rtm / rtmdet-m.py
ziq's picture
Upload rtmdet-m.py
2a68c9d
raw
history blame
5.2 kB
_base_ = [
"mmdet::_base_/default_runtime.py",
"mmdet::_base_/schedules/schedule_1x.py",
"mmdet::_base_/datasets/coco_detection.py",
"mmdet::rtmdet/rtmdet_tta.py",
]
model = dict(
type="RTMDet",
data_preprocessor=dict(
type="DetDataPreprocessor",
mean=[103.53, 116.28, 123.675],
std=[57.375, 57.12, 58.395],
bgr_to_rgb=False,
batch_augments=None,
),
backbone=dict(
type="CSPNeXt",
arch="P5",
expand_ratio=0.5,
deepen_factor=0.67,
widen_factor=0.75,
channel_attention=True,
norm_cfg=dict(type="SyncBN"),
act_cfg=dict(type="SiLU", inplace=True),
),
neck=dict(
type="CSPNeXtPAFPN",
in_channels=[192, 384, 768],
out_channels=192,
num_csp_blocks=2,
expand_ratio=0.5,
norm_cfg=dict(type="SyncBN"),
act_cfg=dict(type="SiLU", inplace=True),
),
bbox_head=dict(
type="RTMDetSepBNHead",
num_classes=80,
in_channels=192,
stacked_convs=2,
feat_channels=192,
anchor_generator=dict(type="MlvlPointGenerator", offset=0, strides=[8, 16, 32]),
bbox_coder=dict(type="DistancePointBBoxCoder"),
loss_cls=dict(
type="QualityFocalLoss", use_sigmoid=True, beta=2.0, loss_weight=1.0
),
loss_bbox=dict(type="GIoULoss", loss_weight=2.0),
with_objectness=False,
exp_on_reg=True,
share_conv=True,
pred_kernel_size=1,
norm_cfg=dict(type="SyncBN"),
act_cfg=dict(type="SiLU", inplace=True),
),
train_cfg=dict(
assigner=dict(type="DynamicSoftLabelAssigner", topk=13),
allowed_border=-1,
pos_weight=-1,
debug=False,
),
test_cfg=dict(
nms_pre=30000,
min_bbox_size=0,
score_thr=0.001,
nms=dict(type="nms", iou_threshold=0.65),
max_per_img=300,
),
)
train_pipeline = [
dict(type="LoadImageFromFile", backend_args={{_base_.backend_args}}),
dict(type="LoadAnnotations", with_bbox=True),
dict(type="CachedMosaic", img_scale=(640, 640), pad_val=114.0),
dict(
type="RandomResize", scale=(1280, 1280), ratio_range=(0.1, 2.0), keep_ratio=True
),
dict(type="RandomCrop", crop_size=(640, 640)),
dict(type="YOLOXHSVRandomAug"),
dict(type="RandomFlip", prob=0.5),
dict(type="Pad", size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(
type="CachedMixUp",
img_scale=(640, 640),
ratio_range=(1.0, 1.0),
max_cached_images=20,
pad_val=(114, 114, 114),
),
dict(type="mmdet.PackDetInputs"),
]
train_pipeline_stage2 = [
dict(type="LoadImageFromFile", backend_args={{_base_.backend_args}}),
dict(type="LoadAnnotations", with_bbox=True),
dict(
type="RandomResize", scale=(640, 640), ratio_range=(0.1, 2.0), keep_ratio=True
),
dict(type="RandomCrop", crop_size=(640, 640)),
dict(type="YOLOXHSVRandomAug"),
dict(type="RandomFlip", prob=0.5),
dict(type="Pad", size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(type="mmdet.PackDetInputs"),
]
test_pipeline = [
dict(type="LoadImageFromFile", backend_args={{_base_.backend_args}}),
dict(type="Resize", scale=(640, 640), keep_ratio=True),
dict(type="Pad", size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(
type="mmdet.PackDetInputs",
meta_keys=("img_id", "img_path", "ori_shape", "img_shape", "scale_factor"),
),
]
train_dataloader = dict(
batch_size=32,
num_workers=10,
batch_sampler=None,
pin_memory=True,
dataset=dict(pipeline=train_pipeline),
)
val_dataloader = dict(
batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline)
)
test_dataloader = val_dataloader
max_epochs = 300
stage2_num_epochs = 20
base_lr = 0.004
interval = 10
train_cfg = dict(
max_epochs=max_epochs,
val_interval=interval,
dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)],
)
val_evaluator = dict(proposal_nums=(100, 1, 10))
test_evaluator = val_evaluator
# optimizer
optim_wrapper = dict(
_delete_=True,
type="OptimWrapper",
optimizer=dict(type="AdamW", lr=base_lr, weight_decay=0.05),
paramwise_cfg=dict(norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True),
)
# learning rate
param_scheduler = [
dict(type="LinearLR", start_factor=1.0e-5, by_epoch=False, begin=0, end=1000),
dict(
# use cosine lr from 150 to 300 epoch
type="CosineAnnealingLR",
eta_min=base_lr * 0.05,
begin=max_epochs // 2,
end=max_epochs,
T_max=max_epochs // 2,
by_epoch=True,
convert_to_iter_based=True,
),
]
# hooks
default_hooks = dict(
checkpoint=dict(
interval=interval, max_keep_ckpts=3 # only keep latest 3 checkpoints
)
)
custom_hooks = [
dict(
type="EMAHook",
ema_type="ExpMomentumEMA",
momentum=0.0002,
update_buffers=True,
priority=49,
),
dict(
type="PipelineSwitchHook",
switch_epoch=max_epochs - stage2_num_epochs,
switch_pipeline=train_pipeline_stage2,
),
]