_base_ = [ "mmdet::_base_/default_runtime.py", "mmdet::_base_/schedules/schedule_1x.py", "mmdet::_base_/datasets/coco_detection.py", "mmdet::rtmdet/rtmdet_tta.py", ] model = dict( type="RTMDet", data_preprocessor=dict( type="DetDataPreprocessor", mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False, batch_augments=None, ), backbone=dict( type="CSPNeXt", arch="P5", expand_ratio=0.5, deepen_factor=0.67, widen_factor=0.75, channel_attention=True, norm_cfg=dict(type="SyncBN"), act_cfg=dict(type="SiLU", inplace=True), ), neck=dict( type="CSPNeXtPAFPN", in_channels=[192, 384, 768], out_channels=192, num_csp_blocks=2, expand_ratio=0.5, norm_cfg=dict(type="SyncBN"), act_cfg=dict(type="SiLU", inplace=True), ), bbox_head=dict( type="RTMDetSepBNHead", num_classes=80, in_channels=192, stacked_convs=2, feat_channels=192, anchor_generator=dict(type="MlvlPointGenerator", offset=0, strides=[8, 16, 32]), bbox_coder=dict(type="DistancePointBBoxCoder"), loss_cls=dict( type="QualityFocalLoss", use_sigmoid=True, beta=2.0, loss_weight=1.0 ), loss_bbox=dict(type="GIoULoss", loss_weight=2.0), with_objectness=False, exp_on_reg=True, share_conv=True, pred_kernel_size=1, norm_cfg=dict(type="SyncBN"), act_cfg=dict(type="SiLU", inplace=True), ), train_cfg=dict( assigner=dict(type="DynamicSoftLabelAssigner", topk=13), allowed_border=-1, pos_weight=-1, debug=False, ), test_cfg=dict( nms_pre=30000, min_bbox_size=0, score_thr=0.001, nms=dict(type="nms", iou_threshold=0.65), max_per_img=300, ), ) train_pipeline = [ dict(type="LoadImageFromFile", backend_args={{_base_.backend_args}}), dict(type="LoadAnnotations", with_bbox=True), dict(type="CachedMosaic", img_scale=(640, 640), pad_val=114.0), dict( type="RandomResize", scale=(1280, 1280), ratio_range=(0.1, 2.0), keep_ratio=True ), dict(type="RandomCrop", crop_size=(640, 640)), dict(type="YOLOXHSVRandomAug"), dict(type="RandomFlip", prob=0.5), dict(type="Pad", size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type="CachedMixUp", img_scale=(640, 640), ratio_range=(1.0, 1.0), max_cached_images=20, pad_val=(114, 114, 114), ), dict(type="mmdet.PackDetInputs"), ] train_pipeline_stage2 = [ dict(type="LoadImageFromFile", backend_args={{_base_.backend_args}}), dict(type="LoadAnnotations", with_bbox=True), dict( type="RandomResize", scale=(640, 640), ratio_range=(0.1, 2.0), keep_ratio=True ), dict(type="RandomCrop", crop_size=(640, 640)), dict(type="YOLOXHSVRandomAug"), dict(type="RandomFlip", prob=0.5), dict(type="Pad", size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict(type="mmdet.PackDetInputs"), ] test_pipeline = [ dict(type="LoadImageFromFile", backend_args={{_base_.backend_args}}), dict(type="Resize", scale=(640, 640), keep_ratio=True), dict(type="Pad", size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type="mmdet.PackDetInputs", meta_keys=("img_id", "img_path", "ori_shape", "img_shape", "scale_factor"), ), ] train_dataloader = dict( batch_size=32, num_workers=10, batch_sampler=None, pin_memory=True, dataset=dict(pipeline=train_pipeline), ) val_dataloader = dict( batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline) ) test_dataloader = val_dataloader max_epochs = 300 stage2_num_epochs = 20 base_lr = 0.004 interval = 10 train_cfg = dict( max_epochs=max_epochs, val_interval=interval, dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)], ) val_evaluator = dict(proposal_nums=(100, 1, 10)) test_evaluator = val_evaluator # optimizer optim_wrapper = dict( _delete_=True, type="OptimWrapper", optimizer=dict(type="AdamW", lr=base_lr, weight_decay=0.05), paramwise_cfg=dict(norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True), ) # learning rate param_scheduler = [ dict(type="LinearLR", start_factor=1.0e-5, by_epoch=False, begin=0, end=1000), dict( # use cosine lr from 150 to 300 epoch type="CosineAnnealingLR", eta_min=base_lr * 0.05, begin=max_epochs // 2, end=max_epochs, T_max=max_epochs // 2, by_epoch=True, convert_to_iter_based=True, ), ] # hooks default_hooks = dict( checkpoint=dict( interval=interval, max_keep_ckpts=3 # only keep latest 3 checkpoints ) ) custom_hooks = [ dict( type="EMAHook", ema_type="ExpMomentumEMA", momentum=0.0002, update_buffers=True, priority=49, ), dict( type="PipelineSwitchHook", switch_epoch=max_epochs - stage2_num_epochs, switch_pipeline=train_pipeline_stage2, ), ]