Update README.md
Browse files
README.md
CHANGED
@@ -4,4 +4,85 @@ language:
|
|
4 |
- en
|
5 |
base_model:
|
6 |
- facebook/wav2vec2-base
|
7 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
- en
|
5 |
base_model:
|
6 |
- facebook/wav2vec2-base
|
7 |
+
---
|
8 |
+
|
9 |
+
SCD(Speaker Change Detection,讲者变化检测):是指在音频或视频内容中识别出讲话者发生变化的技术。它通常被应用于多讲者的对话或演讲场景中,以此来检测何时从一个讲者切换到另一个讲者。
|
10 |
+
|
11 |
+
如何使用
|
12 |
+
# Note: at the time this code was originally written, transformers.Wav2Vec2ForAudioFrameClassification was incomplete
|
13 |
+
# -> this adds the then-missing parts
|
14 |
+
class Wav2Vec2ForAudioFrameClassification_custom(transformers.Wav2Vec2ForAudioFrameClassification,
|
15 |
+
PyTorchModelHubMixin,
|
16 |
+
repo_url="your-repo-url",
|
17 |
+
pipeline_tag="text-to-image",
|
18 |
+
license="mit",):
|
19 |
+
def __init__(self, config):
|
20 |
+
super().__init__(config)
|
21 |
+
self.num_labels = config.num_labels
|
22 |
+
|
23 |
+
if hasattr(config, "add_adapter") and config.add_adapter:
|
24 |
+
raise ValueError(
|
25 |
+
"Audio frame classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)"
|
26 |
+
)
|
27 |
+
self.wav2vec2 = Wav2Vec2Model(config)
|
28 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
29 |
+
if config.use_weighted_layer_sum:
|
30 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
31 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
32 |
+
|
33 |
+
self.init_weights()
|
34 |
+
|
35 |
+
def forward(
|
36 |
+
self,
|
37 |
+
input_values,
|
38 |
+
attention_mask=None,
|
39 |
+
output_attentions=None,
|
40 |
+
output_hidden_states=None,
|
41 |
+
return_dict=None,
|
42 |
+
labels=None, # ADDED
|
43 |
+
):
|
44 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
45 |
+
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
46 |
+
|
47 |
+
outputs = self.wav2vec2(
|
48 |
+
input_values,
|
49 |
+
attention_mask=attention_mask,
|
50 |
+
output_attentions=output_attentions,
|
51 |
+
output_hidden_states=output_hidden_states,
|
52 |
+
return_dict=return_dict,
|
53 |
+
)
|
54 |
+
|
55 |
+
if self.config.use_weighted_layer_sum:
|
56 |
+
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
57 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
58 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
59 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
60 |
+
else:
|
61 |
+
hidden_states = outputs[0]
|
62 |
+
|
63 |
+
logits = self.classifier(hidden_states)
|
64 |
+
labels = labels.reshape(-1,1) # 1xN -> Nx1
|
65 |
+
|
66 |
+
# ADDED
|
67 |
+
loss = None
|
68 |
+
if labels is not None:
|
69 |
+
if self.num_labels == 1:
|
70 |
+
loss_fct = MSELoss()
|
71 |
+
#loss = loss_fct(logits.squeeze(), labels.squeeze())
|
72 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels)
|
73 |
+
else:
|
74 |
+
loss_fct = CrossEntropyLoss()
|
75 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
76 |
+
|
77 |
+
|
78 |
+
if not return_dict:
|
79 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
80 |
+
return ((loss,) + output) if loss is not None else output
|
81 |
+
|
82 |
+
return TokenClassifierOutput(
|
83 |
+
loss=loss,
|
84 |
+
logits=logits,
|
85 |
+
hidden_states=outputs.hidden_states,
|
86 |
+
attentions=outputs.attentions,
|
87 |
+
)
|
88 |
+
|