAA
|
2056 |
+
CAAAAT
|
2057 |
+
CAAAAC
|
2058 |
+
CAAAAG
|
2059 |
+
CAAATA
|
2060 |
+
CAAATT
|
2061 |
+
CAAATC
|
2062 |
+
CAAATG
|
2063 |
+
CAAACA
|
2064 |
+
CAAACT
|
2065 |
+
CAAACC
|
2066 |
+
CAAACG
|
2067 |
+
CAAAGA
|
2068 |
+
CAAAGT
|
2069 |
+
CAAAGC
|
2070 |
+
CAAAGG
|
2071 |
+
CAATAA
|
2072 |
+
CAATAT
|
2073 |
+
CAATAC
|
2074 |
+
CAATAG
|
2075 |
+
CAATTA
|
2076 |
+
CAATTT
|
2077 |
+
CAATTC
|
2078 |
+
CAATTG
|
2079 |
+
CAATCA
|
2080 |
+
CAATCT
|
2081 |
+
CAATCC
|
2082 |
+
CAATCG
|
2083 |
+
CAATGA
|
2084 |
+
CAATGT
|
2085 |
+
CAATGC
|
2086 |
+
CAATGG
|
2087 |
+
CAACAA
|
2088 |
+
CAACAT
|
2089 |
+
CAACAC
|
2090 |
+
CAACAG
|
2091 |
+
CAACTA
|
2092 |
+
CAACTT
|
2093 |
+
CAACTC
|
2094 |
+
CAACTG
|
2095 |
+
CAACCA
|
2096 |
+
CAACCT
|
2097 |
+
CAACCC
|
2098 |
+
CAACCG
|
2099 |
+
CAACGA
|
2100 |
+
CAACGT
|
2101 |
+
CAACGC
|
2102 |
+
CAACGG
|
2103 |
+
CAAGAA
|
2104 |
+
CAAGAT
|
2105 |
+
CAAGAC
|
2106 |
+
CAAGAG
|
2107 |
+
CAAGTA
|
2108 |
+
CAAGTT
|
2109 |
+
CAAGTC
|
2110 |
+
CAAGTG
|
2111 |
+
CAAGCA
|
2112 |
+
CAAGCT
|
2113 |
+
CAAGCC
|
2114 |
+
CAAGCG
|
2115 |
+
CAAGGA
|
2116 |
+
CAAGGT
|
2117 |
+
CAAGGC
|
2118 |
+
CAAGGG
|
2119 |
+
CATAAA
|
2120 |
+
CATAAT
|
2121 |
+
CATAAC
|
2122 |
+
CATAAG
|
2123 |
+
CATATA
|
2124 |
+
CATATT
|
2125 |
+
CATATC
|
2126 |
+
CATATG
|
2127 |
+
CATACA
|
2128 |
+
CATACT
|
2129 |
+
CATACC
|
2130 |
+
CATACG
|
2131 |
+
CATAGA
|
2132 |
+
CATAGT
|
2133 |
+
CATAGC
|
2134 |
+
CATAGG
|
2135 |
+
CATTAA
|
2136 |
+
CATTAT
|
2137 |
+
CATTAC
|
2138 |
+
CATTAG
|
2139 |
+
CATTTA
|
2140 |
+
CATTTT
|
2141 |
+
CATTTC
|
2142 |
+
CATTTG
|
2143 |
+
CATTCA
|
2144 |
+
CATTCT
|
2145 |
+
CATTCC
|
2146 |
+
CATTCG
|
2147 |
+
CATTGA
|
2148 |
+
CATTGT
|
2149 |
+
CATTGC
|
2150 |
+
CATTGG
|
2151 |
+
CATCAA
|
2152 |
+
CATCAT
|
2153 |
+
CATCAC
|
2154 |
+
CATCAG
|
2155 |
+
CATCTA
|
2156 |
+
CATCTT
|
2157 |
+
CATCTC
|
2158 |
+
CATCTG
|
2159 |
+
CATCCA
|
2160 |
+
CATCCT
|
2161 |
+
CATCCC
|
2162 |
+
CATCCG
|
2163 |
+
CATCGA
|
2164 |
+
CATCGT
|
2165 |
+
CATCGC
|
2166 |
+
CATCGG
|
2167 |
+
CATGAA
|
2168 |
+
CATGAT
|
2169 |
+
CATGAC
|
2170 |
+
CATGAG
|
2171 |
+
CATGTA
|
2172 |
+
CATGTT
|
2173 |
+
CATGTC
|
2174 |
+
CATGTG
|
2175 |
+
CATGCA
|
2176 |
+
CATGCT
|
2177 |
+
CATGCC
|
2178 |
+
CATGCG
|
2179 |
+
CATGGA
|
2180 |
+
CATGGT
|
2181 |
+
CATGGC
|
2182 |
+
CATGGG
|
2183 |
+
CACAAA
|
2184 |
+
CACAAT
|
2185 |
+
CACAAC
|
2186 |
+
CACAAG
|
2187 |
+
CACATA
|
2188 |
+
CACATT
|
2189 |
+
CACATC
|
2190 |
+
CACATG
|
2191 |
+
CACACA
|
2192 |
+
CACACT
|
2193 |
+
CACACC
|
2194 |
+
CACACG
|
2195 |
+
CACAGA
|
2196 |
+
CACAGT
|
2197 |
+
CACAGC
|
2198 |
+
CACAGG
|
2199 |
+
CACTAA
|
2200 |
+
CACTAT
|
2201 |
+
CACTAC
|
2202 |
+
CACTAG
|
2203 |
+
CACTTA
|
2204 |
+
CACTTT
|
2205 |
+
CACTTC
|
2206 |
+
CACTTG
|
2207 |
+
CACTCA
|
2208 |
+
CACTCT
|
2209 |
+
CACTCC
|
2210 |
+
CACTCG
|
2211 |
+
CACTGA
|
2212 |
+
CACTGT
|
2213 |
+
CACTGC
|
2214 |
+
CACTGG
|
2215 |
+
CACCAA
|
2216 |
+
CACCAT
|
2217 |
+
CACCAC
|
2218 |
+
CACCAG
|
2219 |
+
CACCTA
|
2220 |
+
CACCTT
|
2221 |
+
CACCTC
|
2222 |
+
CACCTG
|
2223 |
+
CACCCA
|
2224 |
+
CACCCT
|
2225 |
+
CACCCC
|
2226 |
+
CACCCG
|
2227 |
+
CACCGA
|
2228 |
+
CACCGT
|
2229 |
+
CACCGC
|
2230 |
+
CACCGG
|
2231 |
+
CACGAA
|
2232 |
+
CACGAT
|
2233 |
+
CACGAC
|
2234 |
+
CACGAG
|
2235 |
+
CACGTA
|
2236 |
+
CACGTT
|
2237 |
+
CACGTC
|
2238 |
+
CACGTG
|
2239 |
+
CACGCA
|
2240 |
+
CACGCT
|
2241 |
+
CACGCC
|
2242 |
+
CACGCG
|
2243 |
+
CACGGA
|
2244 |
+
CACGGT
|
2245 |
+
CACGGC
|
2246 |
+
CACGGG
|
2247 |
+
CAGAAA
|
2248 |
+
CAGAAT
|
2249 |
+
CAGAAC
|
2250 |
+
CAGAAG
|
2251 |
+
CAGATA
|
2252 |
+
CAGATT
|
2253 |
+
CAGATC
|
2254 |
+
CAGATG
|
2255 |
+
CAGACA
|
2256 |
+
CAGACT
|
2257 |
+
CAGACC
|
2258 |
+
CAGACG
|
2259 |
+
CAGAGA
|
2260 |
+
CAGAGT
|
2261 |
+
CAGAGC
|
2262 |
+
CAGAGG
|
2263 |
+
CAGTAA
|
2264 |
+
CAGTAT
|
2265 |
+
CAGTAC
|
2266 |
+
CAGTAG
|
2267 |
+
CAGTTA
|
2268 |
+
CAGTTT
|
2269 |
+
CAGTTC
|
2270 |
+
CAGTTG
|
2271 |
+
CAGTCA
|
2272 |
+
CAGTCT
|
2273 |
+
CAGTCC
|
2274 |
+
CAGTCG
|
2275 |
+
CAGTGA
|
2276 |
+
CAGTGT
|
2277 |
+
CAGTGC
|
2278 |
+
CAGTGG
|
2279 |
+
CAGCAA
|
2280 |
+
CAGCAT
|
2281 |
+
CAGCAC
|
2282 |
+
CAGCAG
|
2283 |
+
CAGCTA
|
2284 |
+
CAGCTT
|
2285 |
+
CAGCTC
|
2286 |
+
CAGCTG
|
2287 |
+
CAGCCA
|
2288 |
+
CAGCCT
|
2289 |
+
CAGCCC
|
2290 |
+
CAGCCG
|
2291 |
+
CAGCGA
|
2292 |
+
CAGCGT
|
2293 |
+
CAGCGC
|
2294 |
+
CAGCGG
|
2295 |
+
CAGGAA
|
2296 |
+
CAGGAT
|
2297 |
+
CAGGAC
|
2298 |
+
CAGGAG
|
2299 |
+
CAGGTA
|
2300 |
+
CAGGTT
|
2301 |
+
CAGGTC
|
2302 |
+
CAGGTG
|
2303 |
+
CAGGCA
|
2304 |
+
CAGGCT
|
2305 |
+
CAGGCC
|
2306 |
+
CAGGCG
|
2307 |
+
CAGGGA
|
2308 |
+
CAGGGT
|
2309 |
+
CAGGGC
|
2310 |
+
CAGGGG
|
2311 |
+
CTAAAA
|
