zhiqings commited on
Commit
8a6c307
·
1 Parent(s): e52cc60

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md CHANGED
@@ -1,3 +1,101 @@
1
  ---
2
  license: llama2
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
  ---
4
+
5
+ # Dromedary-2 (verbose, v1) Model Card
6
+
7
+ ## Model details
8
+
9
+ <div style="display: flex; justify-content: center; align-items: center;">
10
+ <img src="https://raw.githubusercontent.com/IBM/SALMON/main/assets/images/salmon_logo_with_text.jpeg" alt="SALMON Logo" style="height: 256px; margin-right: 10px;"/>
11
+ <img src="https://raw.githubusercontent.com/IBM/Dromedary/main/assets/images/dromedary_logo.svg" alt="Dromedary Logo" style="height: 256px;"/>
12
+ </div>
13
+
14
+ **Model type:**
15
+ Dromedary-2 is an open-source self-aligned language model trained in minimal human supervision with the SALMON (Self-Alignment with Principle-Following Reward Models) technique.
16
+ The base language model is LLaMA-70b, based on the transformer architecture.
17
+
18
+ **NOTE: *Dromedary-2* is trained with [QLoRA](https://github.com/artidoro/qlora) and the bfloat16 data type.** While it is [possible](https://gist.github.com/ChrisHayduk/1a53463331f52dca205e55982baf9930) to merge the QLoRA weights with the quantized model and thus enable inference with libraries such as [TGI](https://github.com/huggingface/text-generation-inference) and [vLLM](https://github.com/vllm-project/vllm), we found the merged weights can lead to degenerated performance. Therefore, we recommend directly loading the QLoRA weights with the [PEFT-LoRA](https://github.com/huggingface/peft) framework.
19
+
20
+ Please check the [inference section](https://github.com/IBM/SALMON/inference) of our repo for the complete inference code.
21
+
22
+ ```python
23
+ system_prompt = (
24
+ "# Dromedary\n\n## System Overview\n\n"
25
+ "Consider an AI assistant whose codename is Dromedary, developed by the Self-Align team. "
26
+ "Dromedary is trained on data up until Sept-2022, and it endeavors to be a helpful, ethical and reliable assistant.\n\n"
27
+ "## User Conversation\n\n"
28
+ )
29
+ user_prompt = "### User\n"
30
+ assistant_prompt = "### Dromedary\n"
31
+ seperator = "\n\n"
32
+
33
+ dtype = torch.bfloat16
34
+
35
+ model_path = "path/to/llama-2-70b-hf"
36
+ qlora_path = "path/to/dromedary-2-70b-qlora-delta-v0" # i.e., this model hub
37
+
38
+ bnb_config = BitsAndBytesConfig(
39
+ load_in_4bit=True,
40
+ bnb_4bit_compute_dtype=dtype,
41
+ bnb_4bit_use_double_quant=True,
42
+ bnb_4bit_quant_type="nf4",
43
+ )
44
+
45
+ model = AutoModelForCausalLM.from_pretrained(
46
+ model_path,
47
+ load_in_4bit=True,
48
+ device_map={"": "cuda:0"},
49
+ quantization_config=bnb_config,
50
+ torch_dtype=dtype,
51
+ )
52
+
53
+ model = PeftModel.from_pretrained(
54
+ model,
55
+ qlora_path,
56
+ is_trainable=False,
57
+ )
58
+ ```
59
+
60
+ **Model date:**
61
+ Dromedary was trained between July 2023 and Aug 2023, but its knowledge only goes up until Sept-2022.
62
+
63
+ **License:**
64
+ LLaMA-2's bespoke license
65
+
66
+ ## More Information
67
+
68
+ **Paper or resources for more information:**
69
+ [placeholder]
70
+
71
+ **Where to send questions or comments about the model:**
72
+ https://github.com/IBM/SALMON/issues
73
+
74
+ **Organizations developing the model:**
75
+ The Self-Align team is a joint effort between CMU and IBM.
76
+
77
+ ## Intended use
78
+ **Primary intended uses:**
79
+ The primary use of Dromedary is research on the alignment of large language models.
80
+
81
+ **Primary intended users:**
82
+ The primary intended users of the model are researchers in artificial intelligence.
83
+
84
+ ## Training dataset
85
+ 6 In-Context Learning (ICL) exemplars
86
+
87
+ 90K unlabeled prompts from ShareGPT
88
+
89
+ 10K unlabeled prompts from databricks-dolly-15k
90
+
91
+ 10K unlabeled prompts from OpenAssistant Conversations
92
+
93
+ 40K unlabeled prompts from OpenOrca
94
+
95
+ 7.5K unlabeled prompts from MATH
96
+
97
+ ## Evaluation dataset
98
+ We evaluate Dromedary-2 on:
99
+ 1. Chatbot benchmarks: Vicuna-Bench, MT-Bench, AlpacaEval
100
+ 2. Capability benchmarks: Big-Bench Hard (reasoning), HumanEval (coding), TydiQA (multilingualism)
101
+ 3. Truthfulness benchmarks: TruthfulQA