_base_ = [ 'mmdet::_base_/default_runtime.py', 'mmdet::_base_/schedules/schedule_1x.py', 'mmdet::_base_/datasets/coco_detection.py', 'mmdet::rtmdet/rtmdet_tta.py' ] model = dict( type='RTMDet', data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False, batch_augments=None), backbone=dict( type='CSPNeXt', arch='P5', expand_ratio=0.5, deepen_factor=1, widen_factor=1, channel_attention=True, norm_cfg=dict(type='SyncBN'), act_cfg=dict(type='SiLU', inplace=True)), neck=dict( type='CSPNeXtPAFPN', in_channels=[256, 512, 1024], out_channels=256, num_csp_blocks=3, expand_ratio=0.5, norm_cfg=dict(type='SyncBN'), act_cfg=dict(type='SiLU', inplace=True)), bbox_head=dict( type='RTMDetSepBNHead', num_classes=80, in_channels=256, stacked_convs=2, feat_channels=256, anchor_generator=dict( type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]), bbox_coder=dict(type='DistancePointBBoxCoder'), loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, beta=2.0, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), with_objectness=False, exp_on_reg=True, share_conv=True, pred_kernel_size=1, norm_cfg=dict(type='SyncBN'), act_cfg=dict(type='SiLU', inplace=True)), train_cfg=dict( assigner=dict(type='DynamicSoftLabelAssigner', topk=13), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=30000, min_bbox_size=0, score_thr=0.001, nms=dict(type='nms', iou_threshold=0.65), max_per_img=300), ) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0), dict( type='RandomResize', scale=(1280, 1280), ratio_range=(0.1, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type='CachedMixUp', img_scale=(640, 640), ratio_range=(1.0, 1.0), max_cached_images=20, pad_val=(114, 114, 114)), dict(type='mmdet.PackDetInputs') ] train_pipeline_stage2 = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=(640, 640), ratio_range=(0.1, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict(type='mmdet.PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(640, 640), keep_ratio=True), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type='mmdet.PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=32, num_workers=10, batch_sampler=None, pin_memory=True, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict( batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader max_epochs = 300 stage2_num_epochs = 20 base_lr = 0.004 interval = 10 train_cfg = dict( max_epochs=max_epochs, val_interval=interval, dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)]) val_evaluator = dict(proposal_nums=(100, 1, 10)) test_evaluator = val_evaluator # optimizer optim_wrapper = dict( _delete_=True, type='OptimWrapper', optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05), paramwise_cfg=dict( norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0e-5, by_epoch=False, begin=0, end=1000), dict( # use cosine lr from 150 to 300 epoch type='CosineAnnealingLR', eta_min=base_lr * 0.05, begin=max_epochs // 2, end=max_epochs, T_max=max_epochs // 2, by_epoch=True, convert_to_iter_based=True), ] # hooks default_hooks = dict( checkpoint=dict( interval=interval, max_keep_ckpts=3 # only keep latest 3 checkpoints )) custom_hooks = [ dict( type='EMAHook', ema_type='ExpMomentumEMA', momentum=0.0002, update_buffers=True, priority=49), dict( type='PipelineSwitchHook', switch_epoch=max_epochs - stage2_num_epochs, switch_pipeline=train_pipeline_stage2) ]