2312 |
+
CTAAAT
|
2313 |
+
CTAAAC
|
2314 |
+
CTAAAG
|
2315 |
+
CTAATA
|
2316 |
+
CTAATT
|
2317 |
+
CTAATC
|
2318 |
+
CTAATG
|
2319 |
+
CTAACA
|
2320 |
+
CTAACT
|
2321 |
+
CTAACC
|
2322 |
+
CTAACG
|
2323 |
+
CTAAGA
|
2324 |
+
CTAAGT
|
2325 |
+
CTAAGC
|
2326 |
+
CTAAGG
|
2327 |
+
CTATAA
|
2328 |
+
CTATAT
|
2329 |
+
CTATAC
|
2330 |
+
CTATAG
|
2331 |
+
CTATTA
|
2332 |
+
CTATTT
|
2333 |
+
CTATTC
|
2334 |
+
CTATTG
|
2335 |
+
CTATCA
|
2336 |
+
CTATCT
|
2337 |
+
CTATCC
|
2338 |
+
CTATCG
|
2339 |
+
CTATGA
|
2340 |
+
CTATGT
|
2341 |
+
CTATGC
|
2342 |
+
CTATGG
|
2343 |
+
CTACAA
|
2344 |
+
CTACAT
|
2345 |
+
CTACAC
|
2346 |
+
CTACAG
|
2347 |
+
CTACTA
|
2348 |
+
CTACTT
|
2349 |
+
CTACTC
|
2350 |
+
CTACTG
|
2351 |
+
CTACCA
|
2352 |
+
CTACCT
|
2353 |
+
CTACCC
|
2354 |
+
CTACCG
|
2355 |
+
CTACGA
|
2356 |
+
CTACGT
|
2357 |
+
CTACGC
|
2358 |
+
CTACGG
|
2359 |
+
CTAGAA
|
2360 |
+
CTAGAT
|
2361 |
+
CTAGAC
|
2362 |
+
CTAGAG
|
2363 |
+
CTAGTA
|
2364 |
+
CTAGTT
|
2365 |
+
CTAGTC
|
2366 |
+
CTAGTG
|
2367 |
+
CTAGCA
|
2368 |
+
CTAGCT
|
2369 |
+
CTAGCC
|
2370 |
+
CTAGCG
|
2371 |
+
CTAGGA
|
2372 |
+
CTAGGT
|
2373 |
+
CTAGGC
|
2374 |
+
CTAGGG
|
2375 |
+
CTTAAA
|
2376 |
+
CTTAAT
|
2377 |
+
CTTAAC
|
2378 |
+
CTTAAG
|
2379 |
+
CTTATA
|
2380 |
+
CTTATT
|
2381 |
+
CTTATC
|
2382 |
+
CTTATG
|
2383 |
+
CTTACA
|
2384 |
+
CTTACT
|
2385 |
+
CTTACC
|
2386 |
+
CTTACG
|
2387 |
+
CTTAGA
|
2388 |
+
CTTAGT
|
2389 |
+
CTTAGC
|
2390 |
+
CTTAGG
|
2391 |
+
CTTTAA
|
2392 |
+
CTTTAT
|
2393 |
+
CTTTAC
|
2394 |
+
CTTTAG
|
2395 |
+
CTTTTA
|
2396 |
+
CTTTTT
|
2397 |
+
CTTTTC
|
2398 |
+
CTTTTG
|
2399 |
+
CTTTCA
|
2400 |
+
CTTTCT
|
2401 |
+
CTTTCC
|
2402 |
+
CTTTCG
|
2403 |
+
CTTTGA
|
2404 |
+
CTTTGT
|
2405 |
+
CTTTGC
|
2406 |
+
CTTTGG
|
2407 |
+
CTTCAA
|
2408 |
+
CTTCAT
|
2409 |
+
CTTCAC
|
2410 |
+
CTTCAG
|
2411 |
+
CTTCTA
|
2412 |
+
CTTCTT
|
2413 |
+
CTTCTC
|
2414 |
+
CTTCTG
|
2415 |
+
CTTCCA
|
2416 |
+
CTTCCT
|
2417 |
+
CTTCCC
|
2418 |
+
CTTCCG
|
2419 |
+
CTTCGA
|
2420 |
+
CTTCGT
|
2421 |
+
CTTCGC
|
2422 |
+
CTTCGG
|
2423 |
+
CTTGAA
|
2424 |
+
CTTGAT
|
2425 |
+
CTTGAC
|
2426 |
+
CTTGAG
|
2427 |
+
CTTGTA
|
2428 |
+
CTTGTT
|
2429 |
+
CTTGTC
|
2430 |
+
CTTGTG
|
2431 |
+
CTTGCA
|
2432 |
+
CTTGCT
|
2433 |
+
CTTGCC
|
2434 |
+
CTTGCG
|
2435 |
+
CTTGGA
|
2436 |
+
CTTGGT
|
2437 |
+
CTTGGC
|
2438 |
+
CTTGGG
|
2439 |
+
CTCAAA
|
2440 |
+
CTCAAT
|
2441 |
+
CTCAAC
|
2442 |
+
CTCAAG
|
2443 |
+
CTCATA
|
2444 |
+
CTCATT
|
2445 |
+
CTCATC
|
2446 |
+
CTCATG
|
2447 |
+
CTCACA
|
2448 |
+
CTCACT
|
2449 |
+
CTCACC
|
2450 |
+
CTCACG
|
2451 |
+
CTCAGA
|
2452 |
+
CTCAGT
|
2453 |
+
CTCAGC
|
2454 |
+
CTCAGG
|
2455 |
+
CTCTAA
|
2456 |
+
CTCTAT
|
2457 |
+
CTCTAC
|
2458 |
+
CTCTAG
|
2459 |
+
CTCTTA
|
2460 |
+
CTCTTT
|
2461 |
+
CTCTTC
|
2462 |
+
CTCTTG
|
2463 |
+
CTCTCA
|
2464 |
+
CTCTCT
|
2465 |
+
CTCTCC
|
2466 |
+
CTCTCG
|
2467 |
+
CTCTGA
|
2468 |
+
CTCTGT
|
2469 |
+
CTCTGC
|
2470 |
+
CTCTGG
|
2471 |
+
CTCCAA
|
2472 |
+
CTCCAT
|
2473 |
+
CTCCAC
|
2474 |
+
CTCCAG
|
2475 |
+
CTCCTA
|
2476 |
+
CTCCTT
|
2477 |
+
CTCCTC
|
2478 |
+
CTCCTG
|
2479 |
+
CTCCCA
|
2480 |
+
CTCCCT
|
2481 |
+
CTCCCC
|
2482 |
+
CTCCCG
|
2483 |
+
CTCCGA
|
2484 |
+
CTCCGT
|
2485 |
+
CTCCGC
|
2486 |
+
CTCCGG
|
2487 |
+
CTCGAA
|
2488 |
+
CTCGAT
|
2489 |
+
CTCGAC
|
2490 |
+
CTCGAG
|
2491 |
+
CTCGTA
|
2492 |
+
CTCGTT
|
2493 |
+
CTCGTC
|
2494 |
+
CTCGTG
|
2495 |
+
CTCGCA
|
2496 |
+
CTCGCT
|
2497 |
+
CTCGCC
|
2498 |
+
CTCGCG
|
2499 |
+
CTCGGA
|
2500 |
+
CTCGGT
|
2501 |
+
CTCGGC
|
2502 |
+
CTCGGG
|
2503 |
+
CTGAAA
|
2504 |
+
CTGAAT
|
2505 |
+
CTGAAC
|
2506 |
+
CTGAAG
|
2507 |
+
CTGATA
|
2508 |
+
CTGATT
|
2509 |
+
CTGATC
|
2510 |
+
CTGATG
|
2511 |
+
CTGACA
|
2512 |
+
CTGACT
|
2513 |
+
CTGACC
|
2514 |
+
CTGACG
|
2515 |
+
CTGAGA
|
2516 |
+
CTGAGT
|
2517 |
+
CTGAGC
|
2518 |
+
CTGAGG
|
2519 |
+
CTGTAA
|
2520 |
+
CTGTAT
|
2521 |
+
CTGTAC
|
2522 |
+
CTGTAG
|
2523 |
+
CTGTTA
|
2524 |
+
CTGTTT
|
2525 |
+
CTGTTC
|
2526 |
+
CTGTTG
|
2527 |
+
CTGTCA
|
2528 |
+
CTGTCT
|
2529 |
+
CTGTCC
|
2530 |
+
CTGTCG
|
2531 |
+
CTGTGA
|
2532 |
+
CTGTGT
|
2533 |
+
CTGTGC
|
2534 |
+
CTGTGG
|
2535 |
+
CTGCAA
|
2536 |
+
CTGCAT
|
2537 |
+
CTGCAC
|
2538 |
+
CTGCAG
|
2539 |
+
CTGCTA
|
2540 |
+
CTGCTT
|
2541 |
+
CTGCTC
|
2542 |
+
CTGCTG
|
2543 |
+
CTGCCA
|
2544 |
+
CTGCCT
|
2545 |
+
CTGCCC
|
2546 |
+
CTGCCG
|
2547 |
+
CTGCGA
|
2548 |
+
CTGCGT
|
2549 |
+
CTGCGC
|
2550 |
+
CTGCGG
|
2551 |
+
CTGGAA
|
2552 |
+
CTGGAT
|
2553 |
+
CTGGAC
|
2554 |
+
CTGGAG
|
2555 |
+
CTGGTA
|
2556 |
+
CTGGTT
|
2557 |
+
CTGGTC
|
2558 |
+
CTGGTG
|
2559 |
+
CTGGCA
|
2560 |
+
CTGGCT
|
2561 |
+
CTGGCC
|
2562 |
+
CTGGCG
|
2563 |
+
CTGGGA
|
2564 |
+
CTGGGT
|
2565 |
+
CTGGGC
|
2566 |
+
CTGGGG
|
2567 |
+
CCAAAA
|
2568 |
