_base_ = 'mmdet::rtmdet/rtmdet_l_8xb32-300e_coco.py' checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-s_imagenet_600e.pth' # noqa model = dict( backbone=dict( deepen_factor=0.33, widen_factor=0.5, init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), neck=dict(in_channels=[128, 256, 512], out_channels=128, num_csp_blocks=1), bbox_head=dict(in_channels=128, feat_channels=128, exp_on_reg=False)) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0), dict( type='RandomResize', scale=(1280, 1280), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type='CachedMixUp', img_scale=(640, 640), ratio_range=(1.0, 1.0), max_cached_images=20, pad_val=(114, 114, 114)), dict(type='PackDetInputs') ] train_pipeline_stage2 = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=(640, 640), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) custom_hooks = [ dict( type='EMAHook', ema_type='ExpMomentumEMA', momentum=0.0002, update_buffers=True, priority=49), dict( type='PipelineSwitchHook', switch_epoch=280, switch_pipeline=train_pipeline_stage2) ]