File size: 6,650 Bytes
5bc02c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
_base_ = ['mmpose::_base_/default_runtime.py']

# runtime
max_epochs = 420
stage2_num_epochs = 30
base_lr = 4e-3

train_cfg = dict(max_epochs=max_epochs, val_interval=10)
randomness = dict(seed=21)

# optimizer
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
    paramwise_cfg=dict(
        norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))

# learning rate
param_scheduler = [
    dict(
        type='LinearLR',
        start_factor=1.0e-5,
        by_epoch=False,
        begin=0,
        end=1000),
    dict(
        # use cosine lr from 210 to 420 epoch
        type='CosineAnnealingLR',
        eta_min=base_lr * 0.05,
        begin=max_epochs // 2,
        end=max_epochs,
        T_max=max_epochs // 2,
        by_epoch=True,
        convert_to_iter_based=True),
]

# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=1024)

# codec settings
codec = dict(
    type='SimCCLabel',
    input_size=(192, 256),
    sigma=(4.9, 5.66),
    simcc_split_ratio=2.0,
    normalize=False,
    use_dark=False)

# model settings
model = dict(
    type='TopdownPoseEstimator',
    data_preprocessor=dict(
        type='PoseDataPreprocessor',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True),
    backbone=dict(
        _scope_='mmdet',
        type='CSPNeXt',
        arch='P5',
        expand_ratio=0.5,
        deepen_factor=0.67,
        widen_factor=0.75,
        out_indices=(4, ),
        channel_attention=True,
        norm_cfg=dict(type='SyncBN'),
        act_cfg=dict(type='SiLU'),
        init_cfg=dict(
            type='Pretrained',
            prefix='backbone.',
            checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
            'rtmposev1/cspnext-m_udp-aic-coco_210e-256x192-f2f7d6f6_20230130.pth'  # noqa
        )),
    head=dict(
        type='RTMCCHead',
        in_channels=768,
        out_channels=17,
        input_size=codec['input_size'],
        in_featuremap_size=(6, 8),
        simcc_split_ratio=codec['simcc_split_ratio'],
        final_layer_kernel_size=7,
        gau_cfg=dict(
            hidden_dims=256,
            s=128,
            expansion_factor=2,
            dropout_rate=0.,
            drop_path=0.,
            act_fn='SiLU',
            use_rel_bias=False,
            pos_enc=False),
        loss=dict(
            type='KLDiscretLoss',
            use_target_weight=True,
            beta=10.,
            label_softmax=True),
        decoder=codec),
    test_cfg=dict(flip_test=True))

# base dataset settings
dataset_type = 'CocoDataset'
data_mode = 'topdown'
data_root = 'data/coco/'

backend_args = dict(backend='local')
# backend_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         f'{data_root}': 's3://openmmlab/datasets/detection/coco/',
#         f'{data_root}': 's3://openmmlab/datasets/detection/coco/'
#     }))

# pipelines
train_pipeline = [
    dict(type='LoadImage', backend_args=backend_args),
    dict(type='GetBBoxCenterScale'),
    dict(type='RandomFlip', direction='horizontal'),
    dict(type='RandomHalfBody'),
    dict(
        type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80),
    dict(type='TopdownAffine', input_size=codec['input_size']),
    dict(type='mmdet.YOLOXHSVRandomAug'),
    dict(
        type='Albumentation',
        transforms=[
            dict(type='Blur', p=0.1),
            dict(type='MedianBlur', p=0.1),
            dict(
                type='CoarseDropout',
                max_holes=1,
                max_height=0.4,
                max_width=0.4,
                min_holes=1,
                min_height=0.2,
                min_width=0.2,
                p=1.),
        ]),
    dict(type='GenerateTarget', encoder=codec),
    dict(type='PackPoseInputs')
]
val_pipeline = [
    dict(type='LoadImage', backend_args=backend_args),
    dict(type='GetBBoxCenterScale'),
    dict(type='TopdownAffine', input_size=codec['input_size']),
    dict(type='PackPoseInputs')
]

train_pipeline_stage2 = [
    dict(type='LoadImage', backend_args=backend_args),
    dict(type='GetBBoxCenterScale'),
    dict(type='RandomFlip', direction='horizontal'),
    dict(type='RandomHalfBody'),
    dict(
        type='RandomBBoxTransform',
        shift_factor=0.,
        scale_factor=[0.75, 1.25],
        rotate_factor=60),
    dict(type='TopdownAffine', input_size=codec['input_size']),
    dict(type='mmdet.YOLOXHSVRandomAug'),
    dict(
        type='Albumentation',
        transforms=[
            dict(type='Blur', p=0.1),
            dict(type='MedianBlur', p=0.1),
            dict(
                type='CoarseDropout',
                max_holes=1,
                max_height=0.4,
                max_width=0.4,
                min_holes=1,
                min_height=0.2,
                min_width=0.2,
                p=0.5),
        ]),
    dict(type='GenerateTarget', encoder=codec),
    dict(type='PackPoseInputs')
]

# data loaders
train_dataloader = dict(
    batch_size=256,
    num_workers=10,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_mode=data_mode,
        ann_file='annotations/person_keypoints_train2017.json',
        data_prefix=dict(img='train2017/'),
        pipeline=train_pipeline,
    ))
val_dataloader = dict(
    batch_size=64,
    num_workers=10,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_mode=data_mode,
        ann_file='annotations/person_keypoints_val2017.json',
        # bbox_file=f'{data_root}person_detection_results/'
        # 'COCO_val2017_detections_AP_H_56_person.json',
        data_prefix=dict(img='val2017/'),
        test_mode=True,
        pipeline=val_pipeline,
    ))
test_dataloader = val_dataloader

# hooks
default_hooks = dict(
    checkpoint=dict(save_best='coco/AP', rule='greater', max_keep_ckpts=1))

custom_hooks = [
    dict(
        type='EMAHook',
        ema_type='ExpMomentumEMA',
        momentum=0.0002,
        update_buffers=True,
        priority=49),
    dict(
        type='mmdet.PipelineSwitchHook',
        switch_epoch=max_epochs - stage2_num_epochs,
        switch_pipeline=train_pipeline_stage2)
]

# evaluators
val_evaluator = dict(
    type='CocoMetric',
    ann_file=data_root + 'annotations/person_keypoints_val2017.json')
test_evaluator = val_evaluator