+
CCAAAT
|
2569 |
+
CCAAAC
|
2570 |
+
CCAAAG
|
2571 |
+
CCAATA
|
2572 |
+
CCAATT
|
2573 |
+
CCAATC
|
2574 |
+
CCAATG
|
2575 |
+
CCAACA
|
2576 |
+
CCAACT
|
2577 |
+
CCAACC
|
2578 |
+
CCAACG
|
2579 |
+
CCAAGA
|
2580 |
+
CCAAGT
|
2581 |
+
CCAAGC
|
2582 |
+
CCAAGG
|
2583 |
+
CCATAA
|
2584 |
+
CCATAT
|
2585 |
+
CCATAC
|
2586 |
+
CCATAG
|
2587 |
+
CCATTA
|
2588 |
+
CCATTT
|
2589 |
+
CCATTC
|
2590 |
+
CCATTG
|
2591 |
+
CCATCA
|
2592 |
+
CCATCT
|
2593 |
+
CCATCC
|
2594 |
+
CCATCG
|
2595 |
+
CCATGA
|
2596 |
+
CCATGT
|
2597 |
+
CCATGC
|
2598 |
+
CCATGG
|
2599 |
+
CCACAA
|
2600 |
+
CCACAT
|
2601 |
+
CCACAC
|
2602 |
+
CCACAG
|
2603 |
+
CCACTA
|
2604 |
+
CCACTT
|
2605 |
+
CCACTC
|
2606 |
+
CCACTG
|
2607 |
+
CCACCA
|
2608 |
+
CCACCT
|
2609 |
+
CCACCC
|
2610 |
+
CCACCG
|
2611 |
+
CCACGA
|
2612 |
+
CCACGT
|
2613 |
+
CCACGC
|
2614 |
+
CCACGG
|
2615 |
+
CCAGAA
|
2616 |
+
CCAGAT
|
2617 |
+
CCAGAC
|
2618 |
+
CCAGAG
|
2619 |
+
CCAGTA
|
2620 |
+
CCAGTT
|
2621 |
+
CCAGTC
|
2622 |
+
CCAGTG
|
2623 |
+
CCAGCA
|
2624 |
+
CCAGCT
|
2625 |
+
CCAGCC
|
2626 |
+
CCAGCG
|
2627 |
+
CCAGGA
|
2628 |
+
CCAGGT
|
2629 |
+
CCAGGC
|
2630 |
+
CCAGGG
|
2631 |
+
CCTAAA
|
2632 |
+
CCTAAT
|
2633 |
+
CCTAAC
|
2634 |
+
CCTAAG
|
2635 |
+
CCTATA
|
2636 |
+
CCTATT
|
2637 |
+
CCTATC
|
2638 |
+
CCTATG
|
2639 |
+
CCTACA
|
2640 |
+
CCTACT
|
2641 |
+
CCTACC
|
2642 |
+
CCTACG
|
2643 |
+
CCTAGA
|
2644 |
+
CCTAGT
|
2645 |
+
CCTAGC
|
2646 |
+
CCTAGG
|
2647 |
+
CCTTAA
|
2648 |
+
CCTTAT
|
2649 |
+
CCTTAC
|
2650 |
+
CCTTAG
|
2651 |
+
CCTTTA
|
2652 |
+
CCTTTT
|
2653 |
+
CCTTTC
|
2654 |
+
CCTTTG
|
2655 |
+
CCTTCA
|
2656 |
+
CCTTCT
|
2657 |
+
CCTTCC
|
2658 |
+
CCTTCG
|
2659 |
+
CCTTGA
|
2660 |
+
CCTTGT
|
2661 |
+
CCTTGC
|
2662 |
+
CCTTGG
|
2663 |
+
CCTCAA
|
2664 |
+
CCTCAT
|
2665 |
+
CCTCAC
|
2666 |
+
CCTCAG
|
2667 |
+
CCTCTA
|
2668 |
+
CCTCTT
|
2669 |
+
CCTCTC
|
2670 |
+
CCTCTG
|
2671 |
+
CCTCCA
|
2672 |
+
CCTCCT
|
2673 |
+
CCTCCC
|
2674 |
+
CCTCCG
|
2675 |
+
CCTCGA
|
2676 |
+
CCTCGT
|
2677 |
+
CCTCGC
|
2678 |
+
CCTCGG
|
2679 |
+
CCTGAA
|
2680 |
+
CCTGAT
|
2681 |
+
CCTGAC
|
2682 |
+
CCTGAG
|
2683 |
+
CCTGTA
|
2684 |
+
CCTGTT
|
2685 |
+
CCTGTC
|
2686 |
+
CCTGTG
|
2687 |
+
CCTGCA
|
2688 |
+
CCTGCT
|
2689 |
+
CCTGCC
|
2690 |
+
CCTGCG
|
2691 |
+
CCTGGA
|
2692 |
+
CCTGGT
|
2693 |
+
CCTGGC
|
2694 |
+
CCTGGG
|
2695 |
+
CCCAAA
|
2696 |
+
CCCAAT
|
2697 |
+
CCCAAC
|
2698 |
+
CCCAAG
|
2699 |
+
CCCATA
|
2700 |
+
CCCATT
|
2701 |
+
CCCATC
|
2702 |
+
CCCATG
|
2703 |
+
CCCACA
|
2704 |
+
CCCACT
|
2705 |
+
CCCACC
|
2706 |
+
CCCACG
|
2707 |
+
CCCAGA
|
2708 |
+
CCCAGT
|
2709 |
+
CCCAGC
|
2710 |
+
CCCAGG
|
2711 |
+
CCCTAA
|
2712 |
+
CCCTAT
|
2713 |
+
CCCTAC
|
2714 |
+
CCCTAG
|
2715 |
+
CCCTTA
|
2716 |
+
CCCTTT
|
2717 |
+
CCCTTC
|
2718 |
+
CCCTTG
|
2719 |
+
CCCTCA
|
2720 |
+
CCCTCT
|
2721 |
+
CCCTCC
|
2722 |
+
CCCTCG
|
2723 |
+
CCCTGA
|
2724 |
+
CCCTGT
|
2725 |
+
CCCTGC
|
2726 |
+
CCCTGG
|
2727 |
+
CCCCAA
|
2728 |
+
CCCCAT
|
2729 |
+
CCCCAC
|
2730 |
+
CCCCAG
|
2731 |
+
CCCCTA
|
2732 |
+
CCCCTT
|
2733 |
+
CCCCTC
|
2734 |
+
CCCCTG
|
2735 |
+
CCCCCA
|
2736 |
+
CCCCCT
|
2737 |
+
CCCCCC
|
2738 |
+
CCCCCG
|
2739 |
+
CCCCGA
|
2740 |
+
CCCCGT
|
2741 |
+
CCCCGC
|
2742 |
+
CCCCGG
|
2743 |
+
CCCGAA
|
2744 |
+
CCCGAT
|
2745 |
+
CCCGAC
|
2746 |
+
CCCGAG
|
2747 |
+
CCCGTA
|
2748 |
+
CCCGTT
|
2749 |
+
CCCGTC
|
2750 |
+
CCCGTG
|
2751 |
+
CCCGCA
|
2752 |
+
CCCGCT
|
2753 |
+
CCCGCC
|
2754 |
+
CCCGCG
|
2755 |
+
CCCGGA
|
2756 |
+
CCCGGT
|
2757 |
+
CCCGGC
|
2758 |
+
CCCGGG
|
2759 |
+
CCGAAA
|
2760 |
+
CCGAAT
|
2761 |
+
CCGAAC
|
2762 |
+
CCGAAG
|
2763 |
+
CCGATA
|
2764 |
+
CCGATT
|
2765 |
+
CCGATC
|
2766 |
+
CCGATG
|
2767 |
+
CCGACA
|
2768 |
+
CCGACT
|
2769 |
+
CCGACC
|
2770 |
+
CCGACG
|
2771 |
+
CCGAGA
|
2772 |
+
CCGAGT
|
2773 |
+
CCGAGC
|
2774 |
+
CCGAGG
|
2775 |
+
CCGTAA
|
2776 |
+
CCGTAT
|
2777 |
+
CCGTAC
|
2778 |
+
CCGTAG
|
2779 |
+
CCGTTA
|
2780 |
+
CCGTTT
|
2781 |
+
CCGTTC
|
2782 |
+
CCGTTG
|
2783 |
+
CCGTCA
|
2784 |
+
CCGTCT
|
2785 |
+
CCGTCC
|
2786 |
+
CCGTCG
|
2787 |
+
CCGTGA
|
2788 |
+
CCGTGT
|
2789 |
+
CCGTGC
|
2790 |
+
CCGTGG
|
2791 |
+
CCGCAA
|
2792 |
+
CCGCAT
|
2793 |
+
CCGCAC
|
2794 |
+
CCGCAG
|
2795 |
+
CCGCTA
|
2796 |
+
CCGCTT
|
2797 |
+
CCGCTC
|
2798 |
+
CCGCTG
|
2799 |
+
CCGCCA
|
2800 |
+
CCGCCT
|
2801 |
+
CCGCCC
|
2802 |
+
CCGCCG
|
2803 |
+
CCGCGA
|
2804 |
+
CCGCGT
|
2805 |
+
CCGCGC
|
2806 |
+
CCGCGG
|
2807 |
+
CCGGAA
|
2808 |
+
CCGGAT
|
2809 |
+
CCGGAC
|
2810 |
+
CCGGAG
|
2811 |
+
CCGGTA
|
2812 |
+
CCGGTT
|
2813 |
+
CCGGTC
|
2814 |
+
CCGGTG
|
2815 |
+
CCGGCA
|
2816 |
+
CCGGCT
|
2817 |
+
CCGGCC
|
2818 |
+
CCGGCG
|
2819 |
+
CCGGGA
|
2820 |
+
CCGGGT
|
2821 |
+
CCGGGC
|
2822 |
+
CCGGGG
|
2823 |
+
CGAAAA
|
2824 |
+
CGAAAT
