--- license: mit tags: - generated_from_trainer datasets: - snips_built_in_intents metrics: - accuracy base_model: roberta-base model-index: - name: roberta-base-finetuned-intent results: [] --- # roberta-base-finetuned-intent This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the snips_built_in_intents dataset. It achieves the following results on the evaluation set: - Loss: 0.2720 - Accuracy: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9568 | 1.0 | 37 | 1.7598 | 0.4333 | | 1.2238 | 2.0 | 74 | 0.8130 | 0.7667 | | 0.4536 | 3.0 | 111 | 0.4985 | 0.8 | | 0.2478 | 4.0 | 148 | 0.3535 | 0.8667 | | 0.0903 | 5.0 | 185 | 0.3110 | 0.8667 | | 0.0849 | 6.0 | 222 | 0.2720 | 0.9333 | | 0.0708 | 7.0 | 259 | 0.2742 | 0.8667 | | 0.0796 | 8.0 | 296 | 0.2839 | 0.8667 | | 0.0638 | 9.0 | 333 | 0.2949 | 0.8667 | | 0.0566 | 10.0 | 370 | 0.2925 | 0.8667 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.0