--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain" datasets: - zijun/autotrain-data-sun-v1 co2_eq_emissions: emissions: 0.022565355839303372 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 65957136332 - CO2 Emissions (in grams): 0.0226 ## Validation Metrics - Loss: 0.109 - Accuracy: 0.974 - Macro F1: 0.967 - Micro F1: 0.974 - Weighted F1: 0.973 - Macro Precision: 0.976 - Micro Precision: 0.974 - Weighted Precision: 0.974 - Macro Recall: 0.960 - Micro Recall: 0.974 - Weighted Recall: 0.974 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/zijun/autotrain-sun-v1-65957136332 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("zijun/autotrain-sun-v1-65957136332", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("zijun/autotrain-sun-v1-65957136332", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```