|
2825 |
+
CGAAAC
|
2826 |
+
CGAAAG
|
2827 |
+
CGAATA
|
2828 |
+
CGAATT
|
2829 |
+
CGAATC
|
2830 |
+
CGAATG
|
2831 |
+
CGAACA
|
2832 |
+
CGAACT
|
2833 |
+
CGAACC
|
2834 |
+
CGAACG
|
2835 |
+
CGAAGA
|
2836 |
+
CGAAGT
|
2837 |
+
CGAAGC
|
2838 |
+
CGAAGG
|
2839 |
+
CGATAA
|
2840 |
+
CGATAT
|
2841 |
+
CGATAC
|
2842 |
+
CGATAG
|
2843 |
+
CGATTA
|
2844 |
+
CGATTT
|
2845 |
+
CGATTC
|
2846 |
+
CGATTG
|
2847 |
+
CGATCA
|
2848 |
+
CGATCT
|
2849 |
+
CGATCC
|
2850 |
+
CGATCG
|
2851 |
+
CGATGA
|
2852 |
+
CGATGT
|
2853 |
+
CGATGC
|
2854 |
+
CGATGG
|
2855 |
+
CGACAA
|
2856 |
+
CGACAT
|
2857 |
+
CGACAC
|
2858 |
+
CGACAG
|
2859 |
+
CGACTA
|
2860 |
+
CGACTT
|
2861 |
+
CGACTC
|
2862 |
+
CGACTG
|
2863 |
+
CGACCA
|
2864 |
+
CGACCT
|
2865 |
+
CGACCC
|
2866 |
+
CGACCG
|
2867 |
+
CGACGA
|
2868 |
+
CGACGT
|
2869 |
+
CGACGC
|
2870 |
+
CGACGG
|
2871 |
+
CGAGAA
|
2872 |
+
CGAGAT
|
2873 |
+
CGAGAC
|
2874 |
+
CGAGAG
|
2875 |
+
CGAGTA
|
2876 |
+
CGAGTT
|
2877 |
+
CGAGTC
|
2878 |
+
CGAGTG
|
2879 |
+
CGAGCA
|
2880 |
+
CGAGCT
|
2881 |
+
CGAGCC
|
2882 |
+
CGAGCG
|
2883 |
+
CGAGGA
|
2884 |
+
CGAGGT
|
2885 |
+
CGAGGC
|
2886 |
+
CGAGGG
|
2887 |
+
CGTAAA
|
2888 |
+
CGTAAT
|
2889 |
+
CGTAAC
|
2890 |
+
CGTAAG
|
2891 |
+
CGTATA
|
2892 |
+
CGTATT
|
2893 |
+
CGTATC
|
2894 |
+
CGTATG
|
2895 |
+
CGTACA
|
2896 |
+
CGTACT
|
2897 |
+
CGTACC
|
2898 |
+
CGTACG
|
2899 |
+
CGTAGA
|
2900 |
+
CGTAGT
|
2901 |
+
CGTAGC
|
2902 |
+
CGTAGG
|
2903 |
+
CGTTAA
|
2904 |
+
CGTTAT
|
2905 |
+
CGTTAC
|
2906 |
+
CGTTAG
|
2907 |
+
CGTTTA
|
2908 |
+
CGTTTT
|
2909 |
+
CGTTTC
|
2910 |
+
CGTTTG
|
2911 |
+
CGTTCA
|
2912 |
+
CGTTCT
|
2913 |
+
CGTTCC
|
2914 |
+
CGTTCG
|
2915 |
+
CGTTGA
|
2916 |
+
CGTTGT
|
2917 |
+
CGTTGC
|
2918 |
+
CGTTGG
|
2919 |
+
CGTCAA
|
2920 |
+
CGTCAT
|
2921 |
+
CGTCAC
|
2922 |
+
CGTCAG
|
2923 |
+
CGTCTA
|
2924 |
+
CGTCTT
|
2925 |
+
CGTCTC
|
2926 |
+
CGTCTG
|
2927 |
+
CGTCCA
|
2928 |
+
CGTCCT
|
2929 |
+
CGTCCC
|
2930 |
+
CGTCCG
|
2931 |
+
CGTCGA
|
2932 |
+
CGTCGT
|
2933 |
+
CGTCGC
|
2934 |
+
CGTCGG
|
2935 |
+
CGTGAA
|
2936 |
+
CGTGAT
|
2937 |
+
CGTGAC
|
2938 |
+
CGTGAG
|
2939 |
+
CGTGTA
|
2940 |
+
CGTGTT
|
2941 |
+
CGTGTC
|
2942 |
+
CGTGTG
|
2943 |
+
CGTGCA
|
2944 |
+
CGTGCT
|
2945 |
+
CGTGCC
|
2946 |
+
CGTGCG
|
2947 |
+
CGTGGA
|
2948 |
+
CGTGGT
|
2949 |
+
CGTGGC
|
2950 |
+
CGTGGG
|
2951 |
+
CGCAAA
|
2952 |
+
CGCAAT
|
2953 |
+
CGCAAC
|
2954 |
+
CGCAAG
|
2955 |
+
CGCATA
|
2956 |
+
CGCATT
|
2957 |
+
CGCATC
|
2958 |
+
CGCATG
|
2959 |
+
CGCACA
|
2960 |
+
CGCACT
|
2961 |
+
CGCACC
|
2962 |
+
CGCACG
|
2963 |
+
CGCAGA
|
2964 |
+
CGCAGT
|
2965 |
+
CGCAGC
|
2966 |
+
CGCAGG
|
2967 |
+
CGCTAA
|
2968 |
+
CGCTAT
|
2969 |
+
CGCTAC
|
2970 |
+
CGCTAG
|
2971 |
+
CGCTTA
|
2972 |
+
CGCTTT
|
2973 |
+
CGCTTC
|
2974 |
+
CGCTTG
|
2975 |
+
CGCTCA
|
2976 |
+
CGCTCT
|
2977 |
+
CGCTCC
|
2978 |
+
CGCTCG
|
2979 |
+
CGCTGA
|
2980 |
+
CGCTGT
|
2981 |
+
CGCTGC
|
2982 |
+
CGCTGG
|
2983 |
+
CGCCAA
|
2984 |
+
CGCCAT
|
2985 |
+
CGCCAC
|
2986 |
+
CGCCAG
|
2987 |
+
CGCCTA
|
2988 |
+
CGCCTT
|
2989 |
+
CGCCTC
|
2990 |
+
CGCCTG
|
2991 |
+
CGCCCA
|
2992 |
+
CGCCCT
|
2993 |
+
CGCCCC
|
2994 |
+
CGCCCG
|
2995 |
+
CGCCGA
|
2996 |
+
CGCCGT
|
2997 |
+
CGCCGC
|
2998 |
+
CGCCGG
|
2999 |
+
CGCGAA
|
3000 |
+
CGCGAT
|
3001 |
+
CGCGAC
|
3002 |
+
CGCGAG
|
3003 |
+
CGCGTA
|
3004 |
+
CGCGTT
|
3005 |
+
CGCGTC
|
3006 |
+
CGCGTG
|
3007 |
+
CGCGCA
|
3008 |
+
CGCGCT
|
3009 |
+
CGCGCC
|
3010 |
+
CGCGCG
|
3011 |
+
CGCGGA
|
3012 |
+
CGCGGT
|
3013 |
+
CGCGGC
|
3014 |
+
CGCGGG
|
3015 |
+
CGGAAA
|
3016 |
+
CGGAAT
|
3017 |
+
CGGAAC
|
3018 |
+
CGGAAG
|
3019 |
+
CGGATA
|
3020 |
+
CGGATT
|
3021 |
+
CGGATC
|
3022 |
+
CGGATG
|
3023 |
+
CGGACA
|
3024 |
+
CGGACT
|
3025 |
+
CGGACC
|
3026 |
+
CGGACG
|
3027 |
+
CGGAGA
|
3028 |
+
CGGAGT
|
3029 |
+
CGGAGC
|
3030 |
+
CGGAGG
|
3031 |
+
CGGTAA
|
3032 |
+
CGGTAT
|
3033 |
+
CGGTAC
|
3034 |
+
CGGTAG
|
3035 |
+
CGGTTA
|
3036 |
+
CGGTTT
|
3037 |
+
CGGTTC
|
3038 |
+
CGGTTG
|
3039 |
+
CGGTCA
|
3040 |
+
CGGTCT
|
3041 |
+
CGGTCC
|
3042 |
+
CGGTCG
|
3043 |
+
CGGTGA
|
3044 |
+
CGGTGT
|
3045 |
+
CGGTGC
|
3046 |
+
CGGTGG
|
3047 |
+
CGGCAA
|
3048 |
+
CGGCAT
|
3049 |
+
CGGCAC
|
3050 |
+
CGGCAG
|
3051 |
+
CGGCTA
|
3052 |
+
CGGCTT
|
3053 |
+
CGGCTC
|
3054 |
+
CGGCTG
|
3055 |
+
CGGCCA
|
3056 |
+
CGGCCT
|
3057 |
+
CGGCCC
|
3058 |
+
CGGCCG
|
3059 |
+
CGGCGA
|
3060 |
+
CGGCGT
|
3061 |
+
CGGCGC
|
3062 |
+
CGGCGG
|
3063 |
+
CGGGAA
|
3064 |
+
CGGGAT
|
3065 |
+
CGGGAC
|
3066 |
+
CGGGAG
|
3067 |
+
CGGGTA
|
3068 |
+
CGGGTT
|
3069 |
+
CGGGTC
|
3070 |
+
CGGGTG
|
3071 |
+
CGGGCA
|
3072 |
+
CGGGCT
|
3073 |
+
CGGGCC
|
3074 |
+
CGGGCG
|
3075 |
+
CGGGGA
|
3076 |
+
CGGGGT
|
3077 |
+
CGGGGC
|
3078 |
+
CGGGGG
|
3079 |
+
GAAAAA
|
3080 |
+
GAAAAT
|
