|
_base_ = [ |
|
"mmdet::_base_/default_runtime.py", |
|
"mmdet::_base_/schedules/schedule_1x.py", |
|
"mmdet::_base_/datasets/coco_detection.py", |
|
"mmdet::rtmdet/rtmdet_tta.py", |
|
] |
|
model = dict( |
|
type="RTMDet", |
|
data_preprocessor=dict( |
|
type="DetDataPreprocessor", |
|
mean=[103.53, 116.28, 123.675], |
|
std=[57.375, 57.12, 58.395], |
|
bgr_to_rgb=False, |
|
batch_augments=None, |
|
), |
|
backbone=dict( |
|
type="CSPNeXt", |
|
arch="P5", |
|
expand_ratio=0.5, |
|
deepen_factor=0.67, |
|
widen_factor=0.75, |
|
channel_attention=True, |
|
norm_cfg=dict(type="SyncBN"), |
|
act_cfg=dict(type="SiLU", inplace=True), |
|
), |
|
neck=dict( |
|
type="CSPNeXtPAFPN", |
|
in_channels=[192, 384, 768], |
|
out_channels=192, |
|
num_csp_blocks=2, |
|
expand_ratio=0.5, |
|
norm_cfg=dict(type="SyncBN"), |
|
act_cfg=dict(type="SiLU", inplace=True), |
|
), |
|
bbox_head=dict( |
|
type="RTMDetSepBNHead", |
|
num_classes=80, |
|
in_channels=192, |
|
stacked_convs=2, |
|
feat_channels=192, |
|
anchor_generator=dict(type="MlvlPointGenerator", offset=0, strides=[8, 16, 32]), |
|
bbox_coder=dict(type="DistancePointBBoxCoder"), |
|
loss_cls=dict( |
|
type="QualityFocalLoss", use_sigmoid=True, beta=2.0, loss_weight=1.0 |
|
), |
|
loss_bbox=dict(type="GIoULoss", loss_weight=2.0), |
|
with_objectness=False, |
|
exp_on_reg=True, |
|
share_conv=True, |
|
pred_kernel_size=1, |
|
norm_cfg=dict(type="SyncBN"), |
|
act_cfg=dict(type="SiLU", inplace=True), |
|
), |
|
train_cfg=dict( |
|
assigner=dict(type="DynamicSoftLabelAssigner", topk=13), |
|
allowed_border=-1, |
|
pos_weight=-1, |
|
debug=False, |
|
), |
|
test_cfg=dict( |
|
nms_pre=30000, |
|
min_bbox_size=0, |
|
score_thr=0.001, |
|
nms=dict(type="nms", iou_threshold=0.65), |
|
max_per_img=300, |
|
), |
|
) |
|
|
|
train_pipeline = [ |
|
dict(type="LoadImageFromFile", backend_args={{_base_.backend_args}}), |
|
dict(type="LoadAnnotations", with_bbox=True), |
|
dict(type="CachedMosaic", img_scale=(640, 640), pad_val=114.0), |
|
dict( |
|
type="RandomResize", scale=(1280, 1280), ratio_range=(0.1, 2.0), keep_ratio=True |
|
), |
|
dict(type="RandomCrop", crop_size=(640, 640)), |
|
dict(type="YOLOXHSVRandomAug"), |
|
dict(type="RandomFlip", prob=0.5), |
|
dict(type="Pad", size=(640, 640), pad_val=dict(img=(114, 114, 114))), |
|
dict( |
|
type="CachedMixUp", |
|
img_scale=(640, 640), |
|
ratio_range=(1.0, 1.0), |
|
max_cached_images=20, |
|
pad_val=(114, 114, 114), |
|
), |
|
dict(type="mmdet.PackDetInputs"), |
|
] |
|
|
|
train_pipeline_stage2 = [ |
|
dict(type="LoadImageFromFile", backend_args={{_base_.backend_args}}), |
|
dict(type="LoadAnnotations", with_bbox=True), |
|
dict( |
|
type="RandomResize", scale=(640, 640), ratio_range=(0.1, 2.0), keep_ratio=True |
|
), |
|
dict(type="RandomCrop", crop_size=(640, 640)), |
|
dict(type="YOLOXHSVRandomAug"), |
|
dict(type="RandomFlip", prob=0.5), |
|
dict(type="Pad", size=(640, 640), pad_val=dict(img=(114, 114, 114))), |
|
dict(type="mmdet.PackDetInputs"), |
|
] |
|
|
|
test_pipeline = [ |
|
dict(type="LoadImageFromFile", backend_args={{_base_.backend_args}}), |
|
dict(type="Resize", scale=(640, 640), keep_ratio=True), |
|
dict(type="Pad", size=(640, 640), pad_val=dict(img=(114, 114, 114))), |
|
dict( |
|
type="mmdet.PackDetInputs", |
|
meta_keys=("img_id", "img_path", "ori_shape", "img_shape", "scale_factor"), |
|
), |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=32, |
|
num_workers=10, |
|
batch_sampler=None, |
|
pin_memory=True, |
|
dataset=dict(pipeline=train_pipeline), |
|
) |
|
val_dataloader = dict( |
|
batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline) |
|
) |
|
test_dataloader = val_dataloader |
|
|
|
max_epochs = 300 |
|
stage2_num_epochs = 20 |
|
base_lr = 0.004 |
|
interval = 10 |
|
|
|
train_cfg = dict( |
|
max_epochs=max_epochs, |
|
val_interval=interval, |
|
dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)], |
|
) |
|
|
|
val_evaluator = dict(proposal_nums=(100, 1, 10)) |
|
test_evaluator = val_evaluator |
|
|
|
|
|
optim_wrapper = dict( |
|
_delete_=True, |
|
type="OptimWrapper", |
|
optimizer=dict(type="AdamW", lr=base_lr, weight_decay=0.05), |
|
paramwise_cfg=dict(norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True), |
|
) |
|
|
|
|
|
param_scheduler = [ |
|
dict(type="LinearLR", start_factor=1.0e-5, by_epoch=False, begin=0, end=1000), |
|
dict( |
|
|
|
type="CosineAnnealingLR", |
|
eta_min=base_lr * 0.05, |
|
begin=max_epochs // 2, |
|
end=max_epochs, |
|
T_max=max_epochs // 2, |
|
by_epoch=True, |
|
convert_to_iter_based=True, |
|
), |
|
] |
|
|
|
|
|
default_hooks = dict( |
|
checkpoint=dict( |
|
interval=interval, max_keep_ckpts=3 |
|
) |
|
) |
|
custom_hooks = [ |
|
dict( |
|
type="EMAHook", |
|
ema_type="ExpMomentumEMA", |
|
momentum=0.0002, |
|
update_buffers=True, |
|
priority=49, |
|
), |
|
dict( |
|
type="PipelineSwitchHook", |
|
switch_epoch=max_epochs - stage2_num_epochs, |
|
switch_pipeline=train_pipeline_stage2, |
|
), |
|
] |
|
|