3081 |
+
GAAAAC
|
3082 |
+
GAAAAG
|
3083 |
+
GAAATA
|
3084 |
+
GAAATT
|
3085 |
+
GAAATC
|
3086 |
+
GAAATG
|
3087 |
+
GAAACA
|
3088 |
+
GAAACT
|
3089 |
+
GAAACC
|
3090 |
+
GAAACG
|
3091 |
+
GAAAGA
|
3092 |
+
GAAAGT
|
3093 |
+
GAAAGC
|
3094 |
+
GAAAGG
|
3095 |
+
GAATAA
|
3096 |
+
GAATAT
|
3097 |
+
GAATAC
|
3098 |
+
GAATAG
|
3099 |
+
GAATTA
|
3100 |
+
GAATTT
|
3101 |
+
GAATTC
|
3102 |
+
GAATTG
|
3103 |
+
GAATCA
|
3104 |
+
GAATCT
|
3105 |
+
GAATCC
|
3106 |
+
GAATCG
|
3107 |
+
GAATGA
|
3108 |
+
GAATGT
|
3109 |
+
GAATGC
|
3110 |
+
GAATGG
|
3111 |
+
GAACAA
|
3112 |
+
GAACAT
|
3113 |
+
GAACAC
|
3114 |
+
GAACAG
|
3115 |
+
GAACTA
|
3116 |
+
GAACTT
|
3117 |
+
GAACTC
|
3118 |
+
GAACTG
|
3119 |
+
GAACCA
|
3120 |
+
GAACCT
|
3121 |
+
GAACCC
|
3122 |
+
GAACCG
|
3123 |
+
GAACGA
|
3124 |
+
GAACGT
|
3125 |
+
GAACGC
|
3126 |
+
GAACGG
|
3127 |
+
GAAGAA
|
3128 |
+
GAAGAT
|
3129 |
+
GAAGAC
|
3130 |
+
GAAGAG
|
3131 |
+
GAAGTA
|
3132 |
+
GAAGTT
|
3133 |
+
GAAGTC
|
3134 |
+
GAAGTG
|
3135 |
+
GAAGCA
|
3136 |
+
GAAGCT
|
3137 |
+
GAAGCC
|
3138 |
+
GAAGCG
|
3139 |
+
GAAGGA
|
3140 |
+
GAAGGT
|
3141 |
+
GAAGGC
|
3142 |
+
GAAGGG
|
3143 |
+
GATAAA
|
3144 |
+
GATAAT
|
3145 |
+
GATAAC
|
3146 |
+
GATAAG
|
3147 |
+
GATATA
|
3148 |
+
GATATT
|
3149 |
+
GATATC
|
3150 |
+
GATATG
|
3151 |
+
GATACA
|
3152 |
+
GATACT
|
3153 |
+
GATACC
|
3154 |
+
GATACG
|
3155 |
+
GATAGA
|
3156 |
+
GATAGT
|
3157 |
+
GATAGC
|
3158 |
+
GATAGG
|
3159 |
+
GATTAA
|
3160 |
+
GATTAT
|
3161 |
+
GATTAC
|
3162 |
+
GATTAG
|
3163 |
+
GATTTA
|
3164 |
+
GATTTT
|
3165 |
+
GATTTC
|
3166 |
+
GATTTG
|
3167 |
+
GATTCA
|
3168 |
+
GATTCT
|
3169 |
+
GATTCC
|
3170 |
+
GATTCG
|
3171 |
+
GATTGA
|
3172 |
+
GATTGT
|
3173 |
+
GATTGC
|
3174 |
+
GATTGG
|
3175 |
+
GATCAA
|
3176 |
+
GATCAT
|
3177 |
+
GATCAC
|
3178 |
+
GATCAG
|
3179 |
+
GATCTA
|
3180 |
+
GATCTT
|
3181 |
+
GATCTC
|
3182 |
+
GATCTG
|
3183 |
+
GATCCA
|
3184 |
+
GATCCT
|
3185 |
+
GATCCC
|
3186 |
+
GATCCG
|
3187 |
+
GATCGA
|
3188 |
+
GATCGT
|
3189 |
+
GATCGC
|
3190 |
+
GATCGG
|
3191 |
+
GATGAA
|
3192 |
+
GATGAT
|
3193 |
+
GATGAC
|
3194 |
+
GATGAG
|
3195 |
+
GATGTA
|
3196 |
+
GATGTT
|
3197 |
+
GATGTC
|
3198 |
+
GATGTG
|
3199 |
+
GATGCA
|
3200 |
+
GATGCT
|
3201 |
+
GATGCC
|
3202 |
+
GATGCG
|
3203 |
+
GATGGA
|
3204 |
+
GATGGT
|
3205 |
+
GATGGC
|
3206 |
+
GATGGG
|
3207 |
+
GACAAA
|
3208 |
+
GACAAT
|
3209 |
+
GACAAC
|
3210 |
+
GACAAG
|
3211 |
+
GACATA
|
3212 |
+
GACATT
|
3213 |
+
GACATC
|
3214 |
+
GACATG
|
3215 |
+
GACACA
|
3216 |
+
GACACT
|
3217 |
+
GACACC
|
3218 |
+
GACACG
|
3219 |
+
GACAGA
|
3220 |
+
GACAGT
|
3221 |
+
GACAGC
|
3222 |
+
GACAGG
|
3223 |
+
GACTAA
|
3224 |
+
GACTAT
|
3225 |
+
GACTAC
|
3226 |
+
GACTAG
|
3227 |
+
GACTTA
|
3228 |
+
GACTTT
|
3229 |
+
GACTTC
|
3230 |
+
GACTTG
|
3231 |
+
GACTCA
|
3232 |
+
GACTCT
|
3233 |
+
GACTCC
|
3234 |
+
GACTCG
|
3235 |
+
GACTGA
|
3236 |
+
GACTGT
|
3237 |
+
GACTGC
|
3238 |
+
GACTGG
|
3239 |
+
GACCAA
|
3240 |
+
GACCAT
|
3241 |
+
GACCAC
|
3242 |
+
GACCAG
|
3243 |
+
GACCTA
|
3244 |
+
GACCTT
|
3245 |
+
GACCTC
|
3246 |
+
GACCTG
|
3247 |
+
GACCCA
|
3248 |
+
GACCCT
|
3249 |
+
GACCCC
|
3250 |
+
GACCCG
|
3251 |
+
GACCGA
|
3252 |
+
GACCGT
|
3253 |
+
GACCGC
|
3254 |
+
GACCGG
|
3255 |
+
GACGAA
|
3256 |
+
GACGAT
|
3257 |
+
GACGAC
|
3258 |
+
GACGAG
|
3259 |
+
GACGTA
|
3260 |
+
GACGTT
|
3261 |
+
GACGTC
|
3262 |
+
GACGTG
|
3263 |
+
GACGCA
|
3264 |
+
GACGCT
|
3265 |
+
GACGCC
|
3266 |
+
GACGCG
|
3267 |
+
GACGGA
|
3268 |
+
GACGGT
|
3269 |
+
GACGGC
|
3270 |
+
GACGGG
|
3271 |
+
GAGAAA
|
3272 |
+
GAGAAT
|
3273 |
+
GAGAAC
|
3274 |
+
GAGAAG
|
3275 |
+
GAGATA
|
3276 |
+
GAGATT
|
3277 |
+
GAGATC
|
3278 |
+
GAGATG
|
3279 |
+
GAGACA
|
3280 |
+
GAGACT
|
3281 |
+
GAGACC
|
3282 |
+
GAGACG
|
3283 |
+
GAGAGA
|
3284 |
+
GAGAGT
|
3285 |
+
GAGAGC
|
3286 |
+
GAGAGG
|
3287 |
+
GAGTAA
|
3288 |
+
GAGTAT
|
3289 |
+
GAGTAC
|
3290 |
+
GAGTAG
|
3291 |
+
GAGTTA
|
3292 |
+
GAGTTT
|
3293 |
+
GAGTTC
|
3294 |
+
GAGTTG
|
3295 |
+
GAGTCA
|
3296 |
+
GAGTCT
|
3297 |
+
GAGTCC
|
3298 |
+
GAGTCG
|
3299 |
+
GAGTGA
|
3300 |
+
GAGTGT
|
3301 |
+
GAGTGC
|
3302 |
+
GAGTGG
|
3303 |
+
GAGCAA
|
3304 |
+
GAGCAT
|
3305 |
+
GAGCAC
|
3306 |
+
GAGCAG
|
3307 |
+
GAGCTA
|
3308 |
+
GAGCTT
|
3309 |
+
GAGCTC
|
3310 |
+
GAGCTG
|
3311 |
+
GAGCCA
|
3312 |
+
GAGCCT
|
3313 |
+
GAGCCC
|
3314 |
+
GAGCCG
|
3315 |
+
GAGCGA
|
3316 |
+
GAGCGT
|
3317 |
+
GAGCGC
|
3318 |
+
GAGCGG
|
3319 |
+
GAGGAA
|
3320 |
+
GAGGAT
|
3321 |
+
GAGGAC
|
3322 |
+
GAGGAG
|
3323 |
+
GAGGTA
|
3324 |
+
GAGGTT
|
3325 |
+
GAGGTC
|
3326 |
+
GAGGTG
|
3327 |
+
GAGGCA
|
3328 |
+
GAGGCT
|
3329 |
+
GAGGCC
|
3330 |
+
GAGGCG
|
3331 |
+
GAGGGA
|
3332 |
+
GAGGGT
|
3333 |
+
GAGGGC
|
3334 |
+
GAGGGG
|
3335 |
+
GTAAAA
|
3336 |
+
GTAAAT
|
3337 |
+
GTAAAC
|
3338 |
+
GTAAAG
|
3339 |
+
GTAATA
|
3340 |
+
GTAATT
|
3341 |
+
GTAATC
|
3342 |
+
GTAATG
|
3343 |
+
GTAACA
|
3344 |
+
GTAACT
|
3345 |
+
GTAACC
|
3346 |
+
GTAACG
|
3347 |
+
GTAAGA
|
3348 |
+
GTAAGT
|
3349 |
+
GTAAGC
|
3350 |
+
GTAAGG
|
3351 |
+
GTATAA
|
3352 |
+
GTATAT
|
3353 |
+
GTATAC
|
3354 |
+
GTATAG
|
3355 |
+
GTATTA
|
3356 |
+
GTATTT
|
3357 |
+
GTATTC
|
3358 |
+
GTATTG
|
3359 |
+
GTATCA
|
3360 |
+
GTATCT
|
3361 |
+
GTATCC
|
3362 |
+
GTATCG
|
3363 |
+
GTATGA
|
3364 |
+
GTATGT
|
3365 |
+
GTATGC
|
3366 |
+
GTATGG
|
3367 |
+
GTACAA
|
3368 |
+
GTACAT
|
3369 |
+
GTACAC
|
3370 |
+
GTACAG
|
3371 |
+
GTACTA
|
3372 |
+
GTACTT
|
3373 |
+
GTACTC
|
3374 |
+
GTACTG
|
3375 |
+
GTACCA
|
3376 |
+
GTACCT
|
3377 |
+
GTACCC
|
3378 |
+
GTACCG
|
3379 |
+
GTACGA
|
3380 |
+
GTACGT
|
3381 |
+
GTACGC
|
3382 |
+
GTACGG
|
3383 |
+
GTAGAA
|
3384 |
+
GTAGAT
|
3385 |
+
GTAGAC
|
3386 |
+
GTAGAG
|
3387 |
+
GTAGTA
|
3388 |
+
GTAGTT
|
3389 |
+
GTAGTC
|
3390 |
+
GTAGTG
|
3391 |
+
GTAGCA
|
3392 |
+
GTAGCT
|
3393 |
+
GTAGCC
|
3394 |
+
GTAGCG
|
3395 |
+
GTAGGA
|
3396 |
+
GTAGGT
|
3397 |
+
GTAGGC
|
3398 |
+
GTAGGG
|
3399 |
+
GTTAAA
|
3400 |
+
GTTAAT
|
3401 |
+
GTTAAC
|
3402 |
+
GTTAAG
|
3403 |
+
GTTATA
|
3404 |
+
GTTATT
|
3405 |
+
GTTATC
|
3406 |
+
GTTATG
|
3407 |
+
GTTACA
|
3408 |
+
GTTACT
|
3409 |
+
GTTACC
|
3410 |
+
GTTACG
|
3411 |
+
GTTAGA
|
3412 |
+
GTTAGT
|
3413 |
+
GTTAGC
|
3414 |
+
GTTAGG
|
3415 |
+
GTTTAA
|
3416 |
+
GTTTAT
|
3417 |
+
GTTTAC
|
3418 |
+
GTTTAG
|
3419 |
+
GTTTTA
|
3420 |
+
GTTTTT
|
3421 |
+
GTTTTC
|
3422 |
+
GTTTTG
|
3423 |
+
GTTTCA
|
3424 |
+
GTTTCT
|
3425 |
+
GTTTCC
|
3426 |
+
GTTTCG
|
3427 |
+
GTTTGA
|
3428 |
+
GTTTGT
|
3429 |
+
GTTTGC
|
3430 |
+
GTTTGG
|
3431 |
+
GTTCAA
|
3432 |
+
GTTCAT
|
3433 |
+
GTTCAC
|
3434 |
+
GTTCAG
|
3435 |
+
GTTCTA
|
3436 |
+
GTTCTT
|
3437 |
+
GTTCTC
|
3438 |
+
GTTCTG
|
3439 |
+
GTTCCA
|
3440 |
+
GTTCCT
|
3441 |
+
GTTCCC
|
3442 |
+
GTTCCG
|
3443 |
+
GTTCGA
|
3444 |
+
GTTCGT
|
3445 |
+
GTTCGC
|
3446 |
+
GTTCGG
|
3447 |
+
GTTGAA
|
3448 |
+
GTTGAT
|
3449 |
+
GTTGAC
|
3450 |
+
GTTGAG
|
3451 |
+
GTTGTA
|
3452 |
+
GTTGTT
|
3453 |
+
GTTGTC
|
3454 |
+
GTTGTG
|
3455 |
+
GTTGCA
|
3456 |
+
GTTGCT
|
3457 |
+
GTTGCC
|
3458 |
+
GTTGCG
|
3459 |
+
GTTGGA
|
3460 |
+
GTTGGT
|
3461 |
+
GTTGGC
|
3462 |
+
GTTGGG
|
3463 |
+
GTCAAA
|
3464 |
+
GTCAAT
|
3465 |
+
GTCAAC
|
3466 |
+
GTCAAG
|
3467 |
+
GTCATA
|
3468 |
+
GTCATT
|
3469 |
+
GTCATC
|
3470 |
+
GTCATG
|
3471 |
+
GTCACA
|
3472 |
+
GTCACT
|
3473 |
+
GTCACC
|
3474 |
+
GTCACG
|
3475 |
+
GTCAGA
|
3476 |
+
GTCAGT
|
3477 |
+
GTCAGC
|
3478 |
+
GTCAGG
|
3479 |
+
GTCTAA
|
3480 |
+
GTCTAT
|
3481 |
+
GTCTAC
|
3482 |
+
GTCTAG
|
3483 |
+
GTCTTA
|
3484 |
+
GTCTTT
|
3485 |
+
GTCTTC
|
3486 |
+
GTCTTG
|
3487 |
+
GTCTCA
|
3488 |
+
GTCTCT
|
3489 |
+
GTCTCC
|
3490 |
+
GTCTCG
|
3491 |
+
GTCTGA
|
3492 |
+
GTCTGT
|
3493 |
+
GTCTGC
|
3494 |
+
GTCTGG
|
3495 |
+
GTCCAA
|
3496 |
+
GTCCAT
|
3497 |
+
GTCCAC
|
3498 |
+
GTCCAG
|
3499 |
+
GTCCTA
|
3500 |
+
GTCCTT
|
3501 |
+
GTCCTC
|
3502 |
+
GTCCTG
|
3503 |
+
GTCCCA
|
3504 |
+
GTCCCT
|
3505 |
+
GTCCCC
|
3506 |
+
GTCCCG
|
3507 |
+
GTCCGA
|
3508 |
+
GTCCGT
|
3509 |
+
GTCCGC
|
3510 |
+
GTCCGG
|
3511 |
+
GTCGAA
|
3512 |
+
GTCGAT
|
3513 |
+
GTCGAC
|
3514 |
+
GTCGAG
|
3515 |
+
GTCGTA
|
3516 |
+
GTCGTT
|
3517 |
+
GTCGTC
|
3518 |
+
GTCGTG
|
3519 |
+
GTCGCA
|
3520 |
+
GTCGCT
|
3521 |
+
GTCGCC
|
3522 |
+
GTCGCG
|
3523 |
+
GTCGGA
|
3524 |
+
GTCGGT
|
3525 |
+
GTCGGC
|
3526 |
+
GTCGGG
|
3527 |
+
GTGAAA
|
3528 |
+
GTGAAT
|
3529 |
+
GTGAAC
|
3530 |
+
GTGAAG
|
3531 |
+
GTGATA
|
3532 |
+
GTGATT
|
3533 |
+
GTGATC
|
3534 |
+
GTGATG
|
3535 |
+
GTGACA
|
3536 |
+
GTGACT
|
3537 |
+
GTGACC
|
3538 |
+
GTGACG
|
3539 |
+
GTGAGA
|
3540 |
+
GTGAGT
|
3541 |
+
GTGAGC
|
3542 |
+
GTGAGG
|
3543 |
+
GTGTAA
|
3544 |
+
GTGTAT
|
3545 |
+
GTGTAC
|
3546 |
+
GTGTAG
|
3547 |
+
GTGTTA
|
3548 |
+
GTGTTT
|
3549 |
+
GTGTTC
|
3550 |
+
GTGTTG
|
3551 |
+
GTGTCA
|
3552 |
+
GTGTCT
|
3553 |
+
GTGTCC
|
3554 |
+
GTGTCG
|
3555 |
+
GTGTGA
|
3556 |
+
GTGTGT
|
3557 |
+
GTGTGC
|
3558 |
+
GTGTGG
|
3559 |
+
GTGCAA
|
3560 |
+
GTGCAT
|
3561 |
+
GTGCAC
|
3562 |
+
GTGCAG
|
3563 |
+
GTGCTA
|
3564 |
+
GTGCTT
|
3565 |
+
GTGCTC
|
3566 |
+
GTGCTG
|
3567 |
+
GTGCCA
|
3568 |
+
GTGCCT
|
3569 |
+
GTGCCC
|
3570 |
+
GTGCCG
|
3571 |
+
GTGCGA
|
3572 |
+
GTGCGT
|
3573 |
+
GTGCGC
|
3574 |
+
GTGCGG
|
3575 |
+
GTGGAA
|
3576 |
+
GTGGAT
|
3577 |
+
GTGGAC
|
3578 |
+
GTGGAG
|
3579 |
+
GTGGTA
|
3580 |
+
GTGGTT
|
3581 |
+
GTGGTC
|
3582 |
+
GTGGTG
|
3583 |
+
GTGGCA
|
3584 |
+
GTGGCT
|
3585 |
+
GTGGCC
|
3586 |
+
GTGGCG
|
3587 |
+
GTGGGA
|
3588 |
+
GTGGGT
|
3589 |
+
GTGGGC
|
3590 |
+
GTGGGG
|
3591 |
+
GCAAAA
|
3592 |
+
GCAAAT
|
3593 |
+
GCAAAC
|
3594 |
+
GCAAAG
|
3595 |
+
GCAATA
|
3596 |
+
GCAATT
|
3597 |
+
GCAATC
|
3598 |
+
GCAATG
|
3599 |
+
GCAACA
|
3600 |
+
GCAACT
|
3601 |
+
GCAACC
|
3602 |
+
GCAACG
|
3603 |
+
GCAAGA
|
3604 |
+
GCAAGT
|
3605 |
+
GCAAGC
|
3606 |
+
GCAAGG
|
3607 |
+
GCATAA
|
3608 |
+
GCATAT
|
3609 |
+
GCATAC
|
3610 |
+
GCATAG
|
3611 |
+
GCATTA
|
3612 |
+
GCATTT
|
3613 |
+
GCATTC
|
3614 |
+
GCATTG
|
3615 |
+
GCATCA
|
3616 |
+
GCATCT
|
3617 |
+
GCATCC
|
3618 |
+
GCATCG
|
3619 |
+
GCATGA
|
3620 |
+
GCATGT
|
3621 |
+
GCATGC
|
3622 |
+
GCATGG
|
3623 |
+
GCACAA
|
3624 |
+
GCACAT
|
3625 |
+
GCACAC
|
3626 |
+
GCACAG
|
3627 |
+
GCACTA
|
3628 |
+
GCACTT
|
3629 |
+
GCACTC
|
3630 |
+
GCACTG
|
3631 |
+
GCACCA
|
3632 |
+
GCACCT
|
3633 |
+
GCACCC
|
3634 |
+
GCACCG
|
3635 |
+
GCACGA
|
3636 |
+
GCACGT
|
3637 |
+
GCACGC
|
3638 |
+
GCACGG
|
3639 |
+
GCAGAA
|
3640 |
+
GCAGAT
|
3641 |
+
GCAGAC
|
3642 |
+
GCAGAG
|
3643 |
+
GCAGTA
|
3644 |
+
GCAGTT
|
3645 |
+
GCAGTC
|
3646 |
+
GCAGTG
|
3647 |
+
GCAGCA
|
3648 |
+
GCAGCT
|
3649 |
+
GCAGCC
|
3650 |
+
GCAGCG
|
3651 |
+
GCAGGA
|
3652 |
+
GCAGGT
|
3653 |
+
GCAGGC
|
3654 |
+
GCAGGG
|
3655 |
+
GCTAAA
|
3656 |
+
GCTAAT
|
3657 |
+
GCTAAC
|
3658 |
+
GCTAAG
|
3659 |
+
GCTATA
|
3660 |
+
GCTATT
|
3661 |
+
GCTATC
|
3662 |
+
GCTATG
|
3663 |
+
GCTACA
|
3664 |
+
GCTACT
|
3665 |
+
GCTACC
|
3666 |
+
GCTACG
|
3667 |
+
GCTAGA
|
3668 |
+
GCTAGT
|
3669 |
+
GCTAGC
|
3670 |
+
GCTAGG
|
3671 |
+
GCTTAA
|
3672 |
+
GCTTAT
|
3673 |
+
GCTTAC
|
3674 |
+
GCTTAG
|
3675 |
+
GCTTTA
|
3676 |
+
GCTTTT
|
3677 |
+
GCTTTC
|
3678 |
+
GCTTTG
|
3679 |
+
GCTTCA
|
3680 |
+
GCTTCT
|
3681 |
+
GCTTCC
|
3682 |
+
GCTTCG
|
3683 |
+
GCTTGA
|
3684 |
+
GCTTGT
|
3685 |
+
GCTTGC
|
3686 |
+
GCTTGG
|
3687 |
+
GCTCAA
|
3688 |
+
GCTCAT
|
3689 |
+
GCTCAC
|
3690 |
+
GCTCAG
|
3691 |
+
GCTCTA
|
3692 |
+
GCTCTT
|
3693 |
+
GCTCTC
|
3694 |
+
GCTCTG
|
3695 |
+
GCTCCA
|
3696 |
+
GCTCCT
|
3697 |
+
GCTCCC
|
3698 |
+
GCTCCG
|
3699 |
+
GCTCGA
|
3700 |
+
GCTCGT
|
3701 |
+
GCTCGC
|
3702 |
+
GCTCGG
|
3703 |
+
GCTGAA
|
3704 |
+
GCTGAT
|
3705 |
+
GCTGAC
|
3706 |
+
GCTGAG
|
3707 |
+
GCTGTA
|
3708 |
+
GCTGTT
|
3709 |
+
GCTGTC
|
3710 |
+
GCTGTG
|
3711 |
+
GCTGCA
|
3712 |
+
GCTGCT
|
3713 |
+
GCTGCC
|
3714 |
+
GCTGCG
|
3715 |
+
GCTGGA
|
3716 |
+
GCTGGT
|
3717 |
+
GCTGGC
|
3718 |
+
GCTGGG
|
3719 |
+
GCCAAA
|
3720 |
+
GCCAAT
|
3721 |
+
GCCAAC
|
3722 |
+
GCCAAG
|
3723 |
+
GCCATA
|
3724 |
+
GCCATT
|
3725 |
+
GCCATC
|
3726 |
+
GCCATG
|
3727 |
+
GCCACA
|
3728 |
+
GCCACT
|
3729 |
+
GCCACC
|
3730 |
+
GCCACG
|
3731 |
+
GCCAGA
|
3732 |
+
GCCAGT
|
3733 |
+
GCCAGC
|
3734 |
+
GCCAGG
|
3735 |
+
GCCTAA
|
3736 |
+
GCCTAT
|
3737 |
+
GCCTAC
|
3738 |
+
GCCTAG
|
3739 |
+
GCCTTA
|
3740 |
+
GCCTTT
|
3741 |
+
GCCTTC
|
3742 |
+
GCCTTG
|
3743 |
+
GCCTCA
|
3744 |
+
GCCTCT
|
3745 |
+
GCCTCC
|
3746 |
+
GCCTCG
|
3747 |
+
GCCTGA
|
3748 |
+
GCCTGT
|
3749 |
+
GCCTGC
|
3750 |
+
GCCTGG
|
3751 |
+
GCCCAA
|
3752 |
+
GCCCAT
|
3753 |
+
GCCCAC
|
3754 |
+
GCCCAG
|
3755 |
+
GCCCTA
|
3756 |
+
GCCCTT
|
3757 |
+
GCCCTC
|
3758 |
+
GCCCTG
|
3759 |
+
GCCCCA
|
3760 |
+
GCCCCT
|
3761 |
+
GCCCCC
|
3762 |
+
GCCCCG
|
3763 |
+
GCCCGA
|
3764 |
+
GCCCGT
|
3765 |
+
GCCCGC
|
3766 |
+
GCCCGG
|
3767 |
+
GCCGAA
|
3768 |
+
GCCGAT
|
3769 |
+
GCCGAC
|
3770 |
+
GCCGAG
|
3771 |
+
GCCGTA
|
3772 |
+
GCCGTT
|
3773 |
+
GCCGTC
|
3774 |
+
GCCGTG
|
3775 |
+
GCCGCA
|
3776 |
+
GCCGCT
|
3777 |
+
GCCGCC
|
3778 |
+
GCCGCG
|
3779 |
+
GCCGGA
|
3780 |
+
GCCGGT
|
3781 |
+
GCCGGC
|
3782 |
+
GCCGGG
|
3783 |
+
GCGAAA
|
3784 |
+
GCGAAT
|
3785 |
+
GCGAAC
|
3786 |
+
GCGAAG
|
3787 |
+
GCGATA
|
3788 |
+
GCGATT
|
3789 |
+
GCGATC
|
3790 |
+
GCGATG
|
3791 |
+
GCGACA
|
3792 |
+
GCGACT
|
3793 |
+
GCGACC
|
3794 |
+
GCGACG
|
3795 |
+
GCGAGA
|
3796 |
+
GCGAGT
|
3797 |
+
GCGAGC
|
3798 |
+
GCGAGG
|
3799 |
+
GCGTAA
|
3800 |
+
GCGTAT
|
3801 |
+
GCGTAC
|
3802 |
+
GCGTAG
|
3803 |
+
GCGTTA
|
3804 |
+
GCGTTT
|
3805 |
+
GCGTTC
|
3806 |
+
GCGTTG
|
3807 |
+
GCGTCA
|
3808 |
+
GCGTCT
|
3809 |
+
GCGTCC
|
3810 |
+
GCGTCG
|
3811 |
+
GCGTGA
|
3812 |
+
GCGTGT
|
3813 |
+
GCGTGC
|
3814 |
+
GCGTGG
|
3815 |
+
GCGCAA
|
3816 |
+
GCGCAT
|
3817 |
+
GCGCAC
|
3818 |
+
GCGCAG
|
3819 |
+
GCGCTA
|
3820 |
+
GCGCTT
|
3821 |
+
GCGCTC
|
3822 |
+
GCGCTG
|
3823 |
+
GCGCCA
|
3824 |
+
GCGCCT
|
3825 |
+
GCGCCC
|
3826 |
+
GCGCCG
|
3827 |
+
GCGCGA
|
3828 |
+
GCGCGT
|
3829 |
+
GCGCGC
|
3830 |
+
GCGCGG
|
3831 |
+
GCGGAA
|
3832 |
+
GCGGAT
|
3833 |
+
GCGGAC
|
3834 |
+
GCGGAG
|
3835 |
+
GCGGTA
|
3836 |
+
GCGGTT
|
3837 |
+
GCGGTC
|
3838 |
+
GCGGTG
|
3839 |
+
GCGGCA
|
3840 |
+
GCGGCT
|
3841 |
+
GCGGCC
|
3842 |
+
GCGGCG
|
3843 |
+
GCGGGA
|
3844 |
+
GCGGGT
|
3845 |
+
GCGGGC
|
3846 |
+
GCGGGG
|
3847 |
+
GGAAAA
|
3848 |
+
GGAAAT
|
3849 |
+
GGAAAC
|
3850 |
+
GGAAAG
|
3851 |
+
GGAATA
|
3852 |
+
GGAATT
|
3853 |
+
GGAATC
|
3854 |
+
GGAATG
|
3855 |
+
GGAACA
|
3856 |
+
GGAACT
|
3857 |
+
GGAACC
|
3858 |
+
GGAACG
|
3859 |
+
GGAAGA
|
3860 |
+
GGAAGT
|
3861 |
+
GGAAGC
|
3862 |
+
GGAAGG
|
3863 |
+
GGATAA
|
3864 |
+
GGATAT
|
3865 |
+
GGATAC
|
3866 |
+
GGATAG
|
3867 |
+
GGATTA
|
3868 |
+
GGATTT
|
3869 |
+
GGATTC
|
3870 |
+
GGATTG
|
3871 |
+
GGATCA
|
3872 |
+
GGATCT
|
3873 |
+
GGATCC
|
3874 |
+
GGATCG
|
3875 |
+
GGATGA
|
3876 |
+
GGATGT
|
3877 |
+
GGATGC
|
3878 |
+
GGATGG
|
3879 |
+
GGACAA
|
3880 |
+
GGACAT
|
3881 |
+
GGACAC
|
3882 |
+
GGACAG
|
3883 |
+
GGACTA
|
3884 |
+
GGACTT
|
3885 |
+
GGACTC
|
3886 |
+
GGACTG
|
3887 |
+
GGACCA
|
3888 |
+
GGACCT
|
3889 |
+
GGACCC
|
3890 |
+
GGACCG
|
3891 |
+
GGACGA
|
3892 |
+
GGACGT
|
3893 |
+
GGACGC
|
3894 |
+
GGACGG
|
3895 |
+
GGAGAA
|
3896 |
+
GGAGAT
|
3897 |
+
GGAGAC
|
3898 |
+
GGAGAG
|
3899 |
+
GGAGTA
|
3900 |
+
GGAGTT
|
3901 |
+
GGAGTC
|
3902 |
+
GGAGTG
|
3903 |
+
GGAGCA
|
3904 |
+
GGAGCT
|
3905 |
+
GGAGCC
|
3906 |
+
GGAGCG
|
3907 |
+
GGAGGA
|
3908 |
+
GGAGGT
|
3909 |
+
GGAGGC
|
3910 |
+
GGAGGG
|
3911 |
+
GGTAAA
|
3912 |
+
GGTAAT
|
3913 |
+
GGTAAC
|
3914 |
+
GGTAAG
|
3915 |
+
GGTATA
|
3916 |
+
GGTATT
|
3917 |
+
GGTATC
|
3918 |
+
GGTATG
|
3919 |
+
GGTACA
|
3920 |
+
GGTACT
|
3921 |
+
GGTACC
|
3922 |
+
GGTACG
|
3923 |
+
GGTAGA
|
3924 |
+
GGTAGT
|
3925 |
+
GGTAGC
|
3926 |
+
GGTAGG
|
3927 |
+
GGTTAA
|
3928 |
+
GGTTAT
|
3929 |
+
GGTTAC
|
3930 |
+
GGTTAG
|
3931 |
+
GGTTTA
|
3932 |
+
GGTTTT
|
3933 |
+
GGTTTC
|
3934 |
+
GGTTTG
|
3935 |
+
GGTTCA
|
3936 |
+
GGTTCT
|
3937 |
+
GGTTCC
|
3938 |
+
GGTTCG
|
3939 |
+
GGTTGA
|
3940 |
+
GGTTGT
|
3941 |
+
GGTTGC
|
3942 |
+
GGTTGG
|
3943 |
+
GGTCAA
|
3944 |
+
GGTCAT
|
3945 |
+
GGTCAC
|
3946 |
+
GGTCAG
|
3947 |
+
GGTCTA
|
3948 |
+
GGTCTT
|
3949 |
+
GGTCTC
|
3950 |
+
GGTCTG
|
3951 |
+
GGTCCA
|
3952 |
+
GGTCCT
|
3953 |
+
GGTCCC
|
3954 |
+
GGTCCG
|
3955 |
+
GGTCGA
|
3956 |
+
GGTCGT
|
3957 |
+
GGTCGC
|
3958 |
+
GGTCGG
|
3959 |
+
GGTGAA
|
3960 |
+
GGTGAT
|
3961 |
+
GGTGAC
|
3962 |
+
GGTGAG
|
3963 |
+
GGTGTA
|
3964 |
+
GGTGTT
|
3965 |
+
GGTGTC
|
3966 |
+
GGTGTG
|
3967 |
+
GGTGCA
|
3968 |
+
GGTGCT
|
3969 |
+
GGTGCC
|
3970 |
+
GGTGCG
|
3971 |
+
GGTGGA
|
3972 |
+
GGTGGT
|
3973 |
+
GGTGGC
|
3974 |
+
GGTGGG
|
3975 |
+
GGCAAA
|
3976 |
+
GGCAAT
|
3977 |
+
GGCAAC
|
3978 |
+
GGCAAG
|
3979 |
+
GGCATA
|
3980 |
+
GGCATT
|
3981 |
+
GGCATC
|
3982 |
+
GGCATG
|
3983 |
+
GGCACA
|
3984 |
+
GGCACT
|
3985 |
+
GGCACC
|
3986 |
+
GGCACG
|
3987 |
+
GGCAGA
|
3988 |
+
GGCAGT
|
3989 |
+
GGCAGC
|
3990 |
+
GGCAGG
|
3991 |
+
GGCTAA
|
3992 |
+
GGCTAT
|
3993 |
+
GGCTAC
|
3994 |
+
GGCTAG
|
3995 |
+
GGCTTA
|
3996 |
+
GGCTTT
|
3997 |
+
GGCTTC
|
3998 |
+
GGCTTG
|
3999 |
+
GGCTCA
|
4000 |
+
GGCTCT
|
4001 |
+
GGCTCC
|
4002 |
+
GGCTCG
|
4003 |
+
GGCTGA
|
4004 |
+
GGCTGT
|
4005 |
+
GGCTGC
|
4006 |
+
GGCTGG
|
4007 |
+
GGCCAA
|
4008 |
+
GGCCAT
|
4009 |
+
GGCCAC
|
4010 |
+
GGCCAG
|
4011 |
+
GGCCTA
|
4012 |
+
GGCCTT
|
4013 |
+
GGCCTC
|
4014 |
+
GGCCTG
|
4015 |
+
GGCCCA
|
4016 |
+
GGCCCT
|
4017 |
+
GGCCCC
|
4018 |
+
GGCCCG
|
4019 |
+
GGCCGA
|
4020 |
+
GGCCGT
|
4021 |
+
GGCCGC
|
4022 |
+
GGCCGG
|
4023 |
+
GGCGAA
|
4024 |
+
GGCGAT
|
4025 |
+
GGCGAC
|
4026 |
+
GGCGAG
|
4027 |
+
GGCGTA
|
4028 |
+
GGCGTT
|
4029 |
+
GGCGTC
|
4030 |
+
GGCGTG
|
4031 |
+
GGCGCA
|
4032 |
+
GGCGCT
|
4033 |
+
GGCGCC
|
4034 |
+
GGCGCG
|
4035 |
+
GGCGGA
|
4036 |
+
GGCGGT
|
4037 |
+
GGCGGC
|
4038 |
+
GGCGGG
|
4039 |
+
GGGAAA
|
4040 |
+
GGGAAT
|
4041 |
+
GGGAAC
|
4042 |
+
GGGAAG
|
4043 |
+
GGGATA
|
4044 |
+
GGGATT
|
4045 |
+
GGGATC
|
4046 |
+
GGGATG
|
4047 |
+
GGGACA
|
4048 |
+
GGGACT
|
4049 |
+
GGGACC
|
4050 |
+
GGGACG
|
4051 |
+
GGGAGA
|
4052 |
+
GGGAGT
|
4053 |
+
GGGAGC
|
4054 |
+
GGGAGG
|
4055 |
+
GGGTAA
|
4056 |
+
GGGTAT
|
4057 |
+
GGGTAC
|
4058 |
+
GGGTAG
|
4059 |
+
GGGTTA
|
4060 |
+
GGGTTT
|
4061 |
+
GGGTTC
|
4062 |
+
GGGTTG
|
4063 |
+
GGGTCA
|
4064 |
+
GGGTCT
|
4065 |
+
GGGTCC
|
4066 |
+
GGGTCG
|
4067 |
+
GGGTGA
|
4068 |
+
GGGTGT
|
4069 |
+
GGGTGC
|
4070 |
+
GGGTGG
|
4071 |
+
GGGCAA
|
4072 |
+
GGGCAT
|
4073 |
+
GGGCAC
|
4074 |
+
GGGCAG
|
4075 |
+
GGGCTA
|
4076 |
+
GGGCTT
|
4077 |
+
GGGCTC
|
4078 |
+
GGGCTG
|
4079 |
+
GGGCCA
|
4080 |
+
GGGCCT
|
4081 |
+
GGGCCC
|
4082 |
+
GGGCCG
|
4083 |
+
GGGCGA
|
4084 |
+
GGGCGT
|
4085 |
+
GGGCGC
|
4086 |
+
GGGCGG
|
4087 |
+
GGGGAA
|
4088 |
+
GGGGAT
|
4089 |
+
GGGGAC
|
4090 |
+
GGGGAG
|
4091 |
+
GGGGTA
|
4092 |
+
GGGGTT
|
4093 |
+
GGGGTC
|
4094 |
+
GGGGTG
|
4095 |
+
GGGGCA
|
4096 |
+
GGGGCT
|
4097 |
+
GGGGCC
|
4098 |
+
GGGGCG
|
4099 |
+
GGGGGA
|
4100 |
+
GGGGGT
|
4101 |
+
GGGGGC
|
4102 |
+
GGGGGG
|
4103 |
+
A
|
4104 |
+
T
|
4105 |
+
C
|
4106 |
+
G
|
4107 |
+
N
|